
■ We describe an AI system (CTSHIV) that connects the
scientific AIDS literature describing specific human
immunodeficiency virus (HIV) drug resistances
directly to the customized treatment strategy of a
specific HIV patient. Rules in the CTSHIV knowledge
base encode knowledge about sequence mutations
in the HIV genome that have been found to result
in drug resistance to the HIV virus. Rules are
applied to the actual HIV sequences of the virus
strains infecting the specific patient undergoing
clinical treatment to infer current drug resistance.
A rule-directed search through mutation sequence
space identifies nearby drug-resistant mutant
strains that might arise. The possible combination
drug-treatment regimens currently approved by
the U.S. Food and Drug Administration are consid-
ered and ranked by their estimated ability to avoid
identified current and nearby drug-resistant
mutants. The highest-ranked treatments are recom-
mended to the attending physician. The result is
more precise treatment of individual HIV patients
and a decreased tendency to select for drug-resis-
tant genes in the global HIV gene pool. Initial
results from a small human clinical trial are encour-
aging, and further clinical trials are planned. From
an AI viewpoint, the case study demonstrates the
extensibility of knowledge-based systems because it
illustrates how existing encoded knowledge can be
used to support new knowledge-based applications
that were unanticipated when the original knowl-
edge was encoded. 

Human immunodeficiency virus (HIV)
causes progressive deterioration of the
immune system leading almost invari-

ably to AIDS and death from opportunistic
cancers and infections. Currently in the United
States, it is estimated to infect 3 to 5 million
persons, is the leading cause of death in adults
from 14 to 35, and is the nation’s leading cause

of productive years of life lost aggregated over
all age groups. HIV is estimated to infect 40 to
50 million persons worldwide (CDC 1997). 

The high rate of HIV viral mutation both
makes development of a vaccine difficult and
results in rapid positive selection for drug-resis-
tant mutant strains. Recent multidrug combi-
nation therapies are encouraging but in most
cases ultimately fail because of the develop-
ment of drug resistance (O’Brian et al. 1996). A
general theory of HIV drug resistance still is
not in hand, but a number of specific sequence
mutations in the HIV genome have been
described in the scientific literature and associ-
ated with increased resistance to certain drugs.

In this article, we describe an AI system
(CTSHIV) intended to improve the clinical treat-
ment of individual HIV patients by identifying
drug resistance in advance and avoiding it in
treatment. The improvement is accomplished
by first identifying drug-resistant HIV mutant
strains that already exist in the patient, or can
be selected positively for, by certain treatments
and then recommending a customized treat-
ment strategy designed to avoid selection of
such mutants. The result is more precise treat-
ment of individual HIV patients and a
decreased tendency to select for drug-resistant
genes in the global HIV gene pool. 

Project Goals
The project goals are to (1) connect knowledge
contained in the scientific literature about HIV
drug resistance directly to the treatment of
individual HIV patients, (2) enable customized
treatment strategies to be based on the HIV
genotype that currently infects an individual
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protocols (Musen et al. 1996; Tu et al. 1995;
Sobesky et al. 1994; Sonnenberg, Hagerty, and
Kulikowski 1994), and HIV patient assessment
(Xu 1996; Ohno-Machado et al. 1993). Less
closely related are knowledge-based systems
that apply qualitative modeling and process
simulation to HIV laboratory systems (Ruggiero
et al. 1994; Sieburg 1994). To our knowledge,
CTSHIV is the first system to use HIV sequence
data from HIV patients to estimate current and
nearby drug-resistant mutants and recommend
treatment combinations to avoid both. 

Problem Description
The information content of an HIV virus is
contained in a set of genes encoded in its
genome. Each gene is a sequence of bases or
nucleotides of four varieties. A gene can be rep-
resented as a string over an alphabet of four
characters, one character representing each
nucleotide. The HIV genome ultimately causes
the production of gene products, often pro-
teins, important in the virus life cycle. A pro-
tein is a sequence of amino acid residues of 20
varieties and can be represented as a string
over an alphabet of 20 characters. Each amino
acid in the protein is encoded by a block of
three adjacent nucleotides in the gene, called a
codon. Thus, the gene’s nucleotide sequence
produces the protein’s amino acid sequence,
which folds into a three-dimensional protein
structure. Different amino acid types have dif-

HIV patient, (3) identify the nature and extent
of drug resistance currently present in an indi-
vidual HIV patient, (4) identify nearby drug-
resistant mutant strains that could be selected
positively for by some treatments, (5) rank the
possible U.S. Food and Drug Administration
(FDA)–approved treatments by an estimate of
their ability to avoid both current and nearby
drug-resistant mutants, (6) estimate the costs
of the highest-ranked treatments, and (7) rec-
ommend treatments that are heuristically esti-
mated to avoid known HIV drug resistance.

Related Work
This work rests on a central foundational pillar
of AI: rule-based expert systems instantiated in
the medical domain (for example, Buchanann
and Shortliffe [1984]) (figure 1). For many such
systems, a common diagnosis task is to identi-
fy the organism, from which treatment follows
straightforwardly. Here, the organism is
known to be HIV, but the treatment task is
complicated by selective drug resistance.

Several AI applications have targeted HIV. An
expert system based on experimental data from
HIV patients (immunologic markers) has been
used to diagnose the opportunistic
non–Hodgkin’s lymphomas that often develop
(Diamond et al. 1994). Knowledge-based sys-
tems have been applied to HIV patient medical
record systems (Safran et al. 1996; Musen et al.
1995), the monitoring of ongoing HIV patient
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Figure 1. Rule-Based Manipulations by an Expert System That Connects Patient Data 
to Recommended Treatments Are a Central Foundational Pillar of AI.



ferent sizes, shapes, and properties. Conse-
quently, different gene sequences encode dif-
ferent protein structures.

The two proteins targeted by current FDA-
approved drugs are called reverse transcriptase
(RT) and protease (PRO). Figure 2 shows the
string representation of an HIV gene for RT,
and figure 3a shows a three-dimensional RT
protein structure (Hsiou et al. 1996). The value
of each codon in figure 2 controls the size,
shape, and properties of a small local blob of
structure in figure 3a.

The genome string must be copied from one
generation to the next during the virus life
cycle. Copying errors occur frequently and are
called mutations. Mutations can change the
structure of the virus and thus alter its func-
tion, or how it interacts with its environment.
Mutant strains with genome sequences similar
to the patient’s current strain (close in Ham-
ming or edit distance) appear spontaneously
and continuously. In a full-blown case of AIDS,
it is estimated that every single point mutation
appears every day, every coordinated pair of
point mutations appears once or more during
the course of the infection, and even coordi-
nated triples of point mutations can appear
(Condra et al. 1995). The rapid mutation of the
virus results in a population of related virus
strains called a quasispecies, often consisting of
a dominant strain and several minority strains.

A drug typically works by blocking a key
part of the virus life cycle (figure 3b). A drug-
resistant mutation occurs when a copying

error in the viral genome (figure 3c) so alters
the virus that it can perform the targeted step
of its life cycle even in the presence of the drug
(figure 3D). In the continued presence of the
drug, the mutant strain can outcompete the
dominant strain and thereby can itself become
the dominant strain in the patient. This com-
petition is often called selective drug resistance
because the resistant mutant is selected for by
the drug’s presence. If unrecognized, the cur-
rent treatment can lose its effect, and the
patient’s condition can deteriorate. The result-
ing strain is more challenging to treat because
the treatment options have been reduced. If
the drug treatment is changed in response, the
potential is present for an additional drug-
resistant mutation to develop. The use of an
increasing variety of drugs has led to virus
strains increasingly resistant to multiple drugs
simultaneously. Sadly, the increasing preva-
lence of drug-resistant strains in the HIV global
gene pool means that new patients can be
infected by mutant strains that already have
accrued resistance from previous hosts (Gu et
al. 1994). Consequently, it is important to
avoid selecting for drug- resistant mutants.

Combination treatments involving multiple
drugs are one approach to avoiding drug resis-
tance (Lange 1995). If the virus mutates to
resist one drug but still is inhibited by another,
it might be suppressed or unviable. In this
case, the mutation cannot positively be select-
ed for. Combinations can contain as many as
four simultaneous drugs but usually do not
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Figure 2. The Genomic Sequence of HIV Reverse Transcriptase (RT) Extracted from HIV Patient AA.
Each letter (A, C, G, T) represents a nucleotide; * represents any nucleotide. Each group of three letters represents a codon, set apart by
slashes and counted by the numbers at the end of each line. The value of codon number 151 (CAG, bracketed) is the first three letters of
line 7. This sequence encodes a three-dimensional protein structure similar to that shown in figure 3a but differing from it structurally to
some extent, as specified by mutations in the sequence.

CCC/ATT/AGC/CCT/ATT/GAG/ACT/GTA/CCA/GTA/AAA/TTA/AAG/CCA/GGA/ATG/GAT/GGC/CCA/AAA/GTT/AAA/CAA/TGG/CCA/  25
TTG/ACA/GAA/GAA/AAA/ATA/AAA/GCA/TTA/GTA/GAA/ATT/TGT/ACA/GAG/ATG/GAA/AAG/GAA/GGG/*AA/ATT/TCA/AAA/ATT/  50
GGG/CCT/GAA/AAT/CCA/TAC/AAT/ACT/CCA/GTA/TTT/GCC/ATA/AAG/AAA/AAA/GAC/AGT/ACT/AAA/TGG/AGA/AAA/TTA/GTA/  75
GAT/TTC/AGA/GAA/CTT/AAT/AAG/AGA/ACT/CAA/GAC/TTC/TGG/GAA/GTT/CAA/TTA/GGA/ATA/CCA/CAT/CCC/GCA/GGG/TAA/ 100
AAA/AAG/AAA/AAA/TCA/GTA/ACA/GTA/CTG/GAT/GTG/GGT/GAT/GCA/TAT/TTT/TCA/GTT/CCC/TTA/GAT/GAA/GAC/TTC/AGG/ 125
AAG/TAT/ACT/GCA/TTT/ACC/ATA/CCT/AGT/ATA/AAC/AAT/GAG/ACA/CCA/GGG/ATT/AGA/TAT/CAG/TAC/AAT/GTG/CTT/CCA/ 150
[CAG]/GGA/TGG/AAA/GGA/TCA/CCA/GCA/ATA/TTC/CAA/AGT/AGC/ATG/ACA/AAA/ATC/TTA/GAG/CCT/TTT/AGA/AAA/CAA/AAT/ 175
CCA/GAC/ATA/GTT/ATC/TAT/CAA/TAC/ATG/GAT/GAT/TTG/TAT/GTA/GGA/TCT/GAC/TTA/GAA/ATA/GGG/GAG/CAT/AGA/ACA/ 200
AAA/ATA/GAG/GAG/CTG/AGA/CAA/CAT/CTG/TTG/AGG/TGG/GGA/CTT/ACC/ACA/CCA/GAC/AAA/AAA/CAT/CAG/AAA/GAA/CCT/ 225
CCA/TTC/CTT/TGG/ATG/GGT/TAT/GAA/CTC/CAT/CCT/GAT/AAA/TGG/ACA/GTA/CAG/CCT/ATA/GTG/CTG/CCA/GAA/AAA/GAC/ 250
AGC/TGG/ACT/GTC/AAT/GAC/ATA/CAG/AAG/TTA/GTG/GGG/AAA/TTG/AAT/TGG/GCA/AGT/CAG/ATT/TAC/CCA/GGG/ATT/AAA/ 275
GTA/AGG/CAA/TTA/TGT/AAA/CTC/CTT/AGA/GGA/ACC/AAA/GCA/CTA/ACA/GAA/GTA/ATA/CCA/CTA/ACA/GAA/GAA/GCA/GAG/ 300
CTA/GAA/CTG/GCA/GAA/AAC/AGA/GAG/ATT/CTA/TAA/GAA/CAA/GTA/CAT/GGA/GTG/TAT/TAT/GAC/CCA/TCA/AAA/GAC/TTA/ 325
ATA/GCA/GAA/ATA/CAG/AAG/CAG/GGG/CAA/GGC/CAA/TGG/ACA/TAT/CAA/ATT/TAT/CAA/GAG/CCA/TTT/AAA/AAT/CTG/AAA/ 350
ACA/GGA/AAA/TAT/GCA/AGA/ATG/AGG/GGT/GCC/CAC/ACT/AAT/GAT/GTA/AAA/CAA/ATA/ACA/GAG/GCA/GTG/CAA/AAA/ATA/ 375
ACC/ACA/GAA/AGC/ATA/GTA/ATA/TGG/TGA/AAG/ACT/CCT/AAA/TTT/AAA/CTG/CCC/ATA/CAA/AAG/GAA/ACA/TGG/GAA/ACA/ 400
TGG/TGG/ACA/GAG/TAT/TGG/CAA/GCC/ACC/TGG/ATT/CCT/GAG/TGG/GAG/TTT/GTT/AAT/ACC/CCT/CCC/ATA/GTG/AAA/TTA/ 425
TGG/TAC/CAG/TTA/GAG/AAA/GAA/CCC



of HAART to eradicate HIV has been tempered
by the inevitable failure of these regimens
because of the eventual development of drug
resistance (Carpenter et al. 1996). The virus
appears to remain in a proviral state in resting-
memory T-cells, where it is inaccessible to anti-
retroviral drugs (Finzi et al. 1997; Wong et al.
1997). Mutations still can occur under HAART,
although the mutation rate is greatly decreased
(Jacobsen et al. 1996).

Nonetheless, knowledge of current or nearby
mutants putatively resistant to one or more
drugs is valuable to a physician treating an HIV
patient. In conjunction with HAART, such

exceed three because of the potential for intol-
erable side-effects and toxicity. Severe side-
effects often induce a patient to stop one or
more drugs without knowledge of their physi-
cian, called nonadherence (formerly noncompli-
ance). Nonadherence negates combination
therapy and increases the likelihood of select-
ing for drug-resistant mutants. 

Combinations containing at least one pro-
tease inhibitor are referred to as highly active
antiretroviral therapy (HAART). HAART typi-
cally results in a dramatic drop in viral load
within two weeks, often sustained for long
periods of time. Enthusiasm for the potential
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Mutations in the sequence may 
cause changes in the structure.

…
AAG/TAT/ACT/GCA/TTT/…/ 150
[ATG]/GGA/TGG/AAA/GGA/…/ 175
CGA/GAC/ATA/GTT/ATC/…/200

RT codon 151 CAG æ ATG causes strong
resistance to AZT (Iversen et al. 1996).

Figure 3. The Function of the Virus Is Determined by Its Structure.
A. Molecular visualization of the three-dimensional structure of the HIV reverse transcriptase (RT) protein (PDB code 1DLO). Each sphere
represents an atom. The structure is encoded in the HIV RT sequence (figure 2). B. A fanciful cartoon illustrating a drug binding to the
structure and blocking a key part of the virus life cycle. The drug binds to the “mouth” of the “demon,” so the “demon” cannot eat. C.
Mutations in the sequence cause changes in the number, type, or spatial arrangement of atoms in the structure. D. A fanciful cartoon
illustrating how a change in the structure can prevent a drug from binding. A “fang” appears, which blocks the drug’s access to the
mouth. Now the demon can eat undisturbed by the drug. Note that this resistance required changing only the size, shape, and properties
of a single local blob of structure. This can be encoded by a single codon in the RT sequence and can be accessible mutationally. (Visu-
alization by RASMOL.)

A B

C D



knowledge can help select a combination of
drugs less prone to be resisted. Currently, 11
drugs are approved by the FDA for HIV plus
one available for compassionate use. These 12
drugs result in 407 different combination treat-
ments of 4 or fewer drugs because some drugs
should not be used together. A physician might
find it tedious to scan many sequences, be
unfamiliar with the latest HIV drug-resistant
mutations reported, or have difficulty ranking
the hundreds of treatment choices for each
patient. CTSHIV mediates between the scientific
literature and the patient’s current infection to
help a physician avoid HIV drug resistance.

Application Description
The application (1) accepts as input experi-
mentally determined HIV sequences extracted
from the patient, (2) extracts the relevant
codons and constructs virtual genomes, (3)
estimates current resistance by applying
knowledge base rules, (4) searches nearby
mutation sequence space to identify nearby
putatively resistant mutants, (5) ranks the pos-

sible FDA-approved treatment regimens ac-
cording to their ability to avoid selective drug
resistance, and (6) recommends the highest-
ranked treatment regimens to the attending
physician. The application overview flowchart
appears in figure 4. The application input-out-
put constraints are shown in figure 5. A mole-
cular visualization of the CTSHIV knowledge
base appears in figure 6.

Patient’s Experimental Data
The RT and PRO portions of the POL gene are
amplified from each patient. Clones are pro-
duced, plasmid DNA is extracted, and the
sequence is determined using a commercially
available Applied Biosystems, Inc., sequencer.
The RT sequence contains 1299 letters (433
codons), and the PRO sequence contains 297
letters (99 codons). Figure 2 shows an example
HIV sequence from an HIV patient. 

The sequences are prealigned to a standard
reference HIV sequence, HXB2 (Fisher et al.
1985), using standard sequence-alignment
algorithms. Deviations from the reference
sequence correspond to mutations in the virus
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Figure 4. Application Overview Flowchart.
CTSHIV analyzes HIV sequences from the virus currently infecting a patient to suggest Federal Drug Administration–approved combination
treatment regimens designed to avoid both current and mutationally close drug-resistant mutant strains. Processing the input HIV
sequences involves identifying relevant sequence features, comparing them to the rule base to identify current resistance, exploring nearby
mutation space to identify close drug-resistant mutants, ranking the possible treatments by their estimated ability to avoid resistance, and
suggesting the highest-ranked treatment regimens to the attending physician.



WITH < weight > (references).

For example, one such rule in CTSHIV is

IF the value of RT codon number 151 is
ATG, 

THEN infer resistance to AZT, ddI, d4T,
and ddC 
WITH weight = 1.0 (Iversen et al. 1996)

The weight associated with a rule is not a
confidence, as in many expert systems. The
rules are assumed to have a high degree of con-
fidence because of the peer-review process and
general integrity of the scientific literature.
Rather, the weight reflects the estimated level
of resistance to a particular drug and is part of
the consequent. Different virus strains can
resist a particular drug to different degrees,
which is represented by weights that range
from 0.1 (low resistance) to 1.0 (high resis-
tance) based on expert advice and the level of
resistance reported in the literature.

To estimate current resistance, rule weight is
multiplied by the fraction of viral sequences
that trigger the rule and combined additively.
As a summary metric, we use 

infecting the patient. Typically, 5 RT sequences
and 5 PRO sequences, a total of 7980 letters of
HIV genomic information, are the input exper-
imental data on the patient’s current infection. 

Extract Features, Objects
Processing in this step is routine. The features
extracted are exactly those codons in positions
referred to by the antecedent of some rule.
Other codon positions are not yet associated
with known drug resistance. Currently, 55
rules mention 31 different codon positions, 20
in RT and 11 in PRO. HIV sequences are
replaced by abstract objects consisting of only
these codon positions. All possible virtual
genomes are formed consistent with the exper-
imental sequences.

Identify Current Resistance
Current drug resistance is identified by apply-
ing the 55 rules in the knowledge base to the
HIV sequences from the patient. The rules rep-
resent knowledge about HIV drug resistance as
a set of if-then rules of the form

IF < antecedent > THEN < consequent >

Input from Patient
■ 5 HIV clones (clone = RT + PRO)
■ = 5 RT + 5 PRO (RT = 1299; PRO = 297)
■ = 7980 letters of HIV genome

Possible FDA Treatments
■ Possible drugs = 12 = 11 approved + 1 compassionate use 

■

■ –320 some drugs should not be used together
■ = 407 possible FDA-approved combination treatments

FDA = U.S. Federal Drug Administration

727
12

4

12
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12
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





+






+






+





 combinations

Articles

18 AI MAGAZINE

Figure 5. Application Input-Output Constraints.
Although the problem is a reasonable size for a machine, a human would find the task tedious and error prone.
Input consists of sequence data from five HIV clones taken from the patient. Each RT sequence contains 1299
letters and each PRO sequence contains 297 letters, for a total input of 7980 letters of HIV genomic informa-
tion. Output consists of selecting recommended treatments from the Federal Drug Administration
(FDA)–approved combination treatments available. Currently, there are 11 drugs approved by the FDA for HIV,
plus 1 available for compassionate use. These 12 result in 407 different combination treatments of 4 or fewer
drugs because some drugs should not be used together. 



where D is a set of drugs that make up a com-
bination therapy, Rules(D) are the rules that
confer resistance to a drug in D, S is the set of
the HIV sequences extracted from the patient,
and Apply(r, s) yields the rule weight of r if r
fires on s and 0 if not. CurrWt is comparable
only between combinations with the same
number of drugs because any superset of a
drug combination has equal or greater current
weight. Under this model, the total current
level of resistance to a multidrug combination
is the sum of the current resistances to each
drug. The effect of this computation is to iden-
tify drug combinations that have little or no
current resistance and therefore attack the
virus strongly.

Predict Nearby Resistant Mutants
Nearby resistant mutants are predicted by a
backward-chaining search through mutation
sequence space, beginning with the patient’s
current HIV sequences. At each step, a
sequence that does not fire a rule is used to
generate several new sequences that do. The
new sequences are identical except that codon
positions mentioned by the rule are modified
so that the rule does fire. They represent
mutants that are close in Hamming distance
but resist the drugs mentioned by the rule. For
example, figure 2 generates figure 3c this way.
Conceptually, every virtual mutant within a
predetermined Hamming distance cutoff is
examined. Currently, all mutants up to and
including Hamming distance three are consid-
ered.

To predict nearby mutants, rule weights are
combined by taking the maximum across all
mutants of the minimum resistance across all
drugs in the combination. As a summary met-
ric, we use

m_dist(D) = min{h | ∃ x ∈ Μ(S, h), ∀ d ∈ D, 0
< CurrWt(d, x)}

where hmax bounds the maximum Hamming
distance considered, CurrWt(d, x) applies Cur-
rWt to d using x instead of S, and M(S, h) is the
set of mutants of S at Hamming distance h.
m_dist(D) is the minimum Hamming distance
at which a mutant occurs that resists every
drug in D, and m_wt(D) is the rule weight of
the least resisted drug in D by the most resis-
tant such mutant. MutScore is comparable

MutScore D

h m dist D m wt D

( )

max{ , – _ ( ) _ ( )}max= +0

m wt D CurrWt d x
x M s m dist D d D

_ ( ) max min ( , )
( , _ ( ))

=
∈ ∈

CurrWt D

Apply r s S
r Rules D s S

( )

( , )/ | |
( )

=

∈ ∈
∑ ∑

between drug combinations with different
numbers of drugs. MutScore(D) is zero if no
mutant within Hamming distance hmax of S
resists every drug in D. Otherwise, its integer
part is hmax minus the Hamming distance to
such a mutant, and its fractional part is the
maximum-minimum rule weight of such
mutants.

Under this model, a drug combination sup-
presses a population of mutants only as
strongly as it suppresses the most resistant
mutant, and a mutant resists a drug combina-
tion only as strongly as it resists the least

Figure 6. A Molecular Visualization of the CTSHIV Knowledge Base.
HIV protease and reverse transcriptase (palm and fingers) monomer backbones are
green ribbons. Full-atom residues appear at locations mentioned by a rule
antecedent.
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Suggest Clinical Treatment Protocols The
final result of application processing is to rec-
ommend the five highest-ranked combina-
tions of one, two, three, and four drugs. The
next-highest–ranked RT-only combination is
shown for comparison. Figure 7 shows three-
drug combinations recommended for an HIV
patient. Figure 8 shows an example nearby
resistant mutant. It is hoped that the CTSHIV

output will increase patient adherence by
clearly showing the deleterious effects of fail-
ing to take all medications. Figure 9 shows the
projected consequences of nonadherence to
the highest-ranked three-drug combination
in figure 7. Other output produced, not
shown here, includes the estimated current
resistance to each drug individually, a list of
cost codes and drug abbreviations, the rules
that fired on the patient’s current sequences
and the associated citations in the scientific
literature, and a detailed listing of differences
between the patient sequences and a standard
reference sequence.

Limitations
There are important limitations to the previ-
ous approach. Sequence-based rules capture
only part of the domain knowledge about
drug resistance, albeit a clinically useful part.
Drug resistance can arise for other domain-
specific reasons that cannot be represented
easily as rules. More complicated organisms,
such as bacteria and fungi, have more sophis-
ticated resistance mechanisms than addressed
here. Current sequencing techniques can pro-
vide only partial or no information about
minority strains. The rule set is only as com-
plete as current scientific knowledge allows.
Currently, it might be possible to infer when
resistance might occur based on genome
sequences actually seen in the patient that
correspond to resistance-conferring muta-
tions described in the scientific literature.
However, it is impossible to guarantee the
nonexistence of an unsuspected resistant
mutant. 

Uses of AI Technology
The key enabling AI technology is knowledge
representation of the relevant scientific liter-
ature about HIV drug resistance as a set of
sequence-pattern rules on the HIV genome.
Rule-based expert systems declaratively repre-
sent knowledge of a specialized problem and
facts about a specific case and, from these,
draw inferences about the case. Here, the
rules encode information on drug-resistant
mutations of HIV, the facts are the sequences

resisted drug in the combination. The effect
of this process is to identify nearby mutants
that resist every drug in a combination and
drug combinations such that no nearby
mutant resists every drug.

Rank Alternatives
CTSHIV ranks alternative drug combinations
using the current resistance weight (CurrWt)
and the nearby mutant resistances (MutScore).
This ranking is done using any monotonic
function f of CurrWt and MutScore. Currently,
we use Euclidean distance

to rank drug combination D. Values near or at
zero indicate little or no resistance, and
increasing positive values indicate increasing
resistance. The best-ranked combinations rep-
resent a satisficing compromise along both
metrics simultaneously. 

Sketch of Ranking Algorithm The previous
model gives rise to three nested optimization
problems: (1) identify the drug combinations
that most strongly suppress a population of
mutants centered on the patient’s current HIV
strains; (2) for a given drug combination, iden-
tify the most resistant mutant in the popula-
tion; and (3) for a given drug combination and
mutant, identify the least resisted drug. 

Because CurrWt is independent of nearby
mutants, choosing any monotonic function
for f guarantees for fixed D that the mutant
strains that minimize f also minimize MutScore.
Thus, if x is the most resistant mutant to D
found so far, then the function h(D) = f(D, x) =
(CurrWt2 (D) + MutScore2 (D, x))1/2 is an admis-
sible heuristic for f(D), where f(D, x) applies f
to D using x instead of S. 

Initially, objects are created to represent all
FDA-approved drug combinations (currently
407). The one-, two-, three-, and four-drug
combinations are treated separately. At each
step, the current best i-drug combination is
examined. Mutation sequence space is
searched for a more resistant mutant than the
most resistant mutant found so far. If a more
resistant mutant is found, then the more
resistant mutant replaces the previous most
resistant mutant and the process iterates; oth-
erwise, the drug combination is returned.
This process repeats until enough highly
ranked i-drug combinations are found (cur-
rently the best five plus the best RT-only com-
bination). Indexing and branch-and-bound
techniques avoid wasteful recomputation and
prune unnecessary evaluations. Currently,
CTSHIV runs in about a minute for each
patient, which is acceptable for now.

f D CurrWt D MutScore D( ) ( ) ( )= +2 2
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of HIV genome obtained from a specific indi-
vidual, and the inference to be drawn is a set
of drug combinations to be recommended for
the patient. 

Rule forward chaining from the patient’s
current HIV sequences yields currently resis-
tant HIV mutants. Rule backward chaining
through sequence space yields the nearby
putatively resistant mutants. Together, they
allow CTSHIV to avoid both sets of mutants. AI
heuristic-search methods speed the search.
The intelligent-agent paradigm also proved
useful as an organizing principle. Except for
the lowest level (domain specific), figure 4
could represent any intelligent agent con-
necting perception to action.

Application Use and Payoff
The first HIV patient data was run through the
CTSHIV system in June 1996. In February 1997,
the application began its first round of human
clinical trials on 14 HIV patients at the Univer-
sity of California at Irvine (UCI) and at the
Orange County Center for Special Immunolo-
gy as a satellite  site, under the auspices of the
California Collaborative Treatment Group
(CCTG). Informed consent was obtained using
a form approved by UCI Institutional Review
Board. All patients had detectable viral load at
baseline (mean log10 load of 4.67 ± 2.16) and
failure of at least one previous antiviral treat-
ment regimen because of the emergence of
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CurrWt MutScor   0 Mut   1 Mut   2 Mut   3 Mut
A5 SAQUINAVIR NELFINAVIR D4T:                    0.06     0.1     0.0     0.0     0.0     0.1

If stop NELFINAVIR:                                0.6     0.0     0.0     0.0     0.6
If stop SAQUINAVIR:                                1.1     0.0     0.0     0.1     1.0
If stop D4T:                                       2.1     0.0     0.1     0.6     1.1

Figure 7. Example Three-Drug Output from HIV Patient AA, Showing a Favorable Resistance Profile.
For the highest-ranked treatment, current resistance (CurrWt) and nearby mutation score (MutScor) are small, and only a weakly resistant
mutant appears even out to Hamming distance three (3 Mut). The letters A to F identify treatments. Treatment F is the best RT-only treat-
ment (indicated by the prefixed letter R). Digits after the letters indicate cost codes (0 = $0 to $200, . . . , 3 = $600 to $800, 4 = $800 to
$1000, 5 = $1000 to $1200, . . . , for each month estimated average wholesale cost).

Figure 8. Example Output for HIV Patient AA Showing One Example of the Closest Mutants 
Inferred to Most Resist Every Drug in the Top-Ranked Three-Drug Combination of Figure 7.

Three letters must change simultaneously. Currently, Nelfinavir is resisted; changing two letters at RT 151 resists D4T, and changing one
at PRO 90 resists Saquinavir.

Figure 9. Example Output for HIV Patient AA Showing the Projected Result from Stopping Any 
Single Drug in the Top-Ranked Three-Drug Combination of Figure 7 (Saquinavir, Nelfinavir, D4T).

Mutants are closer or worse or both. Stopping Nelfinavir is bad, stopping Saquinavir is worse, and stopping D4T is worst of all.

These protocols with 3 drugs are recommended:    CurrWt MutScor   0 Mut   1 Mut   2 Mut   3 Mut
A5 SAQUINAVIR NELFINAVIR D4T:                    0.06     0.1     0.0     0.0     0.0     0.1
B3 SAQUINAVIR DELAVIRDINE D4T:                   0.00     0.2     0.0     0.0     0.0     0.2
C3 SAQUINAVIR NEVIRAPINE D4T:                    0.00     0.4     0.0     0.0     0.0     0.4
D4 SAQUINAVIR DELAVIRDINE AZT:                   0.00     0.6     0.0     0.0     0.0     0.6
E4 SAQUINAVIR NEVIRAPINE AZT:                    0.00     0.6     0.0     0.0     0.0     0.6

RF3 DELAVIRDINE DDI AZT:                          0.08     1.2     0.0     0.0     0.2     0.9

CurrWt MutScor   0 Mut   1 Mut   2 Mut   3 Mut
A5 D4T NELFINAVIR SAQUINAVIR:                    0.06     0.1     0.0     0.0     0.0     0.1

Current: (NELFINAVIR)    RT 151:CAG->ATG by R11 (D4T)    PRO 90:TTG->ATG by R28
(SAQUINAVIR)



standard monitoring. Collaborations with sev-
eral other groups involved in the treatment of
HIV patients have begun and are expanding.
An Affymetrix gene chip machine has been
purchased, and sequencing throughput will
increase dramatically when it comes online.
Because of the early encouraging results of the
clinical trials, widespread recognition of the
drug-resistance problem, and the high rate of
HIV infection in the general population, we
expect use of the application to increase
sharply in the near future.

Application Development 
and Deployment

Three domain experts (Darryl See, Douglas
Richman, Edison Schroeder) began extracting
rules from the scientific literature in September
1995. The first rule set was completed in May
1996. 

The first rule-based system prototype was
developed to identify current resistance
already present in the patient’s HIV infection
(Lathrop and Pazzani 1999; Pazzani, See, et al.
1997). It was coded in FOCL-1-2-3 (Pazzani
and Kibler 1992), a Lisp-based expert shell. It
was begun in March 1996 and completed in
June 1996. It was recoded in JAVA between April
and June 1997 (Pazzani, Iyer, et al. 1997). 

The ability to use the rules to search muta-
tion sequence space for nearby drug-resistant
mutants was unanticipated when the original
knowledge was encoded and the first proto-
type developed, thus demonstrating the
robustness and extensibility of knowledge-
based systems. A Lisp-based mutation space
search engine was begun in November 1996
and completed in May 1997. The two subsys-
tems were integrated and recoded in Lisp
between October and December 1997. The
application is deployed primarily by the e-mail
exchange of input clinical data and output rec-
ommended treatments. We have developed an
automatic e-mail server as well as a World
Wide Web–based graphic interface to the e-
mail server. The server extracts patient data
from the body of an e-mail message, automat-
ically enqueues the application to process it,
and e-mails the results back to the sender. User
interface enhancements will follow.

Deployment has been smooth largely
because the application end users to date have
been enthusiastic domain experts who are cur-
rently treating HIV patients. For cases where a
treatment regimen has failed because of the
development of drug resistance, the applica-
tion enables them to base their next choice of
treatment regimen on scientific principles and

drug resistance. These patients, already expect-
ed to be infected by drug-resistant strains of
HIV, are considered among the most challeng-
ing to treat. 

Results from these small-scale trials are
encouraging (Cimoch et al. 1998). As shown in
table 1, 12 patients completed 1 year of trials
(2 patients withdrew prior to completion).
After 1 year of treatment, 9 patients who had
failed at least 1 prior treatment regimen had an
undetectable viral load (9 complete respon-
ders, 64 percent of enrollees, 75 percent of
completers), and 1 other patient had ≈ 25x
viral load reduction (10 partial responders, 71
percent of enrollees, 83 percent of completers).
This improvement compares to about 20 per-
cent in everyday practice in the same patient
population. Note that in typical clinical trials,
the percentage of viral-load undetectable
patients diminishes over time. We expect and
are seeing improvement over time based on
CTSHIV-suggested treatment regimens. Detailed
per-patient trial outcomes are reported in
Cimoch et al. (1998).

Currently, a total of 68 HIV patients have
been run through the CTSHIV system. A new
round of CTSHIV (phase 2) clinical trials are
under way, enrolling patients from UCI and
Stanford University. Twenty patients will be
enrolled in this open-label trial. The purpose is
to evaluate whether the CTSHIV system can
assist in the management of patients who have
failed multiple antiretroviral regimens using

Responders
■ 9 = complete; no detectable viral load at completion
■ 1 = partial; viral load reduction ≈ 25x at completion

Nonresponders
■ 2 = treatment failure at completion
■ 2 = withdrawn (1 death, 1 disappeared)

Of 14 Enrollees
■ 64% = 9/14 had no detectable viral load
■ 71% = 10/14 were responders

Of 12 Completers
■ 75% = 9/12 had no detectable viral load
■ 83% = 10/12 were responders
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Table 1. Summary of Small-Scale Human Clinical Trials: Outcome of 14
Patients after 1 Year of Treatment.

Detailed per-patient trial outcomes are reported in Cimoch et al. (1998).



experimental data. This knowledge-based
treatment selection replaces the blind intu-
ition and guesswork that formerly guided
treatment switches after treatment failure.
They are glad to see their patients improve,
anxious to see the application succeed, and
tolerant of the few glitches. 

Maintenance
It is doubtful that the knowledge base will be
complete until HIV is eradicated. Maintenance
of CTSHIV is equivalent to adding new rules
from the scientific AIDS literature. The rules
are revised by three domain experts every
three months by extracting new rules that
have appeared in the literature in the interim.
Relevant articles are retrieved by keyword-
based literature search, old rules revised as
needed, and new rules composed manually.

In the future, we anticipate that the chal-
lenge of extending the knowledge base will
provide fruitful opportunities for intelligent
applications. An intelligent information-
retrieval system could monitor the literature,
retrieve papers that mention HIV drug- resis-
tant mutations, extract candidate rules, and
automatically enqueue review by domain
experts. Other AI approaches could suggest
when to test a patient strain for possible resis-
tance to a specific drug. Predicting when a
putative mutant is unviable and coping with
resistance that occurs outside the rule set are
further challenges for intelligent systems.
Machine-learning and data-mining techniques
could learn new rules, infer trends, and recog-
nize regularities in resistance patterns. 

Summary
We described CTSHIV, an AI application that
connects the scientific literature describing
specific HIV drug resistances directly to the
HIV virus strain infecting a specific HIV
patient. The application identifies current
drug-resistant mutant strains by rule forward
chaining from the patient’s current HIV
sequences and nearby putatively resistant
mutants by rule backward chaining through
mutation sequence space. It ranks the current
FDA-approved treatment regimens according
to their estimated ability to avoid both sets of
resistant mutants and recommends a cus-
tomized treatment strategy for the individual
patient involved. Thus, the significance of the
application is (1) a method for addressing HIV
drug resistance in the clinic, especially treat-
ment switches after treatment failure, based on
scientific principles and experimental data; (2)

a decreased tendency to select for drug resis-
tance in the global HIV gene pool; and (3) a
possible model for the use of knowledge-based
systems in other drug-resistant viruses.

This article also illustrated the robustness
and extensibility of knowledge-based systems.
It showed how knowledge originally encoded
to perform one knowledge-based task easily
can be redirected to perform another, even one
not anticipated when the original knowledge
was encoded. This result supports knowledge
base efforts to encode knowledge in societally
important areas.
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