
� There is a fundamental mismatch between the
computational basis of spreadsheets and our
knowledge of the real world. In spreadsheets,
numeric data are represented as exact numbers
and their mutual relations as functions, whose val-
ues (output) are computed from given argument
values (input). However, in the real world, data are
often inexact and uncertain in many ways, and
the relationships, that is, constraints, between
input and output are far more complicated. This
article shows that interval constraint solving, an
emerging AI-based technology, provides a more
versatile and useful foundation for spreadsheets.
The new computational basis is 100-percent down-
ward compatible with the traditional spreadsheet
paradigm. The idea has been successfully integrat-
ed with Microsoft EXCEL as the add-in INTERVAL

SOLVER that seamlessly upgrades the arithmetic core
of EXCEL into interval constraint solving. The prod-
uct has been downloaded by thousands of end
users all over the world and has been used in vari-
ous applications in business computing, engineer-
ing, education, and science. There is an intriguing
chance for a major breakthrough of the AI technol-
ogy on the spreadsheet platform: Tens of millions
of EXCEL users are making important decisions
based on spreadsheet calculations.

The world is full of uncertainty and com-
plexity. Everyday we are faced with ques-
tions such as, How can I live within the

given budget? Is this technical design possible,
given the inaccurate component data? Uncer-
tain data and constraints are extensively used
in decision making, but spreadsheets, one of
the most commonly used decision-making aids
of today, force us to use exact numbers for rep-
resenting inexact data and to use only func-
tions for constraints, thus distorting reality.

For example, consider the problem of com-
puting the present value p of a future cash flow
c that will be received after three years. If the
annual future interest rates are r1, r2, and r3,
then p can be computed by using the (dis-
counting) formula:

p = c / ((l + r1/100) � (l + r2 / 100) � (l + r3/100)) (1)

The problem is that future interest rates are
volatile and that the value of c can be uncer-
tain too. The value of p is then uncertain as
well. The question is, How do we represent
uncertain numeric values and how do we com-
pute them?

Another major limitation of spreadsheets is
that the relationships between cell values can
only be expressed with functions evaluating
output cell values from given input cell values.
In the real world, things are more complicated.
For example, consider the following formula
for computing the y-coordinate of a projectile
trajectory as a function of the x-coordinate, fir-
ing angle a, and initial velocity v.

y = x � tan(a) + 1/2 � 9.81 � a2 / (v2 � cos(a)2) (2)

Assume that the target is on a 120-meter-high
hill (y) at a distance of 3200 meters (x). The ini-
tial speed (v) of the projectile is between 1250
meters a second and 1300 meters a second. The
task is to find out what are the possible angles
(a) between 0 and 90 degrees for hitting the
target. The formula and the given data clearly
provide the answer, but it is not clear how to
back solve a from the function.

In a more general setting, the application
problem might consist of a set of functions,
equations, and inequalities, and the task is to
solve any subset of variables involved, not
only one variable. For example, what are the
solutions to equations 3?

sin(x1) + cos(x2) = ln(x3)
cos(x1) + 2 � ln(x2) = – sin(x3) + 3 (3)
3 � ln(x1) = sin(x2) – cos(x3) + 2

Traditional numeric techniques might find a
solution to this problem but not necessarily.
The success depends on the equations and the
initial guess values used as the starting point
for the iteration. At best, one solution is found
for one starting point. The average spreadsheet
user is not interested in such hidden technical
details but simply wants to find a solution or

Articles

WINTER 2000 83

A New Basis for
Spreadsheet Computing
INTERVAL SOLVER for Microsoft EXCEL®

Eero Hyvönen and Stefano De Pascale

Copyright © 2000, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 21 Number 4 (2000) (© AAAI)

current spreadsheet paradigm is discussed.

INTERVAL SOLVER for
Microsoft EXCEL

INTERVAL SOLVER is an add-in that virtually
extends the mathematical basis of EXCEL into
interval constraint solving. From the user’s
viewpoint, he/she can make better use of
imprecise real-world data and constraints and
solve new kinds of problems that could not
previously be addressed with spreadsheets.
With INTERVAL SOLVER, one can bound worst and
best cases satisfying the spreadsheet formulas,
solve back argument intervals from given
goals, solve equations and other constraints
needed in the application, and find the best
solution to a problem.

Bounding Worst and Best Cases
Intervals are perhaps the simplest way of repre-
senting uncertain numeric data. An interval
[min, max] is a continuum of values between
the bounds min and max. For example, the
interest rate of the next year can be estimated
by interval [4.0, 5.0]%, meaning any value
between 4 percent and 5 percent. By using
interval analysis, safe bounds for function val-
ues with interval arguments can be computed.

Figure 1 depicts the situation of equation 1
on an EXCEL sheet with the INTERVAL SOLVER add-
in loaded. The formula for P (seen in the for-
mula bar) has been computed with the given
uncertain interest rate and cash flow intervals.
All the user has to do is to write the EXCEL func-
tion inside the =I(expression) formula of INTER-
VAL SOLVER. Then, interval arguments can be
used.

The function value was initially free; that is,
its value was unknown, which is equal to inter-
val (–inf, inf). INTERVAL SOLVER narrowed this val-
ue to [28.6, 32.8], the interval that is guaran-
teed to bound all possible values of the
function down to user-given precision. The
minimum represents the global minimum and
the maximum the global maximum of the
function within the argument interval limits.

all solutions to his/her problem by just push-
ing a button—or (s)he wants to be sure that the
problem has no solutions at all!

These examples indicate that the following
two key concepts of the current numeric
spreadsheet paradigm are not flexible enough:
(1) cell value and (2) formula.

Cell value: Only exact numbers can be used
as values and can be evaluated by formulas.
Given the widespread and diverse use of
spreadsheets, a simple way for representing
uncertainty is needed.

Formula: Only functions can be used as for-
mulas that explicate the relations between cell
values. Means for representing arbitrary con-
straints between variables involved are needed.
Especially, equations and inequalities used
everywhere in business, engineering, and sci-
ence should be available.

The case study of this article shows that the
idea of interval constraint solving developed in
the fields of AI and interval analysis provides a
new practical way to overcome these limita-
tions. By generalizing the two core concepts of
the spreadsheet paradigm—value and formu-
la—a new basis for the very idea of using
spreadsheets can be laid.

The new vision has been materialized as the
commercial deployed add-in product INTERVAL

SOLVER for Microsoft EXCEL, the result of some 16
person-years of research and development in
Finland and Japan.

From the mathematical viewpoint, the solv-
ing power of the new technology is greater
than with any traditional noninterval tech-
nique: All solutions (within a given precision
level) to equations and other constraints can be
found if enough time and memory are avail-
able. For example, INTERVAL SOLVER can actually
prove that equation set 3 has exactly five differ-
ent solutions. It suffices to push a button.

This article first explains why and when
interval constraint solving and INTERVAL SOLVER

are of use to a spreadsheet user. The architec-
ture of the software is then presented, and the
application of AI techniques is discussed. In
conclusion, the significance of interval con-
straint technology in the development of the

Articles

84 AI MAGAZINE

Figure 1. Evaluating an EXCEL Formula with Interval Arguments.

Notice that a number x is actually a collapsed
interval [x, x] having the same lower and upper
bound, meaning that interval computations
generalize traditional spreadsheet computa-
tions with exact values.

There are alternative approaches for repre-
senting uncertainty of numeric values too. A
simple way is to enumerate scenarios. For
example, in figure 1, one could compute the
formula with, for example, all combinations of
minimum and maximum values of the argu-
ments. This simple approach is feasible only if
the number of scenarios is small. In figure 1,
there would be 24 = 16 scenarios if only bounds
were possibilities. Another problem is that usu-
ally it is difficult to say with what argument
values the formula evaluates its global mini-
mum or maximum that is often of greatest
interest to the user. In the interval approach,
all infinitely many scenarios are bounded with-
in a single interval, and the actual global min-
imum and maximum can always be found.

A more sophisticated approach for represent-
ing numeric uncertainty is to use probability
distributions as function arguments and then
evaluate the functions using Monte Carlo sim-
ulation. This approach is widely used, and
there are several software add-in packages
available for spreadsheets, such as CRYSTAL BALL

and @RISK.1,2 In the probabilistic view, an inter-
val can be seen as a distribution whose form is
completely unknown and whose definite inte-
gral over the interval is one. All variables are
statistically independent from each other.

For the average spreadsheet user, probabilis-
tic modeling might be too difficult to use.
Intervals provide a simpler low-end approach
for representing numeric uncertainty and,
thus, have a better chance of being adopted by
the spreadsheet users. Furthermore, intervals
can be used for constraint solving, as is seen
later. This is the key contribution of INTERVAL

SOLVER.

Solving Back Argument Intervals
Assume that cell A1 contains the formula = A2
+ A3. Given argument values A2 and A3, the
value of A1 is computed. The computational

model of spreadsheets is a classic example of
forward propagation.

However, in many problems, the goal is
known, and the task is to back-solve argument
values that lead to feasible solutions. Con-
straint propagation is a handy classical AI tech-
nique for solving such problems. For example,
if A1 and one of the arguments, say A2, are
known in this example, then the remaining
argument, A3, can be computed (A3 = A1 – A2).
This value can then be propagated further to
formulas in which variable A3 is used, and so
on. Constraint propagation makes it possible
to evaluate formulas backwards or symmetri-
cally, not only forward from known argument
values to the function value.

The idea of constraint propagation is not
new in spreadsheet computing. It was actually
adopted by the early developers of the first
major spreadsheet program, VISICALC, in the
late 1970s. The best known result of this
branch of development is TK!SOLVER,3 a tool for
mathematical modeling.

In interval constraint solving, the classic
numeric value propagation is generalized into
a still more versatile computational model:
Intervals are propagated instead of exact num-
bers. The idea is to narrow initial variable inter-
vals by using local consistency filtering tech-
niques developed originally for solving discrete
constraint-satisfaction problems (CSPs). The
result of the narrowing procedure is a set of
intervals that definitely bound all exact solu-
tions to the constraints, that is, the solution set.

For example, reconsider figure 1. The prob-
lem now is to determine the needed cash flow
C and interest rates that would match a desired
present value P. In figure 2, the user has set pre-
sent value goal P = 29 in the situation of figure
1. In ordinary EXCEL, one cannot assign a for-
mula and a value simultaneously to a cell, but
with INTERVAL SOLVER, this can be done by dou-
ble-clicking the cell. In response, EXCEL has
refined two interest rates and the cash flow
accordingly. Modified values are shown in bold
for the user’s convenience. INTERVAL SOLVER has
bounded all possible scenarios that might lead
to the goal within the given initial intervals—a

Articles

WINTER 2000 85

Figure 2. Interval Goal Seeking in INTERVAL SOLVER.

tions of the constraint system or find its indi-
vidual solutions.

This interpretation extends the usability of
spreadsheet computing tremendously. Equa-
tions and inequalities can now be used on the
sheet in addition to the traditional functions.
In INTERVAL SOLVER, the expression inside the =
I(expression) formula cannot only be a function
but also an equation or an inequality, such as

= I(A1^2*B2 = SIN(C1) + 3)
= I(LN(A1)^B1> = TAN(C1) C1^3)

One can also mix logical and numeric con-
straints, for example,

= I(IMPLIES(A1 > B1^2,
AND(D2 = 0, A1 < SIN(B1))))

Solutions to the equations and logical con-
straints can be generated automatically by
pushing a button. The spreadsheet has become
an expert for equation solving and Boolean
logic.

For example, figure 3 depicts a typical prob-
lem encountered in electrical designing. The
circuit to be analyzed consists of batteries and
resistors whose voltages and resistances are
known. The task is to solve the nine currents
C13:C21 shown on the sheet, which can be
done in a standard way using Kirchoff’s laws
(equations) that relate resistances, voltages,
and currents with each other. The equations
are written and shown in cells B25:B30 (for the
currents) and B32:B34 (for the voltages).

Because an equation does not have a numer-
ic value, the equation itself is shown as the val-
ue of the corresponding = I(equation) formula.
Initially, values for the voltages and resistances
were given, and values for currents were
unknown; that is, they have very large interval
values. The unique solution is found immedi-
ately and is shown in the figure.

Interval constraint-solving techniques differ
from other numeric techniques in one impor-
tant way: Possible solutions are never acciden-
tally lost. As a result, all solutions can always be
found if enough time and memory are avail-
able. Furthermore, if a situation is found infea-
sible, then the problem has no solutions for
sure. This guarantee holds even when round-
ing errors are present. In interval computa-
tions, outward-rounding interval arithmetic is
used, and imprecise floating-point numbers are
represented by tiny safe intervals bounding the
actual value.

For the spreadsheet user, this theoretical
robustness is of great importance. Traditional
numeric methods cannot, in general, guaran-
tee that a solution will be found even if there is
one. Convergence of iteration depends, for
example, on the gradients of the equations and
initial guess values for the variables. It is not

useful piece of information for the decision
maker.

INTERVAL SOLVER is capable of determining the
global value interval of function formulas, but
in back-solving, only locally consistent (Hyvö-
nen 1992) bounds can be obtained in general.
A problem of locally consistent bounds is that
they can have excess width in certain situa-
tions; that is, local narrowing does not neces-
sarily result in the narrowest intervals bound-
ing all solutions. Various consistency criteria
can be used for filtering, such as arc consisten-
cy, box consistency, 2B consistency, and 3B(w)
consistency (Lebbah and Lhomme 1998), but
the problem of excess width remains in the
general case. In spite of this limitation, nar-
rowed bounds provide insight to the user
regarding the safe space of possibilities avail-
able. If needed, the following methods can be
used for verifying the feasibility of an arbitrary
point within a cell interval.

Solving Equations, Inequalities, and
Other Constraints
The earlier goal-seeking example illustrated the
idea that a spreadsheet formula is, from the
mathematical viewpoint, actually a constraint
equation. It tells how the function value and
its arguments relate to each other, that is, what
value combinations are mathematically possi-
ble. In the same spirit, the whole spreadsheet
can be interpreted as a set of equations,
inequalities, and other constraints whose vari-
ables have initial interval ranges. A spreadsheet
thus formulates an interval CSP (ICSP). The
natural task then is either to bound all solu-

Articles

86 AI MAGAZINE

Figure 3. Solving the Nine Unknown Currents of an Electrical Circuit.
Cells have been given mnemonic names using EXCEL’s Name command on the
Insert menu.

feasible to assume that a non-expert spread-
sheet user understands the restrictions, condi-
tions, and limitations related to traditional
numeric equation-solving techniques. In inter-
val solving, all solutions can, in principle,
always be found.

For example, figure 4 depicts the problem of
finding the solutions to a difficult nonlinear set
of 12 kinematics equations. After evaluation,
the View Solutions dialog box of INTERVAL SOLVER

has popped up, and all 16 solutions to the
equations can be viewed on the sheet. The user
can be sure that this equation system has pre-
cisely these 16 solutions within the precision
criteria used.

Finding the Best Solution to a Problem
In figures 1 and 2, intervals were used for
bounding the solution set. After the system has
narrowed the intervals, the user can constrain
the problem further by inserting new con-
straints or by modifying the intervals. For
example, in figure 2, the target present value P,
was modified. After any modification, INTERVAL

SOLVER might be able to narrow related intervals
further. The user and INTERVAL SOLVER can work
together in a mixed-initiative mode, and the
problem can be solved in a top-down fashion
by refining stepwise constraints for the solu-
tions. This approach is not possible in tradi-
tional spreadsheet computing.

This approach can be used for finding the
best solution to the problem at hand, that is,
for solving optimization problems. The user
sets desired goal values, INTERVAL SOLVER narrows
related cell values, the user modifies them
again according to his preferences, and so on.
If the situation is found at some point to be
infeasible, special relaxation (Hyvönen 1991)
commands of INTERVAL SOLVER can be applied to
enlarge intervals and make the bounds feasible
again.

INTERVAL SOLVER also contains a tool for solv-
ing traditional optimization problems directly
with the help of the SOLVER add-in that comes
with Microsoft EXCEL. An interval CSP in INTER-
VAL SOLVER consists of the interval bounds set for
the cell values, their value types (real or inte-
ger), equations, inequalities, and logical con-
straints written on the sheet. These constructs
can be transformed into a classical EXCEL SOLVER

model and be solved using EXCEL SOLVER. In this
way, individual solutions can be found by
which a given target function (cost function)
gets its minimum, maximum, or a preset spe-
cific value, given a set of constraints. By bound-
ing solutions first with the interval model, the
initial guess values can be selected within a rea-
sonable range, and the optimization problem

can be solved more easily. INTERVAL SOLVER pro-
vides a natural way for expressing optimization
problems. Any variable involved, not only the
target cell value, can be optimized dynamically
based on the interval model.

However, because EXCEL SOLVER is a classical
optimization tool, interval techniques are not
used, which means that the solution found
might be only a local optimum and that only
at most one solution corresponding to the set
of initial guess values can be found. In general,
there are no guarantees that a solution will be
found even if there is one. Constrained interval
optimization (Hansen 1992) provides a remedy
to this problem and is planned to be made
available in future releases of INTERVAL SOLVER as
an alternative optimization tool.

Uses of AI Technology
The mathematical basis of INTERVAL SOLVER lays
in the three InC++ interval libraries for C++,
developed originally at VTT Technical Research
Centre of Finland (Hyvönen and De Pascale
1995): (1) LIA INC++, (2) GIA INC++, and (3) ICE

INC+ (table 1) (Delisoft 1998b).
Among these libraries, GIA and ICE are inter-

esting from the AI viewpoint. Reconsider figure
1. The problem of determining the actual glob-
al minimum and maximum of P is easy in this
case because the function happens to be
monotonic. However, in the general nonmo-
notonic case (for example, equation 2), the
problem is very difficult both from the algo-
rithmic and computational viewpoints. The
global min-max is then not obtained by a com-
bination of argument interval limits.

There is only one class of numeric tech-
niques that is guaranteed to always find the
global minimum-maximum—global interval
optimization techniques (Hansen 1992). These

Articles

WINTER 2000 87

Figure 4. Finding All 16 Solutions to Kinematics Describing a Robot Arm.
The ninth solution is viewed.

of the implementational complexities involved
is that the GIA INC++ library used in INTERVAL

SOLVER consists of over 50,000 lines of C++ code.
The key technology underlying INTERVAL

SOLVER is interval constraint satisfaction (Hyvö-
nen 1989; Cleary 1987; Davis 1987), developed
in the fields of AI, (constraint) logic program-
ming, and interval analysis.4 The ICSP corre-
sponding to a sheet is represented as a C++
object of class Ice included in the ICE INC++
library. This class has a simple dynamic string-
based interface by which constraints can be
inserted and removed from the ICSP, interval
domains set for the variables, precision criteria
set for solutions, and so on. For an example of
the programming interface, the C++ code in fig-
ure 5 shows how to solve three equations in
three variables with ICE INC++.

User operations on a sheet, such as inserting
a formula and setting a cell value, are mapped
into sequences of member function calls of the
underlying Ice object. This mapping is written
in the macro language of EXCEL, VISUAL BASIC.
One hundred seventeen different member
functions of ICE INC++ library are used for the
interface.

The ICE INC+++ library does all mathematical
constraint solving regarding formulas written
inside the = I(expression). EXCEL itself maintains
the algebraic formulas on the sheet mutually
consistent, which makes INTERVAL SOLVER invisi-
ble to the user and the integration seamless.
For example, changing cell names in formulas
when copying, pasting, or moving cells is auto-
matic as usual. User-defined cell names, as well
as the different alias function names used in
the various country versions of EXCEL, are avail-
able with INTERVAL SOLVER too. Figure 6 illustrates
the general integration architecture.

The ICE INC++ library uses a large variety of
interval constraint-solving techniques. The
constraint set is manipulated and simplified by
algebraic manipulation routines to make it eas-
ier to solve numerically. In numeric evaluation,
the tolerance propagation approach (Hyvönen
1992) is enhanced with global interval opti-
mization algorithms (Hansen 1992), narrow
operators (Van Hentenryck, McAllester, and
Kapur 1997; Van Hentenryck, Michel, and Dev-
ille 1997; Benhamou, McAllester, and Van Hen-
tenryck 1994), conditioning matrixes (Kearfott
1996), and structure-sharing techniques
(Hyvönen and De Pascale 1996b).

Interval constraint solving was originally
proposed as a new computational basis for
spreadsheet programs in Hyvönen (1991) and
Hyvönen and De Pascale (1996a).

algorithms vary in detail, but the underlying
idea in all of them is to perform an exhaustive
branch-and-prune search in which the initial
argument intervals are split into tighter and
tighter subintervals until precision conditions
for the solution are satisfied. The search is
accelerated by various pruning heuristics based
on the best min-max candidate found thus far,
the mathematical properties of the function
(such as first and second gradients), and special
narrowing operators for the arguments such as
the interval Newton operator). An indication

Articles

88 AI MAGAZINE

include <ice.h>
// Include ICE InC++ library header
main () {

// Construct the equation set object I (of class Ice)
Ice I;
I.SetDefaultUnknown("[-1e8,1e8]");
// Default interval bounds for variable values
I.InsertConstraint("x1^2+x2^2+x3^2-1=0");
I.InsertConstraint("x1^2+x2^2+x3^2-2*x1=0");
I.InsertConstraint("x1^2+x2^2-1=0");

// Solve (evaluate) equation constraints
I.SetPropagationMode(PMGlobal);
// Set mode for finding individual solutions
I.SetMaxSolutionNumber(1000);
// Search for up to 1000 solutions
ICEConsistencyType c;
// Consistency type after evaluation
I.Evaluate(&c);
// Analyze and display the result
if (c!=CTInfeasible)

I.DisplayGlobalSolutions();
return 0;

};

Figure 5. An Example of Programming with ICE INC++.
All solutions to a set of tree equations in three variables are solved and displayed.

LIA INC++ Overloads C++ arithmetic into extended
interval arithmetic.

GIA InC++ Evaluates the global value range of a
function with interval arguments.

ICE INC+ Is an interval constraint-solving library
based on LIA and GIA INC++.

Table 1. The Three InC++ Libraries for C++.

Application Use and Payoff
Interval constraint-solving technology has
recently gained more and more attention not
only in AI research but in business as well.
There has been a lot of development activity in
the logic programming community, resulting
in several interval constraint extensions of Pro-
log, such as BNR Prolog and Prolog IA.5,6 The
first stand-alone mathematical solvers based on
new scheme, such as NUMERICA (VAN HENTEN-
RYCK, MICHEL, AND DEVILLE 1997) and UNICALC,7

have been introduced in the market. These sys-
tems and tools are intended mainly for expert
use and programmers.

In contrast, INTERVAL SOLVER (Delisoft 1998a)
targets (also) non-expert users of spreadsheets.
With the help of the new computational basis,
the usage of spreadsheets has been extended to
new classes of applications that deal with
uncertain data or involve problem solving
under user-given constraints, a typical situa-
tion in business planning, technical design, sci-
ence, and many other fields.

INTERVAL SOLVER is a generic tool for end user
spreadsheets. It virtually generalizes the arith-
metical basis of EXCEL, and the range of applica-
tions is therefore as wide as that of spread-
sheets. Most users indicate business
computations as their main area of interest.
Typical applications include cash flow analysis,
budgeting, and risk analysis involving uncer-
tain future data. In engineering applications,
INTERVAL SOLVER provides the user with a simple
tool for performing design and other calcula-
tions involving, for example, component data
with tolerances, and for solving equations. The
payoff comes from getting more realistic and
better results to support decision making. Non-
expert users can now solve—with little training
in their customary spreadsheet environ-
ment—new classes of mathematically compli-
cated problems.

Together with word processing, database,
and internet tools, spreadsheets have been one
of the most influential software applications of
information technology. According to Gartner
Group, some 30 million spreadsheet programs
were shipped in 1997, most of which (90 per-
cent) were copies of EXCEL, and the market is
growing rapidly. There is the intriguing possi-
bility that interval constraint technology will
eventually lead to a paradigm shift in using
spreadsheets.

Development and Deployment
In the late 1980s and early 1990s, research on
using interval arithmetic as the basis for inter-

val constraint satisfaction was carried out at
VTT Technical Research Centre in Finland and
in a joint project with Electrotechnical Labora-
tory, Japan. A result of this work was an inter-
val constraint solver and an interval spread-
sheet demonstration system implemented in
Lisp. Based on the first results, it was decided to
implement the technology for industrial appli-
cations in C++ and apply it to a major commer-
cial spreadsheet program, EXCEL.

It turned out, however, that the 16-bit
address space provided by EXCEL at that time
was too small for handling problems of reason-
able size. Also, EXCEL’s macro language turned
out to be too limited for a commercial-level
implementation of the new interval vision.
With the new 32-bit WINDOWS versions and the
new VISUAL BASIC macro language, the situation
changed rapidly in 1996. The first implementa-

Articles

WINTER 2000 89

Excel sheet

User Interaction

Event Handling

Ice Class Object
Corresponding to an ICSP.

ICE In C++ Library

Ice Member
Function Calls

Visual Basic Interface

Figure 6. The Interaction Model of INTERVAL SOLVER.
The VISUAL BASIC interface layer catches user interactions (inserting data, moving
cells, and so on) and commands. The ICE object, that is, the ICSP corresponding
to the sheet, is updated accordingly or solved depending on the user interaction.

had to be circumscribed using special program-
ming tricks.

Conclusions
Interval constraint solving and INTERVAL SOLVER

provide a more versatile basis for spreadsheet
computing. Two key concepts of spreadsheets
have been generalized: First, the idea of cell val-
ue is generalized from exact numbers to inter-
vals. An exact value is a special case of the
notion of interval. Second, the idea of (func-
tion) formula is generalized into equations,
inequalities, and logical constraints. A function
is a special case of an equation.

From the computational viewpoint, the idea
of forward propagation of exact values is gen-
eralized into interval constraint propagation.
Again, forward propagation is a special case of
the new model, interval constraint propaga-
tion.

Interval constraint solving is a conceptually
simple, robust scheme for representing and
solving difficult mathematical problems under
uncertainty. Solutions are never lost such as
when using traditional numeric techniques. A
price to be paid for the robustness and the ease
of use is increased computational complexity.
However, results indicate that in many cases,
interval constraint-solving methods can suc-
cessfully compete with, or even outperform,
the best traditional numeric techniques (Van
Hentenryck, Michel, and Deville 1997).

Spreadsheet programs are among the most
widely used applications in information tech-
nology. However, after the pioneering days of
VISICALC in 1979, their underlying computa-
tional idea has not changed much. INTERVAL

SOLVER demonstrates that AI techniques can
make a substantial contribution in the devel-
opment of the spreadsheet paradigm.

Acknowledgments
Thanks to Eero Peltola, Technology Develop-
ment Centre of Finland, Sitra, and VTT Infor-
mation Technology for fruitful cooperation.

Notes
1. CRYSTAL BALL Product information available at
www.decisioneering.com.

2. @RISK product information available at www.pal-
isade.com.

3. TK!SOLVER product information available at
www.uts.com.

4. Home page of interval computations research is
cs.utep.edu/interval-comp/main.html.

5. BNR Prolog home page is www.als.com/als/clpbnr/
clp_info.html.

6. Prolog IA home page is prologianet.univ-mrs.fr/Us.

tion of interval constraints for EXCEL called
RANGE SOLVER was exhibited by VTT at the CeBIT
96 fair in Hannover, Germany. INTERVAL SOLVER

is its direct descendant, commercialized by
Delisoft Ltd, a spin-off of VTT.

The first version of INTERVAL SOLVER 97 was fin-
ished during autumn 1997 and was released
internationally in April 1998 at COMDEX
Japan, Tokyo. The software evaluation kit has
been available through various internet sites,
including Ziff-Davis Libraries, Download.com,
and Microsoft Office Update and also through
some representatives in various countries
(United States, Canada, Australia, Hong Kong,
Korea, and so on). There have been several
thousand downloaders all around the world.

The software consists of more than 100,000
lines of code, 80 percent of which is mathemat-
ical routines in C++. Several people were
involved with the research on interval compu-
tations, but the actual code of INTERVAL SOLVER,
as well as the manual, setup program and elec-
tronic tutorial, were written by the authors of
this article.

The development, and especially the com-
mercialization phases, of INTERVAL SOLVER were
far more demanding than was initially expect-
ed. To meet the high efficiency requirements of
spreadsheet users, the software had to be
geared and tuned very carefully. Tiny modifica-
tions in the algorithms easily resulted in order-
of-magnitude differences in performance. The
computational efficiency of interval con-
straint-solving techniques is sensitive not only
to the algebraic form of the ICSP but also to the
initial interval values used. Various heuristics
can be used to speed up convergence, but there
is no single optimal strategy that always works
well.

Besides the technical difficulties in imple-
menting and tuning the mathematical con-
straint engine, lots of difficulties were encoun-
tered with the interface to EXCEL. A key problem
was the enormous versatility of ways in which
the user can interact with EXCEL and potentially
confuse the system by making the sheet and
the underlying ICSP model mutually incoher-
ent. Most operations in EXCEL, such as inserting
a formula, can be made in several alternative
ways. All of them have to be caught. An addi-
tional practical problem was that a new funda-
mentally different version of the macro lan-
guage provided by Microsoft for EXCEL 97 was
released in the middle of the development
process, causing redesign needs for the inter-
face. Fortunately, the new version was more
versatile from the INTERVAL SOLVER viewpoint.
Last but not least, several deficiencies were
encountered in different EXCEL versions. They

Articles

90 AI MAGAZINE

Articles

WINTER 2000 91

Artificial Intelligence and Mobile Robots
Case Studies of Successful Robot Systems

Edited by David Kortenkamp, R. Peter Bonasso, and Robin Murphy

The mobile robot systems described in this book were selected from among the best available implemen-
tations by leading universities and research laboratories. These are robots that have left the lab and
been tested in natural and unknown environments. They perform many different tasks, from giving

To order, call 800-356-0343 (US and Canada) or (617) 625-8569.
Distributed by The MIT Press, 55 Hayward, Cambridge, MA 02142

tours to collecting trash. Many have distinguished themselves (usually with first or second-place finishes
at various indoor and outdoor mobile robot competitions.

Each case study is self-contained and includes detailed descriptions of important algorithms, including
pseudo-code. Thus this volume serves as a recipe book for the design of successful mobile robot
applications. Common themes include navigation and mapping, computer vision, and architecture.

6 x 9, 400 pp., ISBN 0-262-61137-6

Eero Hyvönen received his doctor
of technology from Helsinki Uni-
versity of Technology and is pro-
fessor of computer science at the
University of Helsinki. His
research interests include interval
constraint-satisfaction techniques
and AI. In addition to research, he
has been active in developing and

commercializing software innovations in the indus-
tries. His e-mail address is eero.hyvonen@cs.helsin-
ki.fi.

Stefano De Pascale received his
M.Sc. in computer science from
the University of Helsinki. He has
worked at VTT Technical Research
Centre of Finland as a research sci-
entist and was cofounder of
Delisoft Ltd. as the research and
development manager. De Pas-
cale’s research area covers interval

and constraint-solving techniques. He is also inter-
ested in software development methods and tools
and has been working on both research and industri-
al development projects. He is currently an indepen-
dent consultant at Stepax.com. His e-mail address is
stefano.depascale@stepax.com.

7. UNICALC home page is txt.rriai.org.ru/UniCalc/
about.html.

References
Benhamou, F.; McAllester, D.; Van Hentenryck, P.
1994. CLP(Intervals) Revisited. Paper presented at
the International Symposium on Logic Programming
(ILPS-94), 13–17 November, Ithaca, New York.

Cleary, J. 1987. Logical Arithmetic. Future Computing
Systems 2(2): 125–149.

Davis, E. 1987. Constraint Propagation with Interval
Labels. Artificial Intelligence 32(8): 99–118.

Delisoft. 1998a. Interval Solver User’s Guide. Delisoft
Ltd., Helsinki, Finland.

Delisoft. 1998b. User’s Guides of InC++ Libraries.
Delisoft Ltd., Helsinki, Finland.

Hansen, E. 1992. Global Optimization Using Interval
Analysis. New York: Marcel Dekker.

Hyvönen, E. 1992. Constraint Reasoning Based on
Interval Arithmetic: The Tolerance Propagation
Approach. Artificial Intelligence 58(1–3): 71–112.

Hyvönen, E. 1991. Interval Constraint Spreadsheets
for Financial Planning. In Proceedings of the First
International Conference on Artificial Intelligence
Applications on Wall Street. Washington, D.C.: IEEE
Computer Society Press.

Hyvönen, E. 1989. Constraint Reasoning Based on
Interval Arithmetic. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelli-
gence, 1193–1198. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Hyvönen, E., and De Pascale, S. 1996a. Interval Com-
putations on the Spreadsheet. In Applications of Inter-
val Computations, eds. B. Kearfott and V. Kreinovich,
169–210. New York: Kluwer.

Hyvönen E., and De Pascale, S. 1996b. Shared Com-
putations for Efficient Interval Function Evaluation.
In Scientific Computing, Computer Arithmetic and Vali-
dated Numerics, eds. G. Alefeld and E. Frommer.
Berlin: Akademie-Verlag.

Hyvönen, E., and De Pascale, S. 1995. INC++ Library
Family for Interval Computations. Paper presented at
the International Workshop on on Applications of
Interval Computations, 23–25 February, El Paso,
Texas.

Kearfott, B. 1996. Rigorous Global Search: Continuous
Problems. New York: Kluwer.

Kearfott, B., and Kreinovich, V., eds. 1996. Applica-
tions of Interval Computations. New York: Kluwer.

Lebbah, Y., and Lhomme O. 1998. Acceleration
Methods for Numeric CSPs. In Proceedings of the Fif-
teenth National Conference on Artificial Intelli-
gence, 19–24. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence.

Van Hentenryck, P.; MacAllister, D.; and Kapur, D.
1997. Solving Polynomial Systems Using a Branch-
and-Prune Approach. SIAM Journal of Numerical
Analysis 34(2): 797–827.

Van Hentenryck, P.; Michel, L.; and Deville, Y. 1997.
NUMERICA. A Modeling Language for Global Optimiza-
tion. Cambridge, Mass.: MIT Press.

Articles

92 AI MAGAZINE

