A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence

August 31, 1955

John McCarthy, Marvin L. Minsky, Nathaniel Rochester, and Claude E. Shannon

We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

The following are some aspects of the artificial intelligence problem:

1. Automatic Computers
If a machine can do a job, then an automatic calculator can be programmed to simulate the machine. The speeds and memory capacities of present computers may be insufficient to simulate many of the higher functions of the human brain, but the major obstacle is not lack of machine capacity, but our inability to write programs taking full advantage of what we have.

2. How Can a Computer be Programmed to Use a Language
It may be speculated that a large part of human thought consists of manipulating words according to rules of reasoning and rules of conjecture. From this point of view, forming a generalization consists of admitting a new...
A Proposal for the

DARTMOUTH SUMMER RESEARCH PROJECT ON ARTIFICIAL INTELLIGENCE

June 17 - Aug. 16

We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.

The following are some aspects of the artificial intelligence problem:

1) Automatic Computers

If a machine can do a job, then an automatic calculator can be programmed to simulate the machine. The speeds and memory capacities of present computers may be insufficient to simulate many of the higher functions of the human brain, but the major obstacle is not lack of machine capacity, but our inability to write programs taking full advantage of what we have.

2) How Can a Computer be Programmed to Use a Language

It may be speculated that a large part of human thought consists of manipulating words according to rules of reasoning
word and some rules whereby sentences containing it imply and are implied by others. This idea has never been very precisely formulated nor have examples been worked out.

3. Neuron Nets
How can a set of (hypothetical) neurons be arranged so as to form concepts. Considerable theoretical and experimental work has been done on this problem by Uttley, Rashevsky and his group, Farley and Clark, Pitts and McCulloch, Minsky, Rochester and Holland, and others. Partial results have been obtained but the problem needs more theoretical work.

4. Theory of the Size of a Calculation
If we are given a well-defined problem (one for which it is possible to test mechanically whether or not a proposed answer is a valid answer) one way of solving it is to try all possible answers in order. This method is inefficient, and to exclude it one must have some criterion for efficiency of calculation. Some consideration will show that to get a measure of the efficiency of a calculation it is necessary to have on hand a method of measuring the complexity of calculating devices which in turn can be done if one has a theory of the complexity of functions. Some partial results on this problem have been obtained by Shannon, and also by McCarthy.

5. Self-Improvement
Probably a truly intelligent machine will carry out activities which may best be described as self-improvement. Some schemes for doing this have been proposed and are worth further study. It seems likely that this question can be studied abstractly as well.

6. Abstractions
A number of types of “abstraction” can be distinctly defined and several others less distinctly. A direct attempt to classify these and to describe machine methods of forming abstractions from sensory and other data would seem worthwhile.

7. Randomness and Creativity
A fairly attractive and yet clearly incomplete conjecture is that the difference between creative thinking and unimaginative competent thinking lies in the injection of a some randomness. The randomness must be guided by intuition to be efficient. In other words, the educated guess or the hunch include controlled randomness in otherwise orderly thinking.

The Proposers

Claude E. Shannon
Claude E. Shannon, Mathematician, Bell Telephone Laboratories. Shannon developed the statistical theory of information, the application of propositional calculus to switching circuits, and has results on the efficient synthesis of switching circuits, the design of machines that learn, cryptography, and the theory of Turing machines. He and J. McCarthy are coediting an *Annals of Mathematics* study on “The Theory of Automata”.

Marvin L. Minsky
Marvin L. Minsky, Harvard Junior Fellow in Mathematics and Neurology. Minsky has built a machine for simulating learning by nerve nets and has written a Princeton Ph.D thesis in mathematics entitled, “Neural Nets and the Brain Model Problem” which includes results in learning theory and the theory of random neural nets.

Nathaniel Rochester
Nathaniel Rochester, Manager of Information Research, IBM Corporation, Poughkeepsie, New York. Rochester was concerned with the development of radar for seven years and computing machinery for seven years. He and another engineer were jointly responsible for the design of the IBM Type 701 which is a large scale automatic computer in wide use today. He worked out some of the automatic programming techniques which are in wide use today and has been concerned with problems of how to get machines to do tasks which previously could be done only by people. He has also worked on simulation of nerve nets with particular emphasis on using computers to test theories in neurophysiology.

John McCarthy
John McCarthy, Assistant Professor of Mathematics, Dartmouth College. McCarthy has worked on a number of questions connected with the mathematical nature of the thought process including the theory of Turing machines, the speed of computers, the relation of a brain model to its environment, and the use of languages by machines. Some results of this work are included in the forthcoming “Annals Study” edited by Shannon and McCarthy. McCarthy’s other work has been in the field of differential equations.