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A Cognitive Substrate
for Achieving
Human-Level

Intelligence

Nicholas L. Cassimatis

B Making progress toward human-level artificial in-
telligence often seems to require a large number of
difficult-to-integrate computational methods and
enormous amounts of knowledge about the world.
This article provides evidence from linguistics, cog-
nitive psychology, and neuroscience for the cogni-
tive substrate hypothesis that a relatively small set of
properly integrated data structures and algorithms
can underlie the whole range of cognition required
for human-level intelligence. Some computational
principles (embodied in the Polyscheme cognitive
architecture) are proposed to solve the integration
problems involved in implementing such a sub-
strate. A natural language syntactic parser that uses
only the mechanisms of an infant physical reason-
ing model developed in Polyscheme demonstrates
that a single cognitive substrate can underlie intel-
ligent systems in superficially very dissimilar do-
mains. This work suggests that identifying and im-
plementing a cognitive substrate will accelerate
progress toward human-level artificial intelligence.

The Profusion Problem

major challenge to achieving human-
level artificial intelligence is the appar-
ent enormity of the problem. Creating

an effective intelligent system today generally
requires severe constraints either on its func-

tionality or robustness. This article describes a
research program based on the premise that a
major obstacle to intelligent systems that are at
once more broadly functional and more robust
is the profusion of knowledge, data structures,
and algorithms that must be integrated into a
system to achieve this goal. I call this the pro-
fusion problem.

Enormous amounts of knowledge are re-
quired in even very simple domains. For exam-
ple, imagine a natural language question-an-
swering system that answers simple queries
about football schedules. Queries such as
“When is the first Pittsburgh Steelers game after
(the World Series, Thanksgiving, my daughter’s
birthday, the next full moon)?” require knowl-
edge and information about baseball, national
holidays, personal information about the user
and his family, celestial movements, and so on.
A substantial fraction of human knowledge
could potentially be relevant to such queries,
and it is often difficult to restrict the domain in
such a way that neatly rules out most of the rel-
evant information. One indication of the enor-
mity of the knowledge profusion problem is
that while the very large compilations of asser-
tions in knowledge bases such as Cyc (Lenat
and Guha 1990) or ThoughtTreasure (Mueller
1998) have been quite important and useful,
they have yet to provide a comprehensive store
of all the knowledge that might be relevant to
such queries.
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Corresponding to the knowledge profusion
problem is the procedural profusion problem:
most domains involve computational prob-
lems that are best dealt with using a wide vari-
ety of difficult-to-integrate computational
methods. For example, when a speaker makes
an utterance, a natural language spoken dia-
logue system must convert a continuous
acoustic signal into a discrete representation of
the phonemes, morphemes, and words. It must
(at least partially) identify the syntactic struc-
ture of the utterance. It must use knowledge
about the world, including the beliefs and in-
tentions of conversants, to infer the speaker’s
intention. It must take each of these aspects of
language and world knowledge into account to
plan a response that will achieve or advance
the goals of the dialogue. Each of these aspects
of dialogue is currently best dealt with using
different classes of algorithms. For example,
hidden Markov models are often used for
speech recognition; chart- and search-based al-
gorithms are used for syntactic parsing; logical,
case-based, and probabilistic methods are used
for reasoning about the world and other peo-
ple’s intentions. Since evidence (Tanenhaus
and Trueswell 1995) shows that each of these
aspects of language use constrains the others,
designing a system that is capable of human-
level natural language dialogue involves the
difficult problem of tightly integrating these al-
gorithms (based on very different control and
data structures) into one system. All this work
is required for dialogue, only a single aspect of
human-level intelligence. The number of com-
putational methods required and the difficulty
of the integration problem they pose would
seem only to multiply for systems that inte-
grate more of human-level intelligence.

If achieving human-level Al requires a store
of knowledge and collection of algorithms that
is not practical to compile or implement man-
ually, perhaps computers could be pro-
grammed to automatically acquire these. The
first problem with this approach is that most
machine-learning algorithms target and are
built around one or a few specific computation-
al formalisms. For example, using neural net-
work connection update algorithms commits
one to neural networks as an execution algo-
rithm. Thus, learning methods can confine re-
search to a relatively narrow subset of algo-
rithms. There are techniques for combining
existing learning methods and learning to del-
egate between them, (Cox and Ram 1999, Jor-
dan and Jacobs 2002), but these do not create
new algorithms altogether; they only learn to
delegate among existing algorithms. Thus,
existing machine-learning methods by them-

selves are not sufficient to solve the procedural
profusion problem.

Even if there were a way of automatically ac-
cumulating the knowledge and algorithms re-
quired for human-level intelligence, a problem
of effectively integrating these into one system
remains. Merely encapsulating this machinery
into modules that pass messages among each
other does not allow for the internal operation
of one algorithm to be influenced by another.
For example, the choice of an action to explore
in a motion planning algorithm should be able
to be influenced by computation performed by
Bayesian networks, partially observable Mar-
kov decision processes (POMDPs), case-based
reasoners, or logic theorem provers. Yet, the
control and data structures of these different
classes of algorithms are very difficult to inte-
grate and therefore it is difficult to construct a
computational architecture in which the oper-
ation of one algorithm can be influenced by
that of many others.

Thus, the profusion problem makes achiev-
ing human-level intelligence not merely a
problem of marshalling the time and resources
necessary to accumulate the required set of
knowledge and algorithms, but also a genuine-
ly difficult integration problem.

The Cognitive Substrate
Hypothesis

The generality of human cognition motivates a
solution to the profusion problem. Many of the
domains in which human cognition is effective
involve technology, cultural practices, and lan-
guage that did not exist when the human brain
evolved to its present state. The pace of evolu-
tion is so slow that whatever cognitive mecha-
nisms humans use when thinking about, say,
airplanes, computers, parliaments, and equity
markets are the same mechanisms they used in
earlier cognition. This suggests that this set of
earlier mechanisms (which presumably initial-
ly evolved in part for dealing with the physical
world and for coordinating social relation-
ships), in addition to the mechanisms that
adapt them for use to new domains, are suffi-
cient to achieve human-level intelligence in all
domains. This article explores a strong version
of this line of thought, called the cognitive sub-
strate hypothesis. The hypothesis states that
there is a relatively small set of computational
problems such that once the problems of
artificial intelligence are solved for these, that is
to say, once a machine, called here a “cognitive
substrate,” is created that effectively solves
these problems, then the rest of human-level
intelligence can be achieved by the relatively



simpler problem of adapting the cognitive sub-
strate to solve other problems.

To understand what follows, it will be help-
ful to begin with a very brief example of what
a cognitive substrate might be. As explained
later, an initial guess at a cognitive substrate
can be derived from the computational prob-
lems that need to be solved for basic social and
physical reasoning. These include reasoning
about temporal intervals, causal relations, iden-
tities between objects and events, ontologies,
beliefs, and desires. The cognitive substrate hy-
pothesis suggests that once a set of computa-
tional mechanisms, in other words, a cognitive
substrate, that solves the problems of human-
level Al for this set of problems is constructed,
achieving the rest of human-level AI will be a
relatively easy problem.

The cognitive substrate hypothesis being
true would benefit work in human-level Al in
three ways:

Smaller problem. Progress toward human-lev-
el intelligence would not halt until or be de-
pendant on the identification of enormous
amounts of commonsense knowledge and a
seemingly endless number of algorithms and
their combination into one system. Progress on
the comparatively small (but not trivial) set of
problems required to implement a cognitive
substrate would constitute progress toward hu-
man-level intelligence in all domains.

Quicker intelligent system development. Devel-
oping intelligent systems for new domains be-
comes much easier, since they can be based on
the same mechanisms used in other domains.

Easier integration across domains. Two systems
designed for different domains are easier to in-
tegrate when they are based on the same set of
mechanisms.

The cognitive substrate hypothesis is impor-
tant for Al research even if it is not universally
true. If, for example, a cognitive substrate could
underlie cognition in most, but not all, do-
mains of human cognition, then, much, but
not all, of the problem of human-level cogni-
tion becomes more tractable, intelligent system
development will be accelerated in most, but
not all, domains, and integration would be
eased across most, but not all, domains.

Several lines of research in artificial intelli-
gence, cognitive psychology, linguistics, and
neuroscience support the cognitive substrate
hypothesis and motivate a first guess at what
would constitute such a substrate.

Implicit Substrate Hypothesis in
Much Artificial Intelligence Research

First, for most any major class of computation-
al method in Al, there have been researchers

who have believed that most or all Al problems
could be solved by that method. Examples in-
clude characterizing AI problems as search
through a state space (Newell and Simon 1972)
or updating probabilities in a Bayesian network
(Pearl 1988). That each such method has been
applied with success in many domains suggests
that the superficial dissimilarity among those
domains hides deeper similarities.

In addition to an implicit version of a cog-
nitive substrate hypothesis embodied in these
subfields of artificial intelligence, there have
been attempts in the history of the field to re-
duce this superficial variety to a small number
of primitives. Schank (1975), for example,
identified a modest set of primitives that he
proposed could represent much of the seman-
tics of human language. This research pro-
gram has not achieved human-level Al, not
because the cognitive substrate hypothesis is
incorrect, but because the reasoning problems
associated with these primitives have never
been solved. For example, Schank’s primitives
(and those from other research programs (for
example, Jackendoff [1990]) involve causality
and space, but human-level spatial and causal
reasoners do not yet exist. It is not enough,
therefore, to find a set of primitives that can
represent all human knowledge. One must al-
so solve the computational problems associat-
ed with these primitives that humans can
solve.

Thus, while the ability of single Al methods
to support reasoning in a very wide variety of
domains supports the cognitive substrate hy-
pothesis, the research presented here is based
on the hypothesis that a fully successful imple-
mentation of a substrate will require that the
benefits of each specific class of AI methods
must somehow be integrated into one system
(Minsky 1986).

Linguistic Semantics

Research in linguistic semantics has found that
the structures used to represent the semantics
of a relatively small set of semantic fields (such
as physical motion and causation) can be used
to represent the semantics of many other se-
mantic fields. Jackendoff’s treatment of motion
transfer verbs illustrates this point (Jackendoff
1990).

Jackendoff introduces a set of primitives to
explain semantic regularities that occur in mul-
tiple, not-necessarily-physical domains. These
primitives include cause, go, path, to, and from
and are common in many other frameworks.

For example, the meanings of “John entered
the room” and “John left the room” can be for-
malized:
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GO (John, [path [to: room]])

“John moved along a path that ended in the
room.”

GO (John, [path [from: room]])
“John moved along a path that originated in
the room.”
With the same primitive notions, one can rep-
resent a change of state:
GOy, John, [path [to: drunk]]) “John became
drunk”.
GO, Uohn, [path [from: drunk]]) “John
sobered.”
Or, temporal extent:
GOy, (class, [path [to: 9pm]]) “Class extended
to 9pm”.
GOy (class, [path [from: 9pm]]) “Class began
at 9pm.”
Or, transfer of possession:

GO ppssession (3100, [path [to: John]]) “John re-
ceived $100.”

GOpossession ($100, [path [from: John]]) “John
lost $100.”

The only difference in each example is GO’s
subscript, representing the (potentially ab-
stract) domain in which such motion occurs.
Jackendoff’s work describes the semantics of a
large set of word classes with only a few more
primitives, each of which are part of the do-
main of commonsense physical reasoning.

This works suggests underlying similarities
exist among the mechanisms the human mind
uses to think in multiple domains, thus giving
support to the notion that a relatively small set
of mechanisms can lead to human-level intel-
ligence in all domains. That many of the prim-
itives enable so many semantic fields to be rep-
resented and have origins in representations of
the physical world suggests that the cognitive
structures humans use in physical reasoning
may be a place to look for a first guess at the
contents of a cognitive substrate. Finally, this
work is also consistent with the evolutionary
motivation for the cognitive substrate hypoth-
esis since dealing with the physical world has
been an important concern for human and
nonhuman primates throughout their evolu-
tionary development.

Cognitive Psychology
and Neuroscience

Research in cognitive psychology and neuro-
science provides evidence that much nonspa-
tial or physical thought involves mechanisms
that the brain normally uses for spatial and
physical cognition. This evidence supports the
cognitive substrate hypothesis that a relatively

small set of computational mechanisms can
underlie a wide variety of cognition.
Cognitive psychologists have found (see
Barsalou et al. [2003] for a review) that humans
consistently map certain visual and motor rep-
resentations onto abstract, nonphysical con-
cepts. Further, when people engage in tasks
with visual and motor components, they think
more or less easily about the abstract concepts
involved to the extent these are more or less
consistent with the visual-motor aspects of the
task. For example, D. C. Richardson, M. ].
Spivey, S. Edelman, and A. D. Naples (Richard-
son et al. 2001) found that people consistently
associate an image of people situated horizon-
tally with the verb “push” and an image with
people situated vertically with the verb “re-
spect.” One explanation of this is that people
associate X respecting Y with X lookingup at 'y,
whereas most pushing is along a horizontal
plane. Further, D. C. Richardson, M. J Spivey, L.
W. Barsalou, and K. McRae (Richardson et al.
2003) found that people had to work harder to
understand sentences that involved verbs asso-
ciated with a vertical orientation (such as “re-
spect”) when viewing images that had objects
in a horizontal orientation. That cognition
with abstract concepts is so affected by the vi-
sual configuration of objects in the environ-
ment suggests that abstract conceptual cogni-
tion involves visual and motor representations.
Further, these conclusions have been con-
firmed by repeated cases (see, for example, War-
rington and Shallice [1984], Humphreys and
Forde [2001], and Cree and McRae [2003]) of
visual and motor regions of the brain becom-
ing active during nonperceptual cognition.

Conclusions from This Evidence

All this work on the evolution and functioning
of human cognition both supports the cogni-
tive substrate hypothesis and provides some
first steps at identifying the contents of the
substrate. The work in evolution, linguistics,
psychology, and neuroscience suggests that the
mechanisms the human mind uses to think
about a relatively small set of domains under-
lies cognition in many other domains. This fact
about human cognition, together with the un-
derlying similarities Al researchers have already
found among domains, suggests that there is a
relatively small subset of domains such that if
researchers solved the problems of human-lev-
el Al for them, then achieving the rest of hu-
man-level Al will be a relatively easy problem.

Also, because so much of the work in the
cognitive sciences suggests that the mecha-
nisms of physical cognition underlie cognition
in many domains, these mechanisms can form



the basis of a first guess at what is in the cogni-
tive substrate. Through work in cognitive mod-
els of physical reasoning (Cassimatis 2002) and
some preliminary work extending this else-
where (Cassimatis et al. 2004, Cassimatis
2004), I have arrived at a preliminary guess at
what can constitute a cognitive substrate. This
includes reasoning about time, space, part-
hood, categories, causation, uncertainty, belief,
and desire. This is just a preliminary list. Part of
the research program described here involves
refining the understanding of what can consti-
tute a cognitive substrate.

Implied Research Program

The preceeding line of reasoning suggests the
following research program: (1) identify and
implement a cognitive substrate; (2) find map-
pings from multiple domains onto the cogni-
tive substrate; and (3) automate the process of
adapting a cognitive substrate so that it can
solve problems in other domains.

The stages of this research program of course
can and should be executed in parallel. For ex-
ample, the process of mapping a cognitive sub-
strate to many domains will suggest and con-
strain elements of that substrate, and the
process of automating the adaptation of a cog-
nitive substrate to many domains could con-
strain how that substrate is implemented.

A preliminary guess at the contents of a cog-
nitive substrate have already been provided.
The following section describes some of the
problems involved in implementing a cogni-
tive substrate and a framework for addressing
them. Next, a mapping between the problems
of syntactic parsing and physical reasoning will
be described that demonstrates how intelligent
systems in superficially very different domains
can be implemented using the same substrate
and how this makes constructing intelligent
systems in new domains faster. The problem of
automating mappings is briefly discussed, but
for now, we are assuming that much existing
work in analogy will be a major part of the so-
lution.

Implementing a
Cognitive Substrate

As discussed previously, the procedural profu-
sion problem entails the problem of integrating
computational methods with very different
control and data structures that are difficult to
combine into one system. Recognizing that a
cognitive substrate can underlie inference in
many domains does not completely resolve
this issue because the computational problems
that a substrate must solve are themselves best

dealt with using very different computational
techniques. For example, the first guess at the
contents of a cognitive substrate involve rea-
soning about time and the beliefs and desires of
other agents. Yet, the best temporal reasoners
are often based on different computational
methods than the best social reasoners. Most
frameworks for integrating multiple computa-
tional methods either attempt to reduce them
to one computational formalism or encapsu-
late them in modules. Both approaches have
achieved some success but have limitations.
This implementation of the substrate described
in this article is motivated by the assessment
that the reductive approaches can never fully
escape the limitations of the computational
method they are based on and that the modu-
lar approach provides too loose an interaction
among the different methods. This section out-
lines an approach to integration, embodied in
the Polyscheme cognitive architecture, which
enables multiple computational methods to be
implemented such that the interaction be-
tween them is much more ubiquitous. Finally,
I describe some work with Polyscheme at Rens-
selaer’s Human-Level Intelligence Laboratory
and the Naval Research Laboratory that
demonstrates how these principles enable an
implementation of a cognitive substrate that
greatly simplifies the procedural profusion
problem.

Polyscheme (Cassimatis 2005) is based on
two principles that enable very different com-
putational methods to be integrated into one
system. The common function principle (CFP)
states that many Al algorithms can be imple-
mented in terms of the same basic set of com-
mon functions, and the multiple implementation
principle (MIP) states that each common func-
tion can be implemented using multiple com-
putational methods. These computational
principles enable the level of integration
among the various data structures and algo-
rithms needed to implement a cognitive sub-
strate.

The following is the current best guess at the
set of common functions:

Forward inference. Given a set of beliefs, infer

other beliefs that follow from them.

Subgoaling. Given the goal of establishing the
truth of a proposition, P, make a subgoal of de-
termining the truth values of propositions that
would imply or falsify P.

Simulate alternate worlds. Represent and make
inferences about alternate, possible, hypotheti-
cal, or counterfactual states of the world.

Identity matching. Given a set of propositions
about an object, find other objects that might
be identical to it.

Articles

SUMMER 2006 49



Articles

50 AI MAGAZINE

One way to justify the CFP is to show how
these common functions can implement a
wide variety of algorithms. For example, back-
tracking search and stochastic simulation (of-
ten sued in Bayesian network inference) can be
roughly characterized using the same set of
common functions (which are underlined be-
low).

Search. “When uncertain about whether A is

true, represent the world where A is true, per-

form forward inference, represent the world
where A is not true, perform forward inference.

If forward inference leads to further uncertain-

ty, repeat.”

Stochastic simulation. “When A is more likely
than not-A, represent the world where A is true
and perform forward inference in it more often
than you do for the world where not-A is true.”

One way to illustrate the MIP is to show how
multiple computational mechanisms can im-
plement forward inference:

Neural Networks. The activation of input units of

a feedforward neural network leads to a change

in the activation of the output units of the net-

work. These activations represent facts that can

be inferred from the facts represented by the in-
put units.

Forward rule changing. Production systems can
be constructed to match the left-hand sides of
production rules against a set of currently
known facts to infer new facts represented by
the right hand sides of rules.

Ontologies. When an object, o, is a member of
category C in a category hierarchy, one can in-
fer that o0 is a member of C1 ... Cn, the ancestors
of C.

Examples for other common functions are
provided in Cassimatis (2005). The upshot of
all these examples is that each of the common
functions can be implemented by many differ-
ent computational techniques and that the ap-
parent diversity of many computational meth-
ods obscures the fact that they are each solving
the same small set of computational problems
in their own way.

The CFP and the MIP motivate a cognitive
architecture, Polyscheme, that enables an ad-
vance in the level of integration of computa-
tional methods based on different control and
data structures and hence also an implementa-
tion of a cognitive substrate. Polyscheme is not
intended to supplant existing cognitive
architectures and computational frameworks.
Instead, it was designed to provide a framework
for integrating the best features of many exist-
ing architectures and frameworks that have
heretofore not been integrated. For example,
Polyscheme enables production rules to be in-
tegrated with neural networks and stochastic

simulation algorithms for probabilistic infer-
ence into a single intelligent system. The inte-
gration of these various algorithms is tighter in
Polyscheme than in conventional modular,
multiagent systems because these algorithms
are implemented in such a way that every step
of the execution of every algorithm can be in-
fluenced by multiple other algorithms and data
structures.

A Polyscheme system consists of a set of
modules, called specialists, a focus of attention
for fusing the results of the specialists’ infer-
ences together, and a set of attention-control
strategies that shape the flow of computation.
Each of these features is motivated in detail
elsewhere (Cassimatis 2005), but the following
is a summary of Polyscheme.

Each specialist in Polyscheme is based on its
own specialized computational mechanisms
and implements each of the common func-
tions. For example, an object-recognition spe-
cialist can be based on a neural network and
implement the common functions thus:

Forward inference. The input units to the net-
work represent the features of an object and the
output units represent the category of an ob-
ject. Forward inference happens when the prop-
agation of the activation of the input units
leads to new values of the output units.

Subgoaling. When asked for propositions whose
truth value might help determine the category
of an object, the specialist returns propositions
representing values of the input units.

Identity Matching. When, for object O, the spe-
cialist is asked for other objects that might be
identical to O, it determines O’s category, C,
through forward propagation, and returns all
objects it has classified as belonging to category
C in the past.

Representing counterfactual worlds. The specialist
makes inferences about a counterfactual world
in which an object has certain features by set-
ting the input units of its network to those fea-
tures even though the object does not necessar-
ily have those features in reality.

Specialists in Polyscheme communicate
through a focus of attention. Polyscheme in-
cludes a propositional language that all special-
ists use to communicate with each other. Al-
though they represent knowledge and make
inferences using their own specific data struc-
tures, specialists must be able to translate back
and forth into this language in order to inform
other specialists of their inferences and receive
knowledge from other specialists. The focus of
attention in Polyscheme is a proposition, and
at every time step specialists focus on the same
proposition. They do so in order to learn about
the beliefs of other specialists about a proposi-
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Figure 1. The Contrast between Modular Integration and Integration in Polyscheme.

tion to make sure they do not proceed with cer-
tain assumptions about a proposition when an-
other specialist might have reason to contra-
dict them. Cassimatis (2005) presents several
forms of evidence that suggest humans have a
similar focus of attention that is more general
than merely visual attention.

Through various attention control strategies
(described in Cassimatis [2002] and Cassimatis
et al. [2004]) Polyscheme implements reason-
ing and planning algorithms such as search,
stochastic simulation, means-ends analysis,
and logical deduction, through a sequence of
attention fixation. The execution of any algo-
rithm in Polyscheme is thus a set of attention
fixations. This enables Polyscheme to achieve
integration in two ways.

First, since very different algorithms can all
be reformulated in terms of sequences of atten-

Temporal Constraints

tion fixations, integrating these algorithms is as
easy as interleaving and combining the se-
quences that constitute their execution. For ex-
ample, imagine a task requiring production
rule firing and Bayesian network propagation.
Suppose Polyschemes sequence of attention
fixation in this task involves foci F1, F2, ..., F11.
Say production firing is implemented by foci
F1, F3, F6, F7, F8, and F9 and Bayesian network
propagation through F2, F3, F4, F5, F6, F7, F10,
and F11. Notice that the execution of both al-
gorithms is interleaved so that an inference
made in the middle of, say, production rule
matching can be used immediately in network
propagation.

Second, since every step (that is, attention
fixation) of these algorithms involves all the
specialists (by focusing their attention on the
same proposition), reasoning and planning are
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constantly integrated with perception and
knowledge in multiple forms of representation.
For example, if a logic theorem proving algo-
rithm makes a subgoal of finding whether P is
true, a perceptual specialist attached to a video
camera or a specialist encapsulating a relational
database can assert or deny P’s truth. Thus,
every step of reasoning and planning in Poly-
shceme is integrated with a wide array of infor-
mation and computation. This increased level
of integration is illustrated in figure 1. The left
side of the figure depicts a set of modules based
on different representations and algorithms
within a traditional modular system. Back-
tracking search is just one method encapsulat-
ed inside a module. The algorithms in the mod-
ules execute in parallel, communicating on
occasion. The right side of the figure depicts
backtracking search in Polyscheme. Backtrack-
ing search is implemented as sequences of at-
tention fixations, each of which involves the
representations and data structures in each of
the specialists. In this way, every step of search
is automatically and continually integrated
with multiple data structures and algorithms.

Polyscheme’s ability to integrate multiple
forms of reasoning and planning with percep-
tion and diverse sources of information has
been demonstrated in a robotic framework
(Cassimatis et al. 2004) for addressing the ten-
sion between the apparent rigidity and inflexi-
bility of the sense-plan-act loop of traditional
planning algorithms and the autonomy and re-
activity required of real-world robots. This
framework implemented a search-based mo-
tion planner, a truth maintenance system, and
a physical world simulator as attention control
strategies. Since every step of these algorithms
was an attention fixation that involved in part
information from a video camera, reasoning
and problem solving were constantly informed
by perceived changes in or new information
about the robot’s environment. The quickness
of each attention fixation and its close connec-
tion with the environment gave the robot the
robustness of reactive control systems. At the
same time, the ability of the attention fixations
to implement algorithms combined the ability
to reason and formulate plans while preserving
the robustness normally associated with purely
reactive systems.

The integration demonstrated in this work is
enabled by the recognition that inference algo-
rithms originally based on very different com-
putational formalisms can be executed as se-
quences of a small set of common functions
(according to the CFP) that can be easily inter-
leaved and that these common functions can
be implemented using many different algo-

rithms (according to the MIP) that can thus po-
tentially contribute to every step of every infer-
ence. As work with Polyscheme illustrates,
these approaches enable great progress in solv-
ing the integration problems associated with
implementing a cognitive substrate. However,
a question remains: does this work generalize,
or do the CFP, MIP, and Polyscheme address the
procedural profusion problem only in the few
domains they have been designed for? The
next section addresses this issue.

Leveraging a Cognitive Substrate

In order to confirm that a computational sys-
tem can act as a cognitive substrate, it is neces-
sary to show that its mechanisms can support
intelligent behavior in many domains. This
section describes how a substrate based on a
Polyscheme model of human physical reason-
ing can be used to construct a natural language
parser. This demonstrates that physical reason-
ing mechanisms can serve as a cognitive sub-
strate and that the computational principles
underlying Polyscheme address the integration
and profusion problems involved in creating a
substrate. Also, since physical theory (with no-
tions such as force, mass, collision, and move-
ment) is apparently so different from syntactic
theory (with notions such as empty categories,
c-command, and binding principles), demon-
strating that the same computational mecha-
nisms can underlie reasoning in both of these
domains makes it at least more plausible that
intelligent systems in a great many superficially
diverse domains can be created with a cogni-
tive substrate.

The key to this work is to recognize that the
structures of grammar and of naive physics ap-
pear more similar when a verbal utterance is
conceived as an event that is composed of a se-
quence of word utterance subevents. Like phys-
ical events, verbal events belong to categories,
combine to form larger verbal events, and are
ordered in relation to other verbal events ac-
cording to lawful regularities. This section ex-
amines these dualities in detail and shows that
many grammatical structures have analogues
to nonlinguistic cognitive structures.

Notation

In order to explain the mapping between syn-
tactic structure and cognitive structures used to
represent the physical world, it will be helpful
to use a formal notation for representing phys-
ical events. This article uses a notion based on
the propositions used in Cassimatis (2002) to
present problems to his model of physical rea-
soning. Although there is no claim that the no-



tation resembles the mind’s representations for
syntactic or physical structure, the next section
will show how to use this formalism to present
sentences to a model of physical reasoning so
that the model can use its own representations
and processes to infer the syntactic structure of
sentences.

In this formalism, events, objects, and places
have names. Predicates describe attributes on
and relations among named entities. For exam-
ple, an event in which an object, x, moves from
p1 to p2 during the temporal interval, , is indi-
cated with the following propositions: Catego-
ry(e, MotionEvent), Agent(e, x), Origin(e, p1), Des-
tination(e, p2), Occurs(e, t). Intervals are ordered
using Allan’s (1983) temporal relations. For ex-
ample, Before(t1,t2) indicates that t1 finishes be-
fore t2 begins and Meets(t1, t2) indicates that t1
ends precisely when 2 begins. Category hierar-
chies are described using subcategory relation-
ships, for example, Subcategory(Fly, Motion-
Event). PartOf(el, e2) indicates that event el is
part of event e2. That two names for events, ob-
jects, or places refer to the same object is indi-
cated using an identity relationship. For exam-
ple, Same(o1, 02) indicates that “01” and “02”
name the same object. Finally, regularities be-
tween physical events can be expressed using
material implication. For example, that an un-
supported object falls is indicated by:

Location(o, p1, t1) + Below(p2, p1) + Empty(p2, t1)

Category(e, MotionEvent) + Origin(e, p1) + Desti-
nation(e, p2) + Occurs(e, t2) + Meets(t1, t2).
With this background, it is now possible to de-
scribe several dualities between syntactic and
physical structure.

Utterances Are Events

The philosophical tradition of “speech act the-
ory” holds that linguistic utterances are actions
used to achieve goals. In this way, words are
similar to other nonlinguistic actions such as
gesturing or tool use. Other people’s actions are
events we must perceive in order to interpret
their intent. Both verbal and nonverbal events
occur over temporal intervals. Like nonverbal
events, verbal utterances can be executed with
various manners (hastily, carefully, loudly, soft-
ly). Thus, the same concepts used to describe
physical events can be used to describe verbal
utterances. For example, using the present no-
tation, the utterance of the word “dog” at time,
t, may be represented, Category(e, dog-utterance),
Occurs(e, t).

Word Order Is Temporal Order

The temporal order of a set of physical events
has important consequences for their ultimate
result. For example, pulling a gun’s trigger be-

fore loading it results in a much different event
from pulling its trigger after loading it. This is
also a fundamental feature of grammar: the re-
sult (in terms of its effect on the listener) of ut-
tering “The dog”, uttering “bit” and then utter-
ing “John” is much different from the result of
uttering “John”, “bit”, and then “the dog”. In
our notation, “John bit the dog” is represented
as a sequence of utterance events:

Category(el, JohnUtterance), Occurs(el, t1)

Category(e2, BitUtterance), Occurs(e2, t2)
Meets(t1, t2)

Physical and Linguistic Events both
Belong to Categories Organized Hier-
archically

Word and phrase categories are an important
component of almost every serious syntactic
theory. Categories are also an essential part of
most every other domain of cognition. The
previous subsection demonstrated that the
same Category predicate that represents the cat-
egory of a physical event can represent the cat-
egory of a word or phrase utterance. Likewise,
just as physical categories exist in hierarchies
(for example, Subcategory(RunningEvent, Motion-
Event), so do verbal and phrasal categories (for
example, Subcategory(CommonNoun, Noun) and
Subcategory(TransitiveVerbPhrase, VerbPhrase)).
Just as the category of a physical event deter-
mines which other events it occurs with (for
example, a gun-firing event tends to be preced-
ed by a trigger-pulling event), so does the cate-
gory of a word or phrase determine the distrib-
ution of words and phrases (for example,
transitive verbs are often followed by noun
phrases).

Constituency Is a Parthood Relation

Physical events combine into larger events,
which themselves can combine into even larg-
er events. Word utterance events combine into
phrase utterance events, which combine into
larger phrase utterance events. Parthood rela-
tions are thus a feature of both physical and
verbal events. Predicates for representing phys-
ical event parthood relations can capture
phrasal constituency. For example, the noun
phrase “the dog” can be represented thus: Cat-
egory(e, CommonNounPhrase), Category(el, De-
terminer), Occurs(el, t1), Category(e2, Common-
Noun), Occurs(e2, t2), PartOf{el, e), PartOf{(e2, e),
Meets(el, e2).

The same notation for expressing physical
regularities can be used to represent phrase
structure rules and constraints. For example, a
rule for a transitive verb’s arguments can be ex-
pressed thus:
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Category(verb, TransitiveVerb) + Occurs(verb, t-
verb)

Exists(object) + Category(object, NounPhrase) +
Occurs(object, t-object) + Before(t-verb, t-ob-
ject).

Coreference and Binding Are
Object-Identity Relationships.

Coreference and binding are perhaps the most
obvious identity relationships in language.
Consider the following sentence, where “the
dog” refers to an object, d, “the cat” refers to an
object, ¢, and “it” refers to an object, i:

The dog chased the cat through the park where

it lives.

The reference to “it” is ambiguous. It can refer
to the dog (Same(i, d)), to the cat (Same(, c)) or
to some other object in the conversation or the
environment (Same(i, ?)). In each case, the
coreference is just a special kind of identity re-
lationship. Identity is an extremely widespread
and important relationship in everyday physi-
cal reasoning. When we lose visual contact
with an object because we turn our gaze or be-
cause it is occluded and then see a similar ob-
ject, we must decide whether the sightings are
of the same object.

Phrase Attachment Is an Event
Identity Relationship.

The occurrence of a physical event often im-
plies the occurrence of another physical event.
For example, when an object resting on a shelf
falls to the floor (event f), there must have been
an event (p) that pushed the object off the
shelf. One can infer the pushing event from the
falling event even if the pushing event is not
visible. Later, after observing marks left by a
cat’s claws on the shelf, we can infer a cat walk-
ing event (w). If this cat walking event occurred
near the original location of the object that fell,
then the cat walking event might be identical to
the pushing event, that is, Same(p, w).

Event identity is an important feature of
grammar as well. For example, the existence of
a prepositional phrase utterance within a sen-
tence utterance implies the existence of a noun
or verb utterance that the prepositional phrase
is an argument or adjunct of. For example, in
the sentence “John saw the man with the tele-
scope”, the “with the telescope” utterance
event implies the existence of an utterance
event, pp-head, which takes “with the tele-
scope” as an argument or adjunct. In this case,
pp-head might be the “John” or “man” utter-
ance event. More formally, either one of the
following propositions might be true:
Same(“John”, pp-head) or Same(“the man”, pp-

head). Thus phrase attachment and attachment
ambiguity are instances of event identity and
uncertainty about event identity.

Dualities Demonstrate Power of Substrate
Hypothesis. These dualities between physical
and linguistic structure have enabled the con-
struction of a natural language syntactic parser
(Cassimatis 2004). The parser takes a sentence
represented using the physical event language
described above and infers propositions that
correspond to a parse of a sentence. Figure 2 il-
lustrates such a parse.

The dualities and the parser they enable il-
lustrate several of the benefits of the cognitive
substrate hypothesis. First, once you have an
implementation of a cognitive substrate, then
solving other Al problems becomes easier. It
took very little extra work to design a parser
once the structural dualities between syntax
and physical law were found. No new algo-
rithms need to be designed, thus making the
procedural profusion problem less severe. Sec-
ond, that the substrate used here was a model
of physical reasoning suggests that the domain
can serve as guidance in identifying the con-
tents of a cognitive substrate. Finally, since the
laws of physical motion and syntactic theory
are so superficially different, finding a
productive mapping between these two do-
mains makes it more plausible that such map-
pings of a cognitive substrate onto many other
domains can be found.

Conclusions

The work described in this article demonstrates
the following benefits of the cognitive sub-
strate approach:

First, creating intelligent systems for new do-
mains is accelerated. The small amount of work
needed to create a syntactic parser from a phys-
ical reasoner demonstrates that the substrate
can make it significantly easier to create an in-
telligent system for new domains.

Second, integration among domains. An intel-
ligent system that must integrate reasoning be-
tween two domains will be easier to construct if
reasoners based on a substrate in those two do-
mains already exist, since they will be both based
on the same data structures and algorithms.

Third, the problem of achieving human-level
Al is reduced and simplified. Instead of needing
enormous databases of knowledge and hun-
dreds or thousands of algorithms to achieve hu-
man-level intelligence, researchers can focus on
solving the problems of human-level Al for a
relatively small (but still difficult) set of prob-
lems knowing that other domains can be ad-
dressed by mapping them onto a substrate.
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“bit-subject-utterance”)

“bit”-object-utterance

“bought”-object-utterance
(i.e., “trace” or “gap”)

Figure 2. The Syntactic Structure of a Sentence Represented Using Concepts from Infant Physical Reasoning.

As this research program unfolds and a more
comprehensive and powerful cognitive sub-
strate is implemented it should in turn take less
work to adapt a cognitive substrate to ever
more domains and even to automate this
process. This would be a significant advance to-
ward achieving human-level intelligence in our
lifetime.
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