
■ Case-based reasoning (CBR) is a computational
reasoning paradigm that involves the storage and
retrieval of past experiences to solve novel prob-
lems. It is an approach that is particularly relevant
in scientific domains, where there is a wealth of
data but often a lack of theories or general princi-
ples. This article describes several CBR systems that
have been developed to carry out planning, analy-
sis, and prediction in the domain of molecular bi-
ology. 

The domain of molecular biology can be
characterized by substantial amounts of
complex data, many unknowns, a lack of

complete theories, and rapid evolution; rea-
soning is often based on experience rather
than general knowledge. Experts remember
positive experiences for possible reuse of solu-
tions; negative experiences are used to avoid
potentially unsuccessful outcomes. Similar to
other scientific domains, problem solving in
molecular biology can benefit from systematic
knowledge management using techniques
from AI. Case-based reasoning (CBR) is partic-
ularly applicable to this problem domain be-
cause it (1) supports rich and evolvable repre-
sentation of experiences—problems, solutions,
and feedback; (2) provides efficient and flexible
ways to retrieve these experiences; and (3) ap-
plies analogical reasoning to solve novel prob-
lems. 

CBR is a paradigm that involves solving new

problems by recalling old problems and their
solutions and adapting these previous experi-
ences represented as cases. A case generally
comprises an input problem, an output solu-
tion, and feedback in terms of an evaluation of
the solution. CBR is founded on the premise
that similar problems have similar solutions.
Thus, one of the primary goals of a CBR system
is to find the most similar, or most relevant,
cases for new input problems. The effective-
ness of CBR depends on the quality and quan-
tity of cases in a case base. In some domains,
even a small number of cases provide good so-
lutions, but in other domains, an increased
number of unique cases improves problem-
solving capabilities of CBR systems because
there are more experiences to draw on. Howev-
er, larger case bases can also decrease the effi-
ciency of a system. The reader can find detailed
descriptions of the CBR process and systems in
Kolodner (1993). More recent research direc-
tions are presented in Leake (1996), and prac-
tically oriented descriptions of CBR can be
found in Bergman et al. (1999) and Watson
(1997).

The remainder of this article describes sever-
al CBR systems that have been developed to
address problems in molecular biology. We be-
gin with a description of a recent CBR system
for planning protein-crystallization experi-
ments, followed by summaries of earlier CBR
systems for gene finding, knowledge discovery
in a sequence database, and protein- structure
determination. We conclude with a discussion
of issues related to the application of CBR in
the domain.
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growth that are effective in many settings. For
example, Jancarik and Kim (1991) proposed a
set of 48 agents that are often used during crys-
tallization. Although advances have been made
through practical experience, a need remains
for systematic and principled studies to im-
prove our deep understanding of the crystal-
lization process and provide a basis for the
planning of successful new experiments. One
of the difficulties in planning crystal growth ex-
periments is that “the history of experiments is
not well known, because crystal growers do not
monitor parameters” (Ducruix and Giege 1992,
p. 14). One recent approach attempted to opti-
mize the 48-agent screen from crystallization
data on 755 different proteins (Kimber et al.
2003). Not surprisingly, the study showed that
one can eliminate certain conditions (in this
case, 9) and still not lose any crystal or use only
6 conditions and still detect crystals for 338
proteins (60.6 percent). These results are en-
couraging. However, proteins have different
properties, and thus, the selection of more or
less useful crystallizing conditions might never
be universal across all proteins. In addition,
when a particular condition produces differen-
tial results across many proteins, it still might
provide valuable information. 

The BIOLOGICAL MACROMOLECULAR CRYSTALLIZA-
TION DATABASE (BMCD) (Gilliland, Tung, and Lad-
ner 2002) stores data from published crystal-
lization papers (positive examples of successful
plans for growing crystals), including informa-
tion about the macromolecule itself, the crys-
tallization methods used, and the crystal data.
Attempts have been made to apply statistical
and machine learning techniques to the BMCD.
These efforts include approaches that use clus-
ter analysis (Farr, Peryman, and Samuzdi 1998),
inductive learning (Hennessy et al. 1994), and
correlation analysis combined with a Bayesian
technique (Hennessy et al. 2000) to extract
knowledge from the database. Previous studies
were limited because negative results are not
reported in the database and because many
crystallization experiments are not repro-
ducible because of an incomplete method de-
scription, missing details, or erroneous data
(which is the result of often skimpy and vague
primary literature). Consequently, the BMCD is
not currently being used in a strongly predic-
tive fashion. 

Significant advancement in this field has re-
sulted from the use of high-throughput robotic
setups for the search phase of crystal growth.
This advancement vastly increases the number
of conditions that can initially be tested and al-
so improves reliability and systematicity for ap-
proximating conditions for crystallization in

CBR and Protein Crystallization
One of the fundamental challenges in modern
molecular biology is the elucidation and un-
derstanding of the laws by which proteins
adopt their three-dimensional structure. Pro-
teins are involved in every biochemical process
that maintains life in a living organism.
Through an increased understanding of pro-
tein structure, we gain insight into the func-
tions of these important molecules. Currently,
the most powerful method for protein-struc-
ture determination is single-crystal X-ray dif-
fraction, although new breakthroughs in nu-
clear magnetic resonance (NMR) (Kim and
Szyperski 2003) and in silico (Bysrtoff and Shao
2002) approaches are growing in their impor-
tance. A crystallography experiment begins
with a well-formed crystal that ideally diffracts
X-rays to high resolution. For proteins, this
process is often limited by the difficulty of
growing crystals suitable for diffraction, which
is partially the result of the large number of pa-
rameters affecting the crystallization outcome
(such as purity of proteins, intrinsic physico-
chemical, biochemical, biophysical, and bio-
logical parameters) and the unknown correla-
tions between the variation of a parameter and
the propensity for a given macromolecule to
crystallize. 

The CBR system described in this section ad-
dresses the problem of planning for a novel
protein-crystallization experiment. The poten-
tial impact of such a system is far reaching: Ac-
celerating the process of crystallization implies
an increased knowledge of protein structure,
which is critical to medicine, drug design, and
enzyme studies and to a more complete under-
standing of fundamental molecular biology. 

Protein Crystallization
Conceptually, protein crystal growth can be di-
vided into two phases: (1) search and (2) opti-
mization. Approximate crystallization condi-
tions are identified during the search phase,
but the optimization phase varies these condi-
tions to ultimately yield high-quality crystals.
Improving these phases can lead to accelerated
protein-structure determination and function
resolution. Optimally, discovering the princi-
ples of crystal growth will eliminate protein
crystallization as a bottleneck in modern struc-
tural biology. 

The crystallization of macromolecules is cur-
rently primarily empirical. Because of its unpre-
dictability and high irreproducibility, it has
been considered by some to be an art rather
than a science (Ducruix and Giege 1992) or an
“exact art and subtle science.” Experience alone
has produced experimental protocols for crystal
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the search phase. However, it also results in
thousands of initial crystallization experiments
carried out daily that require expert evaluation
based on visual criteria. Thus, our CBR system
includes an image analysis subsystem that is
used to automatically classify the initial out-
comes in the search phase. This classification
forms the basis for the similarity measure for
CBR. We incorporate knowledge discovery
tools to assist in the optimization and the un-
derstanding of the protein-crystallization
process. 

Case-Based Reasoning System
One can view the process of crystal growth as
a planning task, where a single experiment cor-
responds to a simple plan, and a series of exper-
iments for a given protein corresponds to a
more complex plan. Planning in AI generally
involves developing techniques for forming a
strategy of actions by choosing among alterna-
tive actions and reasoning about their effects.
In CBR, actions are chosen based on the re-
trieval and adaptation of previously construct-
ed plans. 

Our approach builds on a previously devel-
oped computational framework for CBR called
TA3. This system uses a variable context, a sim-
ilarity-based retrieval algorithm, and a flexible
representation language (Jurisica and Glasgow
2000; Jurisica, Glasgow, and Mylopoulos
2000). Cases corresponding to individual expe-
riences are stored in TA3 as a collection of at-
tribute-value pairs; attributes are grouped into
one or more categories to bring additional
structure to a case representation, reducing the
impact of irrelevant attributes on system per-
formance by selectively using individual cate-
gories during case retrieval. 

Although we would hope that most pure
proteins would crystallize readily under the ap-
propriate conditions, finding a priori the opti-
mal mix of solution conditions is challenging.
One possible approach to make this search
more systematic is the use of factorial design,
which involves a set of experiments intended
to identify important effects and interactions.
In crystallography, it can be used to search for
initial conditions and, once results are evaluat-
ed, to optimize the conditions. The process in-
volves the simultaneous combination and
modification of all conditions, which generally
results in an intractable number of experi-
ments. 

We postulate that past experience can lead
us to the identification of initial conditions fa-
vorable to crystallization. Moreover, it is be-
lieved that solubility experiments can provide
a quantitative measure of similarity among

proteins. If we consider only 15 possible condi-
tions, each having 15 possible values, the result
would be 4.3789e+017 possible experiments.
Assume that 2 proteins react similarly when
tested against a large set (over 1,500) of precip-
itating agents in the search phase of crystalliza-
tion. Then, the planning strategies successfully
used for the one can profitably be applied to
the other. Thus, it is important to identify a
suitable set of precipitating agents to sort the
outcomes of reactions for a relatively large
group of proteins. New crystallization chal-
lenges are then approached by the execution
and analysis of a set of precipitation reactions,
followed by an automated identification of
similar proteins and an analysis of the recipes
used to crystallize them (that is, crystal growth
method, temperature and pH ranges, concen-
tration of a protein, and crystallization agent).
Figure 1 illustrates this process.

Our wet-lab collaborators, George DeTitta
and others at the Hauptman-Woodward Med-
ical Research Institute in Buffalo, New York,
have the capacity to prepare and evaluate the
results of more than 60,000 initial precipita-
tion experiments, involving 40 proteins, dur-
ing a single work week. These microbatch ex-
periments are being conducted under paraffin
oil using robots outfitted with syringes and
cameras (figure 2). For each protein, crystal
growth experiments are carried out using 1,536
different cocktails (solutions or reacting
agents) (Luft et al. 2001). The result of a precip-
itation experiment is an image that is automat-
ically generated and analyzed to determine the
outcome of the crystallization process (Jurisica
et al. 2001). Image processing involves four
main steps: (1) drop recognition, (2) drop
analysis, (3) image-feature extraction, and (4)
image classification. A standard vocabulary of
outcomes is utilized to describe the results of
image classification: clear drop, amorphous
precipitate, phase separation, microcrystal,
crystal, and unknown. These outcomes,
recorded as a function of time, are the corner-
stone of the crystallization case base that also
contains chemical and physical information
about individual proteins. 

A need for automated image analysis arises
from the fact that there is no general approach
to quantitatively evaluate crystallization reac-
tion outcomes under the microscope. The ma-
jor weakness of existing scoring methods is the
tendency to confuse categories of precipitates
(Ducruix and Giege 1992). In our approach,
crystallization outcomes are stored as image
representations that are analyzed using com-
puter vision techniques (Jurisica et al. 2001) to
objectively recognize different crystallization

Articles

SPRING 2004    87



cases that are of minimum distance. The re-
trieval method implemented in the TA3 system
provides the user with a flexible interface for
restricting or relaxing the similarity function to
retrieve fewer or more relevant cases as neces-
sary (Jurisica, Glasgow, and Mylopoulos 2000). 

Once similar cases have been retrieved, the
next step in CBR is adaptation, which is the
process of modifying previous solutions to ad-
dress the new problem. The most relevant re-
trieved cases, along with domain knowledge,
are incorporated to determine appropriate pa-
rameters for a new set of experiments for pro-
tein crystallization. At this stage, the system
acts, first, as an adviser to the crystallographer
to suggest possible parameters for further ex-
perimentation and, second, as an evaluater of
potential experiments that the user might pro-
pose. The system utilizes results from the pre-
cipitation index to suggest 80 percent of the so-
lution, but 20 percent of the solution is
determined from the knowledge obtained by
data mining the repository for general trends.
Although we still need to determine and vali-

outcomes and automatically extract important
image features for further analysis. It is impor-
tant to note that our approach produces objec-
tive results and is scalable to accommodate the
vast number of images that require analysis.
Our current database contains over 1,500 pro-
teins, each being screened with 1,536 different
conditions and photographed 6 times over a
period of 2 weeks. Data storage thus requires
approximately one DVD disk for each protein
experiment. 

Case retrieval involves partial pattern match-
ing of an input case to cases in the case base. A
similarity function is used to determine which
cases are most relevant to the given problem.
The precipitation index is utilized to define a
quantitative similarity function for crystal
growth experiments. This index encodes the
reactions from the set of initial precipitation
cocktails as a string containing the 1,536 initial
crystallization outcomes (determined through
image analysis). The distance is measured be-
tween the string for a novel set of reactions and
those stored in the repository to extract those
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Figure 1. Case-Based Planning of Protein-Crystallization Experiments.
The precipitation index of a novel protein is compared to precipitation indexes of all proteins stored in the
case base using a modified k–nearest-neighbor similarity matching. Crystallization plans of proteins with the
most similar precipitation indexes are considered for planning a crystallization of a novel protein—successful
crystallizations are used as positive planning experiences, but failed crystallization plans are utilized to poten-
tially avoid negative results in the future.



date the most effective split, this combined ap-
proach to plan adaptation attempts to resolve
the problem of local similarity versus global
trends. The adaptation module is being devel-
oped over time as more general rules/principles
are extracted from the growing case base using
data-mining techniques. Once a plan (in the
form of a set of experiments) has been derived
and executed for a novel protein, the results
are recorded as a new case that reflects this ex-
perience. Cases with both positive and nega-
tive outcomes are equally valuable for future
decision-making processes and are also re-
quired for the application of data-mining tech-
niques to the case base. 

Currently, the system is being integrated,
and preliminary validation is being conducted.
The first step is image analysis, where we have
processed almost 1,600 proteins to date (each
screened on 1,536 different conditions). We
have validated our automated image classifica-
tion system, comparing it to human expert
performance on 18 proteins, which resulted in
an accuracy of 89 percent (receiver operating
characteristic [ROC] score 0.875, precision
0.40, and recall 0.70) (Cumbaa et al. 2003).
Some classification outcomes are illustrated in
figure 3.

In automatic image classification, we use a
boosting approach by combining results from
multiple techniques. Our image analysis sys-
tem comprises several stages: (1) well registra-
tion, (2) droplet segmentation, (3) feature ex-
traction, and (4) image classification. 

During well registration, we locate and elim-
inate the boundaries of the well. To determine
the vertical-horizontal well boundaries, we
find the pair of pixel columns/rows separated
by the expected well width/height with the
closest average pixel intensity. We incorporate
a previously described registration method (Ju-
risica et al. 2001).

During droplet segmentation, we eliminate
the edges of the drop. Currently, we use a prob-
abilistic graphic model to segment the central
region of the well for further analysis by distin-
guishing the empty well, the inside of a
droplet, and the edge of a droplet. We first di-
vide the well into a grid of 17�17 regions. Each
region (i,j) in this grid is represented by a pair
of variables in the Bayesian net segmentation
model, which forms a 60-component mixture
of multivariate Gaussian distributions. Each
mixture models the local state of the well. Seg-
mentation of a particular image is accom-
plished by inferring the most likely configura-
tion from the probability distribution, using
the local region of the image as well as the val-
ues of its neighbors. We trained our segmenta-
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Figure 2. Crystallization Solution and Protein Pipetting Robots and XY Pho-
tography Stands.

The base set of robots in HWI laboratory comprises a liquid handling system
pipette robot, which accommodates exchangeable banks of 1, 12, 96, or 384 sy-
ringes, that is utilized to deliver crystallization solution and protein into 1,536
wells (Robbins Scientific Tango, Sunnyvale, California) and a protein pipette ro-
bot with 96 syringes (Robbins Scientific Tango) and two XY stands for pho-
tographing experiment results, with the capacity to digitally photograph 86,016
crystallization experiments each. 



straight edges detected within a droplet, and 1
measuring the smoothness of the droplet con-
tent to detect precipitates and clear drops
(Cumbaa et al. 2003).

During image classification, we classify each
image, given its 23 numeric features, using lin-
ear discriminant analysis, into crystal, clear, and
precipitate classes (Cumbaa et al. 2003). 

Results of image classification have been uti-
lized to effectively visualize time dependency
of the crystallization process and begin the
process of crystallization plan optimization.
Considering that each protein crystallization
results in 9,216 images, the main goal of the vi-
sualization system is to provide easier naviga-
tion through experimental results. Different
size plates can easily be visualized by selecting
a protein from a list and displaying a color-cod-
ed image classification across all time points
(figure 4). Selecting a specific well displays
cocktail information. Crystallization results are
automatically (or interactively) selected for op-

tion model on 45 hand-segmented images. Val-
idation of the model was performed on a set of
50 hand-segmented images containing 4,319
empty-well regions, 1,348 droplet-border re-
gions, and 8,783 intradroplet regions. The
model correctly identified 96 percent of all well
regions, 69 percent of all border regions, and
95 percent of all intradroplet regions, for a
weighted mean of 93-percent overall accuracy
(Cumbaa et al. 2003).

During feature extraction, we extract a min-
imal set of descriptive features that are essen-
tial in differentiating protein-crystallization
outcomes. Because we approach the image-
classification problem using an elimination
strategy, we extract features that are indicative
of specific subgroups of crystals (for example,
microcrystals, microneedles, needle crystals,
and larger faceted crystals), precipitates, and
clear drops. In total, we reduce each image to a
vector of 23 features: 20 measuring micro-crys-
tal features, 2 measuring the presence of

Figure 3. Automated Image Analysis and Classification.
After image segmentation, multiple classes of crystallization results can be detected. We use a boosting approach that combines multiple
approaches. Here, we show images that have been classified as crystal (X), phase separation (Ph), precipitate (P), clear (C), and gel (G). The
corresponding contour images have been utilized to compute the Euler number, which, in turn, has been utilized to cluster similar images.
As shown in the bar graph, crystal and phase separation overlap but can be separated from clear drops and precipitates. Unfortunately, we
did not have enough gel images to enable statistical analysis.
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timization, using selected crystallizing condi-
tions and optimization criteria (figure 5). At
this stage, the cocktail setup is optimized into
24-well plate-optimization screen (figure 6).
We combine information from the successful
and failed crystallizations in a given screen
with historical patterns obtained from data
mining to plan novel experiments. This effort
can be described as a combination of tradition-
al crystallization optimization techniques with
machine learning approaches. 

Little research has been carried out in the
area of AI and protein crystallization. As point-
ed out earlier, much of this research has fo-
cused on applying statistical and machine
learning to the BMCD. Recent work on data
mining applied to protein crystallization can
be found in the article by Buchanan and Liv-
ingston contained in this issue of AI Magazine.
Also worth noting is work by Hennessy et al.
(2000), which describes an experiment planner
for protein crystallization that uses a combina-
tion of CBR and Bayesian reasoning. In partic-
ular, they apply statistical methods to the BMCD

to determine the probability of success of an
experimental plan. Our approach differs from
this work in several fundamental ways: (1) we
are developing a case base that includes nega-
tive, as well as positive, experiments; (2) we are
incorporating results from high-throughput
robotic experiments to determine possible
starting conditions for experimentation; (3) we
are applying image-processing techniques to
analyze experimental outcomes; and (4) we

utilize the output of the image analysis to de-
termine similarity between cases. 

Other Applications of 
Case-Based Reasoning

Here, we summarize several other CBR systems
that have been developed to address problems
in molecular biology. In particular, we discuss
approaches for analyzing genomic sequence
data and predicting and determining the struc-
ture of proteins. 

Sequence Analysis
The linear subsequences of deoxyribonucleic
acid (DNA) that encode proteins are called
genes. A three-letter string from the alphabet A,
G, T, C (referred to as a codon) of bases from
DNA encodes 1 of the 20 amino acids that are
utilized to form a protein. One of the funda-
mental problems in the area of sequence analy-
sis is gene finding, which involves locating the
correct groups of nucleotide triples to translate
into the protein sequence. This problem is
complicated by noise in the data, which is
caused by sequencing errors. 

A CBR gene-finding algorithm was proposed
by Jude Shavlik (1991). In this research, cases
correspond to complete genes and complete
proteins stored in existing biological sequence
databases. Similarity matching is utilized to lo-
cate and identify regions in a DNA sequence
that encode proteins, which is done in the
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Figure 4. Visualization and Optimization of the Initial Crystallization Plan.
White squares denote crystals, light grey denotes precipitates, black indicates clear drops, and dark gray indicates unknown.



in genes. The basis for cases in their system are
instances of genes found in GENBANK (Benson
et al. 2000), a primary repository for nucleic
acid sequence data. An individual case corre-
sponds to an abstraction over multiple gene in-
stances. The prediction of regions is achieved
using a grammatical model of gene structure.
Indexing of cases is based on a hierarchy of at-
tributes corresponding to protein and species
similarity. Two approaches to prediction are
proposed: (1) grammar-based CBR and (2) se-

presence of frame shift errors, that is, errors re-
sulting from breaking the proteins into seg-
ments that result in different reading frames.
The proposed approach involves parsing a
noisy sequence into discrete cases that can be
matched with entries in the case library. The
gene-finding algorithm produces multiple, par-
tial matches and then combines a subset of
these into a consistent whole case. Aaronson et
al. (1993) describe how CBR techniques can be
applied to predict unknown regulatory regions
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Figure 5. Selected Experiments for the Optimization.
One can identify both the time and the dependency of crystallization as well as view the details about crystallizing conditions.

Figure 6. Twenty-Four Well Plate Optimization Screen for the Selected Conditions Using Specified Optimization Criteria.



quence-based CBR. In grammar-based CBR, in-
stances of genes are represented in the form of
grammar rules, which are applied to induce
grammars of gene classes. These are then used
to predict the presence and location of features
for a novel sequence. Sequence-based CBR re-
lies on the assumption that if there is similarity
between two gene sequences, then these gene
sequences might share similar features. Deter-
mining the location of a predicted feature in a
novel sequence is determined by aligning the
sequence with the similar sequence. The sys-
tem was evaluated on how well it discovered
features not in the feature table. It resulted in
inferring 30 to 40 percent additional features
that other existing extraction tools were not
able to find. 

Motivated by the observation of CBR in
“think-aloud” protocols carried out by a hu-
man expert, Kettler and Darden (1993) utilized
previous experimental plans, stored as cases,
along with analogical reasoning, to plan for
novel sequencing experiments. The planning
component of their system created plans,
which are sequences of laboratory and data
analysis procedures. The primary objective of a
plan is to find the amino acid sequence of a
protein. A case in the knowledge base captures
two types of experience: (1) decision episodes,
which are the tasks that were chosen to be car-
ried out, and (2) an experiment episode, which
describes the experiment performed as a se-
quence of decision episodes. Case retrieval in
the system consists of a simple probe and a
similarity measure that counts the number of
tasks that the current decision episode has in
common with the stored cases. The approach is
interactive, where the expert provides the sys-
tem with potential hypotheses. 

Protein-Structure Determination
The structure of proteins can be analyzed at
varying levels of detail or complexity. The pri-
mary structure of a protein corresponds to an
ordered chain of amino acid residues, or a pro-
tein sequence. Its secondary structure corre-
sponds to the local conformation of the pro-
tein’s backbone. The most common secondary
structures are the α-helix and the β-pleated
sheets. The ternary structure describes the
unique three-dimensional arrangement of the
atoms in the polypeptide chain of the protein.
Quaternary structure describes the assembly of
several individual polypeptide chains and,
thus, is defined only for multipolypeptide pro-
teins. 

One way in which the tertiary structure of a
protein can be represented is through the φ and
ψ angles for each of the amino acids in the se-

quence. Zhang and Waltz (1989) describe a
memory-based reasoning system to predict
these angles for a protein based on known
structures. Similar to CBR, memory-based rea-
soning makes use of specific past experiences
for problem solving. Their work is based on the
premise that if two amino acids have similar
physical properties and occur in a similar envi-
ronment, then they should have similar struc-
ture (in terms of their φ and ψ angles). 

Leng, Buchanan, and Nicholas (1993) devel-
oped a CBR architecture for predicting the sec-
ondary structure of proteins. In this work, they
considered several different measures from the
biology literature for determining similar pro-
teins. Once these proteins are found, their ap-
proach involves decomposing the novel se-
quence into smaller segments; retrieved cases
are used to assign secondary structure to the
corresponding piece of the unknown structure.
Each amino acid in the sequence is assigned a
class (α-helix, β-strand, or coil) by applying a
weighted sum calculated from the evidence in
the known structures. 

CBR has also been applied to determine the
three-dimensional structure of proteins from
crystallographic data (Glasgow, Conklin, and
Fortier 1993). This work in molecular scene
analysis concerns the automated reconstruc-
tion and interpretation of protein image data
(in the form of a three-dimensional electron
density map). Cases correspond to previously
determined structures. Discovered spatial and
visual concepts of a structure are used to index
cases. Cases are retrieved from the case base
through a pattern-matching process that in-
volves the comparison of unidentified features
in a novel electron density map (derived from
an image-segmentation process) with motifs
from known structures. This approach com-
bines a bottom-up approach to image analysis,
where image-processing techniques are applied
to extract features from the maps, with a top-
down approach, where CBR is used to anticipate
what motifs are likely to occur in the image. 

Conclusions
CBR is based on the premise that problem solv-
ing involves recalling past experiences and uti-
lizing these experiences (cases) to solve novel
problems. It is a particularly useful paradigm in
domains that are not well understood and
where it is difficult to come up with generaliza-
tions that can be used to model the world. 

The quantity and complexity of biological
data being generated is increasing at a rate
much faster than our ability to analyze or un-
derstand it, implying the need for advanced
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ricella for the manual classification of a large
number of training and testing images. Imple-
mentation of the presented software has been
done by Christian Anders Cumbaa (image
analysis), Patrick Rogers (CBR), and Xin Zhang
(visualization and optimization). This research
was supported in part by the Natural Science
and Engineering Research Council of Canada,
contracts 224114 and 203833; the National In-
stitutes of Health, P50 GM62413; an IBM
Shared University Research grant; and an IBM
Faculty Partnership Award.
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