
■ We are developing Companion Cognitive Systems,
a new kind of software that can be effectively treat-
ed as a collaborator. Aside from their potential util-
ity, we believe this effort is important because it fo-
cuses on three key problems that must be solved to
achieve human-level AI: Robust reasoning and
learning, interactivity, and longevity. We describe
the ideas we are using to develop the first architec-
ture for Companions: analogical processing,
grounded in cognitive science for reasoning and
learning, sketching and concept maps to improve
interactivity, and a distributed agent architecture
hosted on a cluster to achieve performance and
longevity. We outline some results on learning by
accumulating examples derived from our first ex-
perimental version.

We believe that this is an exciting time
for research in artificial intelligence
and cognitive science. What is

known about cognition has grown significant-
ly, and communication between fields in cog-
nitive science has catalyzed all of them. Large-
scale representational resources, such as
WordNet, FrameNet, and Cyc, have become
available so that one can build large knowledge
systems without starting from scratch. Central
processing units (CPUs) have become fast
enough and memories large enough to tackle

systems that could only be dreamed about pre-
viously. The confluence of these three factors
suggest to us that the time is right for more am-
bitious projects, building integrated systems us-
ing the best available results from cognitive sci-
ence. 

The effort we have embarked on to create
Companion Cognitive Systems represents one
such project. Let us start with our practical
goals for Companions. The problems we face
are growing more complex, but we are not be-
coming any smarter. Software can help, but of-
ten it becomes part of the problem by adding
new layers of complexity. We need to bring
software closer to us, improving conceptual
bandwidth and having it adapt to us, rather
than the other way around. Our vision is this:
Companions will be software aide-de-camps,
collaborators with their users. Companions will
help their users work through complex argu-
ments, automatically retrieving relevant prece-
dents, providing cautions and counter-indica-
tions as well as supporting evidence. Com-
panions will be capable of effective operation
for weeks and months at a time, assimilating
new information, generating and maintaining
scenarios and predictions. Companions will
continually adapt and learn, about the do-
mains they are working in, their users, and
themselves. 

It is useful to distinguish the Companions vi-
sion from the Defense Advanced Research Pro-
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based on Gentner’s structure-mapping theory
of analogy and similarity (see, for example,
Gentner [1983]), a psychological account with
considerable evidence behind it (compare with
Gentner and Markman 1997).

These simulations have been successfully
used to model a large number of psychological
findings, and both SME and SEQL have been
used to make new psychological predictions
which, in turn, have been borne out in experi-
ments with human subjects (for example,
Kuehne, Forbus, and Gentner [2000]). SME and
MAC/FAC have already been used in perfor-
mance systems, involving several different
large knowledge bases (for example, Forbus,
Mostek, and Ferguson [2002]; Mostek, Forbus,
and Meverden [2000]). One of the key hy-
potheses we are testing in Companions is the
idea that most learning and reasoning can be
handled through analogical processing. In oth-
er words, it’s structure-mapping all the way
down. 

Longevity and Performance
Companions will require a combination of in-
tense interaction, deep reasoning, and contin-
uous learning. We plan to achieve this by using
a distributed agent architecture, hosted on clus-
ter computers, to provide task-level parallelism.
The particular distributed agent architecture we
are using evolved from our RoboTA distributed
coaching system (Forbus and Kuehne 1998),
which uses KQML (Labrou and Finin 1997) as a
communication medium between agents. A
Companion is made up of a collection of
agents, spread across the CPUs of a cluster. We
are assuming ultimately at least 10 CPUs per
Companion, so that, for instance, analogical
retrieval of relevant precedents proceeds entire-
ly in parallel with other reasoning processes,
such as the high-level visual processing in-
volved in understanding a user’s sketched in-
put.

Robustness will be enhanced by making the
agents “hot-swappable,” that is, the logs main-
tained by the agents in operation will enable
another copy to pick up (at a very coarse gran-
ularity) where a previous copy left off. This will
enable an agent whose memory is clogging up
(or crashes) to be taken offline, so that its re-
sults can be assimilated while another agent
carries on with the task. This scheme requires
replicating the knowledge base and case li-
braries as necessary to minimize communica-
tion overhead, and broadcasting working
memory state incrementally, using a publish/
subscribe model, as well as disk logging. These
logs will also be used for adaptation and knowl-
edge reformulation. Just as a dolphin only

jects Agency (DARPA) Perceptive Agents that
Learn (PAL) Program. While similar in many re-
spects, our ambitions are somewhat more mod-
est. PALs are intended to be like Radar O’Riley:
socially aware, for example, and capable of par-
ticipating in multiperson spoken dialogues.
Companions are intended to be, for lack of a
better term, nerd sidekicks—assistants who are
heavily focused on a couple of areas of interest
to you, and nothing else. This lets us factor out
several problems, including natural language
understanding, low-level vision, and robotics.
Companions are, in essence, the classic “mind
in a box” model of an artificial intelligence. 

Even within these limitations, creating Com-
panions is forcing us to tackle several problems
that are crucial for building human-level AIs: 

Robust reasoning and learning. Companions
will have to learn about their domains, their
users, and themselves.

Longevity. Companions will need to operate
continuously over weeks and months at a time. 

Interactivity. Companions must be capable of
high-bandwidth interaction with their human
partners. This includes being capable of taking
advice.

Our Approach
The following are the ideas we are using to cre-
ate Companions:

Robust Reasoning and Learning
Our working hypothesis is that the flexibility
and breadth of human commonsense reason-
ing and learning arises from analogical reason-
ing and learning from experience (Forbus and
Gentner 1997). Within-domain analogies pro-
vide rapid, robust predictions. Analogies be-
tween domains can yield deep new insights
and facilitate learning from instruction. First-
principles reasoning emerges slowly, as general-
izations created from examples incrementally
through analogical comparisons. This hypoth-
esis suggests a very different approach to build-
ing robust cognitive software than is typically
proposed. Reasoning and learning by analogy
are central, rather than exotic operations un-
dertaken only rarely. Accumulating and refin-
ing examples becomes central to building sys-
tems that can learn and adapt. Our cognitive
simulations of analogical processing (SME for
analogical matching [Falkenhainer, Forbus,
and Gentner 1989; Forbus, Ferguson, and Gen-
tner 1994], MAC/FAC for similarity-based re-
trieval [Forbus, Gentner, and Law 1995], and
SEQL for generalization [Kuehne, Genter, and
Forbus 2000]) form the core components for
learning and reasoning. These components are
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sleeps with half of its brain at a time, our Com-
panions will use several CPUs to test proposed
changes by “rehearsing” them with logged ac-
tivities, to evaluate the quality and perfor-
mance payoffs of proposed learned knowledge
and skills.

Interactivity
People communicate with each other in a vari-
ety of ways. Natural language is certainly one
method, but we also sketch, and people who
communicate with each other frequently
evolve their own shared signals for communi-
cation. We are not tackling natural language in
this project, since by itself it harbors several
equally ambitious projects in it. Instead, we are
building on our work on sketch understanding
(Forbus and Usher 2002; Forbus, Usher, and
Chapman 2003) to provide high bandwidth in-
teraction. Our nuSketch approach is uniquely
suited for Companions, since it does not re-
strict us to narrow domains.

Not everything can be sketched, of course.
For other kinds of interactions, we are building
on the idea of concept maps (Novak and
Gowin 1984). Our VModel qualitative model-
ing system, which uses concept maps founded
on semantics from qualitative process (QP) the-
ory, has been successfully used by middle-
school students in classroom experiments in
the Chicago Public School system (Forbus et al.
2004). This experience, along with SRI’s SHAK-
EN system (Thomere et al. 2002) and the UWF
work on concept maps (Cañas et al. 1995),
leads us to believe that we can make concept
map systems that professionals will find useful.
Specifically, we have developed a new kind of
concept map, relational concept maps. A rela-
tional concept map supports statements in-
volving n-ary relationships, instead of just bi-
nary relationships as in traditional concept
maps. That is, statement nodes are themselves
reified, and the only links in a relational con-
cept map are argument links, tying the node
for a statement to the nodes representing its ar-
guments. This increased expressive power pro-
vides a useful complement to our sketching in-
terfaces.

Modeling in Companions
We expect that several kinds of models will
play important integrative roles in Compan-
ions. Models will be used to mediate and coor-
dinate between interaction modalities, summa-
rize internal state, and facilitate user
interaction. For a Companion to provide un-
derstandable explanations and persuasive argu-
ments or to behave robustly, we believe it must
have concise, accessible representations of its

current state, beliefs about the user, and dy-
namic context. We see four kinds of specialized
models as being crucial: (1) Situation and do-
main models capture the current problem and
relevant knowledge about it. (2) Task and dia-
logue models describe the shared task and where
the human/computer partnership is in working
on it. (3) User models capture the idiosyncratic
preferences, habits, and utilities of the human
partner(s). (4) Self-models provide the Compan-
ion’s own understanding of its operations, abil-
ities, and preferences (Cox 2005, McDermott
2001). Exploring how systems can learn, adapt,
and exploit these models over the long term to
support interaction and problem solving is one
of the major goals of this project. We discuss
each kind of model briefly in turn.

Situation and Domain Models. Our experi-
mental domains, described later, leverage our
earlier research on qualitative process theory
(Forbus 1984), qualitative mechanics (Kim
1997, Nielsen 1988), compositional modeling
(Erol, Nau, and Hendler 1994), and sketch un-
derstanding. We are also drawing upon a subset
of the Cyc KB contents, including much of the
knowledge associated with the upper ontology
and the DARPA-generated materials about mil-
itary topics and international relations generat-
ed in the HPKB, CPOF, and RKF programs. This
knowledge forms the starting endowment for
Companions. 

Task and Dialogue Models. Our task models
are expressed as HTN’s (Erol, Nau, and Hendler
1994). For dialogue models, we are using script
representations from ResearchCyc, which are
being extended with ideas from Allen, Fergu-
son, and Stent (2001). We are developing new
models for knowledge capture and joint prob-
lem-solving dialogues, including drill-down
and advice-taking. 

User Models. By keeping track of decisions and
choices made by the user(s) in the logs, a statis-
tical model of user preferences and conven-
tions will be built up (Horvitz et al 2003 2004).
Some of this information will clearly be about
a specific user, such as preferred order of tack-
ling subproblems. However, some of it will be
more widely shared conventions (such as when
drawing a wheelbarrow, the glyph representing
the axle of the wheel provides a connection
that leaves the wheel free to rotate), as we dis-
cuss later on. 

As a user interacts with a Companion, at
least one agent will be watching the interaction
with standing goals to acquire knowledge
about the user’s intent, satisfaction with re-
sults, and abstract patterns of interaction. It
will be fleshing out candidate task and prefer-
ence models to learn, for example, that when
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ring to objects and tasks across sessions. Identi-
fying the precursors to agent failure that can be
used to trigger hot-swapping (such as memory
becoming full) is also important. 

First-Cut Companion 
Architecture

The Companion architecture is very much a
work in progress. The first running version,
from summer of 2004, is illustrated in figure 1.
The Facilitator orchestrates the operation of the
other agents. Interactions with a Companion
are divided into sessions, with the reasoning
work being carried out in the Session Reasoner.
The Analogical Tickler, which uses MAC/FAC,
tracks the current situation and maintains a
short list of remindings that is available at any

the user is characterizing a situation, they typ-
ically want both positive and negative prece-
dents, though perhaps not simultaneously.

Self Models. Our starting point for generating
self-models are the machine-readable logs of
user interactions and internal operations, de-
scribed previously. In addition to providing
checkpoints/rollback for KB contents and hot-
swapping, they will serve as grist for reflection
and for learning experiments. Our idea is to con-
struct episodic memories out of summaries of
these logs, which could then be consulted for
self-predictive purposes. Some kinds of knowl-
edge that it should glean from these logs include
expectations about the difficulty of the current
task and how long it might take, whether or not
it is thrashing (obviously not computable with
100 percent accuracy), and a context for refer-
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time. Each of these agents is running on its
own node in the cluster. A number of agents al-
so run on the user’s machine. The Session Man-
ager controls the startup and shutdown of
agents on the user’s machine; it also contacts
the Facilitator to get the appropriate agents on
the cluster started when a new session begins.
A nuSketch system for sketching is wrapped as
an agent as well, with the choice of nuSketch
system being determined by the domain of the
current session. As noted previously, the rela-
tional concept map system enables the entry of
information that is best communicated by
means other than sketching, for example,
causal laws.

This configuration did not include several
features that we think are crucial for a full
Companion, some of which have subsequently
been added. (We discuss the current state of the
system later.) We have focused on this initial
set of capabilities because they are the mini-
mum that enable us to experiment with do-
main learning by accumulating examples. We
have now conducted a number of experiments
using this configuration, which has given us a
baseline analogical reasoning model that we
can use to judge the effectiveness of additional
components. We mention some of these exper-
iments next.

Experimental Domains
To ensure generality, we are working from the
beginning in several domains. We have used
two criteria in selecting these domains: (1)
Sources of complexity. They must be broad, in
contrast with the narrow domains in which
systems operate comfortably now. (2) Clear
progress metrics. Reasonably objective methods
of measuring performance are important.
When an externally validated performance
standard is available, that is even better. We dis-
cuss each domain in turn. 

Domain 1: Everyday 
Physical Reasoning
No existing AI system handles the breadth and
flexibility of the kinds of reasoning that people
do about the everyday physical world around
them. While progress in qualitative reasoning
has provided a powerful collection of represen-
tations to work with (Kuipers 1994), the rea-
soning techniques developed by that commu-
nity, including ourselves, do not appear to be
psychologically plausible (Forbus and Gentner
1997). The motto of “structure-mapping all the
way down” for Companions encourages an ap-
proach that we think will be more plausible:
within-domain analogical reasoning. 

To provide a clear progress metric, we are
starting with the kinds of problems found on
the Bennett Mechanical Comprehension test.
Figure 2 is an example of the kind of problem
that one sees on this exam: Which way will it
be easier to carry the rock in the wheelbarrow?
(If equal, mark C). The Bennett Mechanical
Comprehension test has been administered for
more than 50 years, and is used to evaluate
candidates for jobs involving mechanical skills.
It is also commonly used by cognitive psychol-
ogists as an independent means to measure
spatial abilities in experiments. It is an ex-
tremely broad test, covering topics such as sta-
tics, dynamics, heat flow, and electricity. How-
ever, the reasoning is mostly qualitative in
nature, using comparative analysis (Weld
1990). Each of the two forms of the Bennett
Mechanical Comprehension test has 68 ques-
tions. 

In working with these problems, we used our
sketching Knowledge Entry Associate (sKEA) (For-
bus and Usher 2002) as part of the Compan-
ion’s interface. We are sketching the pairs of sit-
uations in two dimensions, which is sufficient
for all but a handful of the problems. A formal
language is used to express the text of the ques-
tion. The material to be learned includes (1) vi-
sual/conceptual mappings and conventions for
depicting everyday objects, (2) modeling as-
sumptions (for example, how parts of everyday
objects map into qualitative mechanics for-
malisms), and (3) causal models (for example,
that tall things with narrow bases tend to be
less stable). 

We have run two series of experiments so far.
The first (Forbus, Usher, and Tomai 2005) has
focused on learning visual/conceptual map-
pings (for example, the wheel/axle relationship
in a wheelbarrow being a rotational connec-
tion). Given a corpus of sketches created by
several users, can the system suggest conceptu-
al relationships that might hold between ele-
ments of a sketch by analogy with prior sketch-
es? The answer is yes, and with quite reason-
able results—the system provides suggestions
for roughly half of the visual/conceptual rela-
tionship questions that arose, with its accuracy
ranging from 87 percent when the corpus was
highly focused on a set of tightly related phe-
nomena, to 57 percent, when a smaller corpus
with more wide-ranging phenomena was
used.1

The second set of experiments (Klenk et al.
2005) explored whether accumulating exam-
ples of physical principles could enable a sys-
tem to solve Bennett Mechanical Comprehen-
sion test problems. Sketches illustrating
physical principles were generated by students
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ficult, we have examples drawn by a number of
different people, and someone else draws the
sketches representing the problems. For in-
stance, figure 4 illustrates one problem. To solve
this problem, the system retrieves analogs for
the two systems being compared and uses them
to create causal models for them. The newly
elaborated problem situations are then com-
pared with each other by analogy, using the cor-
respondences of this analogy to provide the
framework for doing a differential qualitative
analysis.2 Figure 5 illustrates the two situations
with annotations constructed by means of ana-
logical reasoning from the examples. The causal
model determines that, to find stability, one
needs to look at the distance from the cab to the
load. Since this distance is defined visually, sKEA
calculates which of these distances is larger
(through the analogically inferred annotations).
This information plus the causal model enables

working from sentences describing a scenario
(for example, “a crane is lifting a load”). These
sketches include modeling assumptions and
causal models. This additional information is
entered in several ways. The visual/conceptual
mapping interface provides information about
relationships between items in the sketch; for
example, the crane’s wheels are directly above
the ground. Annotations on the sketch are used
to specify visual quantities, such as the distance
from the load to the cab, as illustrated by the
red line in figure 3. Finally, the relational con-
cept map is used to express other kinds of state-
ments, such as causal models; for example, the
stability of the crane decreases as the distance
from the cab to the load increases. 

As already noted, the Bennett test is extreme-
ly difficult. We have focused on problems in-
volving forces, selecting a subset of 13 problems
to work with initially. To make things more dif-
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the system to conclude that the crane on the left
will be less stable. So far, the best set of sketches
yields correct answers of 10 out of 13 correct (77
percent), while the worst set of sketches yields
only 2 correct answers (15 percent). Examining
the failures is instructive. Most failures are due
to people sometimes drawing systems very dif-
ferently, such as leaving out parts or describing
parts at different levels of detail within the
knowledge base. This leads to some retrieval
problems, but most of the problems arise in
mapping. The ability to do rerepresentation
(Yan, Forbus, and Gentner 2003), combined
with a learned theory of depiction (such as
when it is okay to leave parts out or include
them), could lead to significant improvement. 

We find both sets of experiments very en-

couraging. First, performance is already re-
spectable, even with the simple baseline ana-
logical learning model. Second, performance is
not at ceiling; indeed, there is ample room for
improvement. This means we can measure
how well extensions to this model improve
performance, such as using SEQL for general-
ization and using rerepresentation.

In addition to rerunning these experiments
with extended analogical reasoning capabili-
ties, we also are going to extend the library of
examples and phenomena covered to attempt
to solve the entire Bennett test. Once the sys-
tem has learned enough to do well on the exam
form we have access to, we will test it with a
second form of the exam that has been se-
questered, as one gauge of breadth. Another
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(that is, how might you go about carrying out
your mission?). 

We have obtained a corpus of TDGs courtesy
of the USMC Gazette containing both a set of
problems and several solutions to each prob-
lem. We encoded them using nuSketch Battle-
space (Forbus, Usher, and Chapman 2003), our
other sketch understanding system, as a com-
ponent in the Companion interface. We per-
formed a set of learning experiments to mea-
sure how effectively a Companion can
incrementally acquire and apply new cases in
such a complex and open domain. Unlike the
everyday physical reasoning domain, evaluat-
ing learning and performance in tactical deci-
sion games is much less clear cut. We ultimate-
ly chose to compare performance against
expert solutions, and to track improvement in
that performance as a function of retrieval
rank, in order to simulate the incremental ac-
cumulation of cases. 

The first experiments exercised the Analog-
ical Tickler to measure how accurately it could
return precedents from a library of 16 cases,

kind of experiment planned is determining
minimal sets of cases that suffice to give a par-
ticular level of performance on the exam, with
and without generalization. 

Domain 2: Tactical Decision Games
Tactical decision games (TDGs) are scenarios
used by military personnel to hone their com-
mand skills (Schmitt 1994). A scenario is pro-
vided in a page or two of text describing the sit-
uation, accompanied by a sketch map
illustrating the terrain and what is known
about force layouts (figure 6). These scenarios
are quite complex. Typically several answers are
equally reasonable, given different assump-
tions about what the enemy is doing. In keep-
ing with the aide-de-camp nature of Compan-
ions, we are not attempting to solve TDGs, but
instead to provide several kinds of advice about
the scenarios they embody. These include esti-
mating enemy intent (that is, what are the bad
guys up to?), identifying risks (that is, how
might they prevent you from accomplishing
your mission?), and identifying opportunities
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with respect to structural similarity and prob-
lem-solving performance (figure 7). These cas-
es are reasonably large: 755 propositions on
average, with the smallest being 345 and the
largest being 1,233. We found that the tickler
performed well, returning precedents within a
few seconds and with an average error rate of
12 percent with respect to the best possible
structural match. The next experiments tested
reasoning and learning by proposing individ-
ual task assignments, an important compo-
nent of solving a tactical decision game. We
evaluated the quality of these suggestions by
comparing them to tasks in the expert’s solu-
tions to the games, assigning credit based on
similarity of the task type (for example, am-
bush, block, and so on), the target or object
acted on, the unit assigned to perform the
task, and the location or path followed in the
task. Average performance on 12 problems im-
proved 30 percent between solving from a
structurally poor precedent to solving from
the best of 16 precedents. As cases were added,
the learning trend showed gradual improve-

ment, though not perfectly monotonic. We
find this encouraging because this simple
learning technique is likely to be useful for
self- and user-modeling, which are also do-
mains for which there is no single correct an-
swer. 

Domain 3: FreeCiv
To carry on further with tactical decision games
would require hiring military experts to evaluate
results, and making the system friendly enough
for them to work with for entering new detailed
cases. While there is some evidence that this can
be done (Pool et al. 2003; Rasch, Kott, and For-
bus 2002), it would be a distraction. Thus the
difficulty of evaluating results in tactical deci-
sion games has prompted us to add a third do-
main. We are currently using the strategy game
FreeCiv as a testbed for Companion experi-
ments. FreeCiv is an open-source version of Civ-
ilization 2. FreeCiv contains problems that are
analogous to military tactical and strategic prob-
lems, but also involves economic decisions,
diplomacy, and many other aspects that make it
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rather than representing hypotheses about hu-
man cognition.

There are a number of competing simula-
tions of analogical matching, some of which al-
so incorporate retrieval and representation
construction. The connectionist models (for
example, Eliasmith and Thagard [2001], Hum-
mel and Holyoak [1997], and Larkey and Love
[2003]) focus on neural plausibility, but cannot
handle representations of the size used in this
project, which casts doubt on their ultimate
utility as psychological models. Other simula-
tions that focus on representation construction
(French [1995]; Mitchell [1993]) use domain-
specific matching algorithms, unlike our use of
domain-independent cognitive simulations.
Simulations of analogy in problem solving also
tend to use special-purpose matchers and re-
trieval mechanisms (for example, VanLehn and
Jones [1993]). None of these simulations has
been used as components in larger-scale sys-
tems, as SME and MAC/FAC have been. 

Some aspects of our work have been inspired
by Winston’s pioneering work on using prece-
dents in reasoning (Winston 1981) and re-
search on case-based reasoning (compare
Kolodner [1994]; Leake [1996]). CBR systems
tend to use domain-specific and task-specific
systems for matching and retrieval. One excep-
tion is PRODIGY-ANALOGY (Veloso and Car-
bonell 1993), which was the first broad-scale
use of analogy in a cognitive architecture.
Methods for identifying representations to im-
prove matching, such as those proposed by M.
Finlayson and P. Winston (Finlayson and Win-
ston 2004), could possibly be used to improve
Companion performance.

Future Work
We have made significant additions to the
Companions system over the last year. A
script-based Interaction manager, which cen-
tralizes interactions with the user for model-
ing purposes, has been installed. A first-cut
version of the Executive, which monitors
progress in the Session Reasoner and decides
what should be done in response to user inter-
actions and expectations, has also been in-
stalled. Similarly, we now have a SEQL agent
that uses an extended version of SEQL that in-
corporates probabilities in its generalizations.3

An HTN planner and execution monitor has
been added to several agents, to handle strate-
gies and tactics in FreeCiv, support plan recog-
nition, and run the Executive. We are also de-
composing our sketching software, so that the
user interaction remains on desktops or
tablets but the spatial reasoning will happen

a rich and complex arena. This will enable us to
test Companions on a broader range of tasks
and explore interactive learning over longer pe-
riods of time. An interactive game greatly sim-
plifies case acquisition, affords more opportuni-
ties for user modeling, and may even enable us
to experiment with cross-domain analogies. Our
starting point has been a client-side AI player de-
veloped earlier at Northwestern (Houk 2004),
which handles within-continent exploration
and city placement decisions.

Related Work
Other cognitive architectures have tended to
focus on skill learning (for example, Anderson
and Lebiere [1998]; Laird, Newell, and Rosen-
bloom [1987]). By contrast, our focus is on con-
ceptual understanding and learning. While the
Companions architecture is strongly motivated
by cognitive science results, particularly in its
use of analogical processing, other aspects of it
(such as the use of a distributed agent architec-
ture) are motivated by the desire to carry out
large-scale experiments on existing hardware,
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on a cluster. Our work as of this writing is fo-
cused on making these new capabilities work
harmoniously together, for even better do-
main learning, learning user- and self-models,
and increased autonomy.

The Companions project is still in its early
stages, and most of the work lies ahead. Even
so, it is already raising a variety of interesting
questions, including the following:

Self-awareness. What contents, level of detail,
and organization of logs are needed to support
hot-swapping of components and learning bet-
ter self-models?

Encoding. Some initial encoding of situations
is needed to “prime the pump” for analogical
retrieval. Learning good encoding strategies
seems to be a key learning problem: Psycholog-
ical results suggest that differences in encoding
can account for many novice/expert differ-
ences (Chi, Feltovich, and Glaser 1981), for ex-
ample.

Nonlinguistic multimodal communication. How
far can we go with the combination of sketch-

ing and concept maps? How do these modali-
ties impact dialogue models?

We hope that by answering these questions,
we can help bring the goal of achieving hu-
man-level AI closer.
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