
■ Automatic speech recognition is one of the fastest
growing and commercially most promising appli-
cations of natural language technology. The tech-
nology has achieved a point where carefully
designed systems for suitably constrained applica-
tions are a reality. Commercial systems are avail-
able today for such tasks as large-vocabulary dicta-
tion and voice control of medical equipment. This
article reviews how state-of-the-art speech-recogni-
tion systems combine statistical modeling, linguis-
tic knowledge, and machine learning to achieve
their performance and points out some of the
research issues in the field.

Automatic speech recognition (ASR) is
one of the fastest growing and commer-
cially most promising applications of

natural language technology. Speech is the
most natural communicative medium for
humans in many situations, including applica-
tions such as giving dictation; querying data-
base or information-retrieval systems; or
generally giving commands to a computer or
other device, especially in environments where
keyboard input is awkward or impossible (for
example, because one’s hands are required for
other tasks). 

We are far from solving the ASR problem ful-
ly, and to the extent that human performance
requires solving related AI-complete problems
(such as humanlike natural language under-
standing), we might never fully achieve this
goal. However, the technology has made
steady progress over the past several decades
and has achieved a point where carefully
designed systems for suitably constrained
applications are a reality. Commercial systems
are available today for diverse tasks such as
large-vocabulary dictation, voice control of
medical equipment, and stock trading over the
telephone. 

Progress is not only evident in real-world
applications. The technology has been con-
stantly improving, as measured by various
benchmarks administered by the U.S. govern-
ment, in particular by the Defense Advanced
Research Projects Agency (DARPA). The com-
monly used performance metric in these eval-
uations is the recognition word error rate (WER),
defined as the ratio of the number of incorrect-
ly recognized (or unrecognized) words to the
total number of actually spoken words. The
difficulty of an ASR task can broadly be charac-
terized along a number of dimensions. The
recognition task becomes increasingly more
difficult along these dimensions, as given here: 

First is the size of the vocabulary: small
(2–100 words, for example, for a voice-menu
system), medium (several 100s to 1,000s of
words, for example, for a database-retrieval
task), and large (several 10,000s of words, as in
a general dictation task). 

Second is the speaking style: read speech ver-
sus planned speech versus spontaneous
speech. 

Third is the language domain: task oriented
and constrained (such as database query) ver-
sus open and unconstrained (nontask oriented,
human-to-human conversation). Less con-
strained language tends to also have larger
vocabulary and features more spontaneous
speech. 

Fourth is speaker specificity: speaker depen-
dent (system trained on test speaker) versus
speaker independent. (A related dimension is
native versus nonnative speech.) 

Fifth is channel quality: high bandwidth
(encompassing the full frequency range of
human speech) to low bandwidth (for exam-
ple, telephone) as well as the amount of distor-
tion. 

Sixth is acoustic environment: less versus
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fer widely in their phonology, morphology,
and syntax, both from each other and from
English, similar results were achieved using
essentially identical technology (some of
which is outlined in this article) simply by
retraining the system on the appropriate train-
ing data. This result is encouraging because it
demonstrates the power and flexibility of data-
driven approaches. 

A Statistical Paradigm for 
Speech Recognition 

A state-of-the-art speech recognizer is best
understood as a statistical pattern classifier
(Duda and Hart 1973). Given an acoustic
waveform A, its goal is to find the word
sequence W that best matches A. Best match is
defined in probabilistic terms; that is, the rec-
ognizer aims to find the words W that have the
highest posterior probability P(W | A) given A
(Bahl, Jelinek, and Mercer 1983). 

I gloss over the many algorithmic and engi-
neering issues involved in building a working
ASR system (especially concerning the search
for the best hypothesis) and instead focus on
some of the models used to compute the prob-
abilities used to rank alternative recognition
hypotheses. Virtually all models use a combi-
nation of linguistic knowledge and data-driven
machine-learning techniques to achieve their
goals. Speech recognition is therefore inher-
ently empirical and corpus based in nature.

more background noise as well as the type of
background noise (for example, stationary,
nonhuman noise versus background speech
and crosstalk by other speakers).

Table 1 summarizes recent results from
DARPA evaluations on a number of tasks span-
ning several of the dimensions given here. All
tasks involve speaker-independent recognition
of American English. The Air Travel Informa-
tion System (ATIS) task involves a human
retrieving flight information from a database.
The North American business news (NABN)
corpus has speakers carefully reading articles
from newspapers and wire services. In the
broadcast news task, the goal is to automatical-
ly transcribe radio and television audio con-
taining a mix of speaking styles, often inter-
laced with nonspeech. The switchboard (SWB)
corpus contains spontaneous, casual speech
from human-to-human telephone conversa-
tions. As shown in the table, word error rates
increase as the speech becomes less con-
strained and acoustic conditions less con-
trolled. 

Interestingly, one dimension that does not
seem to affect ASR performance inherently is
the choice of the language itself. Although it is
difficult to control the choice of language giv-
en the historical English bias in much ASR
research, recent benchmarks on a range of
non-English languages (Spanish, Arabic, Man-
darin Chinese, Japanese) under similar condi-
tions showed comparable performance
(DARPA 1997). Although these languages dif-

Table 1. State-of-the-Art Performance on Defense Advanced Research Projects Agency Speech-Recognition Tasks. 
Performance is given as the word error rate (WER) achieved by the best system in the most recent evaluation of the tasks.
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Task Vocabulary Style Channel Acoustics Word Error 
Rate (%)

Air-travel
information
system

2,000 Spontaneous,
human to
machine

High
bandwidth

Clean 2.1

North
American
business news

60,000 Read High
Bandwidth

Clean 6.6

Broadcast news 60,000 Various Various Various 27.1

Switchboard 23,000 Spontaneous,
conversational

Telephone Clean 35.1



Finding the right combination of built-in
structure and trainability is one of the keys to
good performance and the feasibility of the
overall system. 

The standard procedure to compute the
probability P(W | A) is to use Bayes’s law to
decompose this posterior probability into a
prior probability P(W) for the word sequence
W under consideration and an acoustic likeli-
hood P(A | W) plus a normalization term

P(W | A)= P(W)P(A | W) / P(A)  .

The denominator does not depend on W and
can therefore be ignored when comparing dif-
ferent hypotheses. 

The model to compute P(W) is called the
language model; it is a probabilistic grammar
expressing the prior probabilities of all possible
word sequences that the recognizer can poten-
tially recognize. The prior probability of an
utterance depends not just on the language
but also crucially on the application domain,
the speaker, and the context of the utterance;
a good language model should therefore be
conditioned on all these. As a simple example,
the word you has probability ≈.024 of occur-
ring at any given position in the switchboard
(telephone conversation) corpus, but in the
NABN corpus, the probability is only ≈.00086. 

The acoustic likelihood P(A | W) character-
izes the match between acoustic observation
and hypothesized words and is computed by
the acoustic model. The number of possible
acoustic observations A and word sequences
W is, for all purposes, infinite. Therefore, to be
practical, an acoustic model must rely on a
hierarchical decomposition into models of
smaller units. This decomposition usually fol-
lows the levels of representation identified in
linguistics. Thus, a typical acoustic model will
first decompose a word sequence W into indi-
vidual words, each with its own model, so that
the same word occurring in different contexts
is represented identically. Words are further
decomposed into phones, and phones are, in
turn, modeled by subphonetic states corre-
sponding to onset, middle, and ends of their
realizations. Later in this brief overview, we
take a closer look at one of these modeling lev-
els, namely, that of phone sequences. For lack
of space, I do not touch on the lower-level
components of acoustic modeling, except to
say that they rely heavily on data-driven meth-
ods. For example, it turns out that the best
approach to group subphonetic units into
classes (something that is necessary to counter-
act the sparseness of training data) is through
clustering algorithms driven by information-
theoretic measures of model fit (Digalakis and
Murveit 1994). 

I now examine some of the problems of
both language and acoustic models in more
detail and outline how empirical methods can
be brought to bear in each case. Naturally, I
can only scratch the surface in this article; for
a comprehensive account of speech-recogni-
tion methods, the reader is referred to Rabiner
and Juang (1993). A recent book that focuses
on the statistical and data-driven aspects of
speech modeling is Jelinek (1997). 

Language Modeling
As mentioned previously, the job of the lan-
guage model in a speech recognizer is to assess
the prior probabilities P(W) of potential recog-
nized word sequences. This section describes
the most popular approaches to this problem
as well as some of the research issues.

N-Gram Models 
With the basic axioms of probability, the joint
probability of the word sequence can be
expressed as a product of word probabilities,
each conditioned on all preceding words. The
probability of “The cat is on the mat” becomes

P(the cat is 
on the mat) = P(the | <s>) 3

P(cat | <s> the) 3
P(is | <s> the cat) 3
P(on | <s> the cat is) 3
P(the | <s> the cat is on) 3
P(mat | <s> the cat is on the) 3
P(</s> | <s> the cat is 

on the mat)  .

Here we use the tags <s> and </s> to denote the
beginning and end of sentences, respectively. 

Although such a decomposition of the joint
probability is exact, it introduces far too many
model parameters (one for each conditional
probability) to be practical. The solution used
in the vast majority of current speech systems
is to approximate the conditional word proba-
bilities by truncating the history of each word
to one or two tokens: 

P(the cat is on the mat) ≈ P(the | <s>) 3
P(cat | <s> the) 3
P(is | the cat) 3
P(on | cat is) 3
P(the | is on) 3
P(mat | on the) 3
P(</s> | the mat) .

Such a model is called an n-gram model
because it incorporates the statistics of N-tuples
of words. The most commonly used versions
are bigram (N = 2) and trigram (N = 3) models.
N-gram models have a large number of parame-
ters, essentially one conditional probability for
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C(banana) = C(avocado) = fruit. Based on the
previous factorization, we can now infer the
probability P(avocado | the ripe) even though we
only observed the ripe banana. Because banana
and avocado share the same class, observing
one contributes to estimating the probability
of the other using the shared probability
P(fruit | the ripe). 

The word-class–based model assumes that
the words in a class are distributed identically
once we condition on the class. This assump-
tion is justified in restricted domains (for
example, the ATIS task) where one can identify
sets of words whose members are distributed
almost identically (such as airline names, city
names, days of the week). Alternatively, auto-
matic clustering algorithms can be used to find
word classes that optimize the overall language
model quality as measured by its entropy
(Brown et al. 1992). One drawback of automat-
ic methods is that they only operate on words
found in the training data, but hand-designed
classes can increase the coverage of the lan-
guage model to previously unseen words. 

A general type of language model is ob-
tained by using a decision tree as a predictor of
P(w | h) (Bahl et al. 1989). A decision tree is
trained on data to predict the next word w
based on a large number of features describing
the word history h. The features include all the
information found in standard language mod-
els, such as the identity and syntactic classes or
words in the history. This approach gives the
tree model the potential to find novel and
more effective predictors based on the word
history. Still, results to date have not shown a
significant improvement over the standard
word n-gram model. 

Language Models Based 
on Phrase Structure 
There have been various efforts to supplant n-
gram models with more linguistically motivat-
ed language models. A considerable body of
work is based on probabilistic context-free gram-
mars (PCFGs), a generalization of context-free
grammars that assigns probabilities to each
rewrite rule (Lari and Young 1991; Jelinek, Laf-
ferty, and Mercer 1990). A rule probability such
as P(NP → Det N) = 0.78 means that 78 percent
of the noun phrases generated by the grammar
consist of determiner-noun pairs. To train such
grammars, one either needs a parsed corpus (a
tree bank) or an iterative algorithm that
repeatedly parses the training data and then
reestimates the rule probabilities accordingly. 

Unfortunately, no effective algorithms are
known that learn realistic phrase structure
grammars completely from scratch, that is,

each N-tuple of words observed in the training
corpus. N-gram model parameters are estimat-
ed by counting the occurrences of word N-
tuples in a training corpus. A naive estimate for
the probability P(w | h) is the relative frequency
of word w in the context, or “history,” h. 

The relative frequency estimator suffers
from the problem that even with large
amounts of data, one cannot expect to see all
word-history combinations in the training cor-
pus, and all such combinations would receive
probability zero. For example, after training on
2 million words of switchboard conversations,
about 10 percent of the two-word combina-
tions (bigrams) found in additional text from
the same corpus remain novel. Fortunately, a
number of effective smoothing methods exist
that estimate nonzero probabilities for unseen
word combinations in a principled, data-dri-
ven manner (Church and Gale 1991). 

N-gram models disregard linguistic structure
completely; for example, they do not try to
capture syntactic long-distance relationships.
In spite of this, they turn out to be hard to beat
as statistical models (Jelinek 1991) because
they capture local word cooccurrence con-
straints effectively. Their good performance,
combined with practical advantages such as
ease of training and computational simplicity,
make n-grams the models of choice for most
ASR systems. Still, there are problems with n-
gram models that current research in language
modeling is trying to overcome. 

N-gram models are highly tuned to the sub-
language they were trained on, which makes
them hard to beat, assuming that sufficient
training material matching the target domain
of application is available. Conversely, n-gram
statistics are not easily transferred or adapted
from one domain to another, making it neces-
sary to collect new training data for each new
application. 

There are some techniques to improve n-
gram models in the absence of sufficient train-
ing data. For example, instead of modeling
word n-grams, one can model the cooccurrence
of word classes, which can be obtained from
syntactic, semantic, or other criteria. Such class
n-gram language models decompose a condition-
al word probability P(w | h) into a product of
the word-class probability P(C(w) | h) and the
probability P(w | C(w)) of the word given its
class C(w). Word histories h can be represented
by the preceding words or their classes, and
both types of probability can again be estimat-
ed by simple counting of training-set occur-
rences plus a suitable smoothing scheme. 

To see the benefit of this approach, let’s
assume that we have a word-class fruit and that
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without an initial set of grammar rules or tree-
bank parses. A more fundamental problem
with traditional PCFGs, as opposed to n-gram
language models, is that the nonlexical, con-
text-free structure of a grammar prevents it
from capturing the local dependencies
between words that predict most of their distri-
bution. Most recent work aimed at leveraging
phrase structure for language modeling tries to
combine the advantages of standard n-gram
models with some incremental benefit based
on linguistic structure. For example, one can
supplement the n-gram statistics from insuffi-
cient training data with n-gram statistics
induced by a corpus-trained PCFG whose rules
are written by hand (Jurafsky et al. 1995). A
traditional robust parser can be used to parse a
recognition hypothesis into phrases, after
which both the phrase sequence and the word
sequences in each phrase are evaluated accord-
ing to n-gram models (Moore et al. 1995).
Alternatively, word distributions can be mod-
eled in terms of lexical cooccurrence along a
syntactic dimension, such as subject noun-
verb or verb-object noun, replacing or adding
to the juxtaposed cooccurrences modeled in n-
grams. This last approach can be illustrated by
the example “the dog who chased the cat
barked.” For predicting the word barked, we
want to refer to its subject dog and not to the
immediate predecessor cat, as an n-gram model
would. In general, we want to find those words
in the history that are in a predicate-argument
relationship with the word to be predicted and
then model their cooccurrence statistics.
Although the idea is straightforward, the
details are complex because the underlying
syntactic structure is usually highly ambigu-
ous, and the probabilistic formulation has to
handle the multiple syntactic relationships
each word is involved in (Chelba et al. 1997). 

Unfortunately, none of these techniques
based on linguistic phrase structure have to
date been able to surpass the performance of
the simple n-gram models in large vocabulary,
open-domain ASR systems, although several of
them give improvements on more constrained
tasks. 

Nonprobabilistic Knowledge Sources 
All language-modeling approaches described
to this point fit in the probabilistic framework
outlined initially. These language models pro-
vide prior probabilities to be combined with
acoustic model likelihoods for an estimate of
the posterior probability of a recognition
hypothesis. 

A somewhat more general approach views
the acoustic and language models as two of

possibly many knowledge sources that get to
“vote” on the recognition hypotheses to deter-
mine a winner, or most likely hypothesis
(Ostendorf et al. 1991). Each knowledge source
contributes a score for each hypothesis, and
the scores are weighted and added up to deter-
mine the overall winner. (Probabilistic models
fit nicely into this scheme as a special case
because the logarithms of probabilities can be
used as scores, such that an additive voting
scheme yields results that are equivalent to the
probabilistic framework.) The weights of the
voting function correspond to the relative
importance of the various knowledge sources;
they can be determined empirically by picking
parameter values that give the best recognition
accuracy on a held-out data set. 

The knowledge source combination approach
opens the door to a host of additional informa-
tion sources that might help discriminate cor-
rect from incorrect recognition results. If the
recognizer serves as the front end to a natural
language understanding, translation, or infor-
mation-extraction system, these back-end sys-
tems can contribute scores that correspond to
the interpretability of hypotheses. To the
extent that incorrect hypotheses are less likely
to make sense to the back end, this approach
will improve ASR performance. Coverage of
the semantic component is usually not perfect,
so it is important that interpretability not be a
hard constraint on recognition. It has been
shown that scoring hypotheses for their cover-
age by standard, nonprobabilistic natural lan-
guage programming components can improve
ASR accuracy (Rayner et al. 1994). 

Pronunciation Modeling 
As mentioned earlier, the acoustic model of an
ASR system actually consists of a hierarchy of
models of successively smaller temporal scope.
The details of this hierarchy vary, but most sys-
tems use some form of intermediate represen-
tation corresponding to pronunciations repre-
sented as phone sequences. As before, let W be
a word sequence and A a sequence of acoustic
features corresponding to the waveform. We
assume that each word corresponds to a
sequence of phones, forming a joint phone
sequence R. For example, the word sequence

the cat is on the mat

would correspond to a phone sequence

dh ax k ae t ih z aa n dh ax m ae t . 

(We are using an ASCII encoding of the Eng-
lish phone set known as the ARPAbet. For
example, dh denotes the voiced th sound.) 

The complete acoustic likelihood P(A | W) is

The solution
used in 
the vast
majority 
of current
speech 
systems 
is to 
approximate
the 
conditional
word 
probabilities
by truncating
the history 
of each 
word to 
one or 
two tokens.

Articles

WINTER 1997   29



phones are changed, deleted, or inserted as a
function of their phonetic context (Riley
1991). For example, in the earlier pronuncia-
tion example, the decision tree might learn
that the t sound in cat when followed by an
unstressed vowel can turn into the flapped
consonant that sounds closer to a d. The tree
would also learn the probability with which
this and other changes apply, so that the over-
all pronunciation probability P(R | W) can be
computed. 

Revisiting Model Decomposition 
As we saw in the beginning, both language and
acoustic models crucially rely on decomposing
their event spaces (word sequences, acoustic
observation sequences) into smaller units to
cope with the large number of possible events
and the relative sparseness of training data.
The units on which model decomposition is
based are largely informed by traditional lin-
guistic concepts, such as words and phones. It
is questionable whether such preconceived
units are optimal. Yet another direction for
ongoing research seeks to identify better units
for modeling. One approach that has been
tried is to search for collocations of multiple
words that should be treated as a single unit.
This approach obviously improves language
models, but it also improves acoustic models
because certain word combinations exhibit
idiosyncratic pronunciations. For example,
going to is more often than not pronounced
gonna in casual speech, which is most easily
captured by treating going to as a single word-
level unit in the pronunciation model. 

Conclusions and 
Future Directions 

We have seen how modern speech-recognition
systems model linguistic entities at multiple
levels (sentences, words, phones, and so on)
using various statistical techniques. The para-
meters of these models are usually trained on
data, but their structure is largely determined
by linguistic insight. Trainability is often
achieved through severe simplifying assump-
tions about the statistical independence of the
phenomena (word probabilities depend only
on the last two words, phone realizations are
independent of the words they occur in, and
so on). However, trainability is the crucial ele-
ment that makes ASR technology applicable to
a variety of domains, languages, and environ-
mental conditions. 

Most current research on speech models is
concerned with the right combination of built-

now obtained as the product of a pronuncia-
tion probability P(R | W) and the combined
phone likelihood P(A | R). The total phone like-
lihood is factored into the contributions of
individual phones. Because the number of dis-
tinct phones is much smaller than the number
of words, this decomposition greatly reduces
the number of required acoustic model para-
meters (at the expense of some modeling accu-
racy because it is assumed that a phone sounds
the same independent of the word it appears
in). 

This decomposition of word models into
phone models also requires estimating the pro-
nunciation probability P(R | W). Most ASR sys-
tems today use a pronunciation dictionary to
map each word to a few (mostly just one) pos-
sible pronunciations and assume that the pro-
nunciation for the whole word sequence is the
concatenation of the individual word pronun-
ciations. Because pronunciation dictionaries
are, for the most part, written by hand, the
pronunciation model incorporates significant
hand-coded linguistic knowledge. Here, too,
research aims to develop automatic learning
algorithms that replace hand-coded models
with more accurate models induced from data.
For example, in a first pass over the training
data, the recognizer can be allowed to hypoth-
esize multiple alternative phone sequences for
each word. The observed pronunciation se-
quences for a word are then fed to a merging
algorithm that induces probabilistic finite-
state models, both pruning out unlikely vari-
ants and including likely, but unobserved,
variants (Wooters and Stolcke 1994). A differ-
ent approach involves building a decision tree
that derives actual pronunciations from those
found in the dictionary by predicting where
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in structure and data-driven learning. In some
areas, such as pronunciation modeling, the
goal is to replace hand-coded models with
more accurate ones patterned after the actually
occurring data. In other cases, such as lan-
guage modeling, the strategy is to inject the
right structural constraints into existing
unstructured models to make more efficient
use of the available (and often scarce) training
data. Success on both fronts will be crucial in
making ASR technology ever more accurate,
more robust, and more ubiquitous. 
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