
Networks have become ubiquitous.
Communication networks, finan-
cial transaction networks, net-

works describing physical systems, and so-
cial networks are all becoming increasing-
ly important in our day-to-day life. Often,
we are interested in models of how nodes
in the network influence each other (for
example, who infects whom in an epi-
demiological network), models for pre-
dicting an attribute of interest based on
observed attributes of objects in the net-
work (for example, predicting political af-
filiations based on online purchases and
interactions), or we might be interested in
identifying important nodes in the net-
work (for example, critical nodes in com-
munication networks). In most of these
scenarios, an important step in achieving
our final goal is classifying, or labeling, the
nodes in the network.

Given a network and a node v in the
network, there are three distinct types of
correlations that can be utilized to deter-
mine the classification or label of v: (1)
The correlations between the label of v
and the observed attributes of v. (2) The
correlations between the label of v and the
observed attributes (including observed la-
bels) of nodes in the neighborhood of v.
(3) The correlations between the label of v
and the unobserved labels of objects in the
neighborhood of v. Collective classification
refers to the combined classification of a
set of interlinked objects using all three
types of information just described.

Many applications produce data with
correlations between labels of intercon-

nected nodes. The simplest types of corre-
lation can be the result of homophily
(nodes with similar labels are more likely
to be linked) or the result of social influ-
ence (nodes that are linked are more like-
ly to have similar labels), but more com-
plex dependencies among labels often ex-
ist.

Within the machine-learning commu-
nity, classification is typically done on
each object independently, without tak-
ing into account any underlying network
that connects the nodes. Collective classi-
fication does not fit well into this setting.
For instance, in the web page classifica-
tion problem where web pages are inter-
connected with hyperlinks and the task is
to assign each web page with a label that
best indicates its topic, it is common to as-
sume that the labels on interconnected
web pages are correlated. Such intercon-
nections occur naturally in data from a va-
riety of applications such as bibliographic
data, email networks, and social networks.
Traditional classification techniques
would ignore the correlations represented
by these interconnections and would be
hard pressed to produce the classification
accuracies possible using a collective clas-
sification approach.

Although traditional exact probabilistic
inference algorithms such as variable
elimination and the junction tree algo-
rithm harbor the potential to perform col-
lective classification, they are practical on-
ly when the graph structure of the net-
work satisfies certain conditions. In
general, exact inference is known to be

Articles

FALL 2008 93Copyright © 2008, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Collective Classification
in Network Data

Prithviraj Sen, Galileo Namata, Mustafa Bilgic,
Lise Getoor, Brian Gallagher,

and Tina Eliassi-Rad

� Many real-world applications produce
networked data such as the worldwide
web (hypertext documents connected
through hyperlinks), social networks
(such as people connected by friendship
links), communication networks (com-
puters connected through communica-
tion links), and biological networks
(such as protein interaction networks).
A recent focus in machine-learning re-
search has been to extend traditional
machine-learning classification tech-
niques to classify nodes in such net-
works. In this article, we provide a brief
introduction to this area of research
and how it has progressed during the
past decade. We introduce four of the
most widely used inference algorithms
for classifying networked data and em-
pirically compare them on both syn-
thetic and real-world data.

NP-hard and there is no guarantee that real-world
network data satisfy the conditions that make ex-
act inference tractable for collective classification.
As a consequence, most of the research in collec-
tive classification has been devoted to the devel-
opment of approximate inference algorithms.

In this article we provide an introduction to four
popular approximate inference algorithms used for
collective classification: iterative classification,
Gibbs sampling, loopy belief propagation, and
mean-field relaxation labeling. We provide an out-
line of the basic algorithms by providing
pseudocode, explain how one could apply them to
real-world data, provide theoretical justifications
(if any exist), and discuss issues such as feature
construction and various heuristics that may lead
to improved classification accuracy. We provide
case studies, on both real-world and synthetic da-
ta, to demonstrate the strengths and weaknesses of
these approaches. All of these algorithms have a
rich history of development and application to
various problems relating to collective classifica-
tion, and we provide a brief discussion of this
when we examine related work. Collective classifi-
cation has been an active field of research for the
past decade, and as a result, there are numerous
other approximate inference algorithms besides
the four we describe here. We provide pointers to
these works in the related work section. In the next
section, we begin by introducing the required no-
tation and define the collective classification prob-
lem formally.

Collective Classification: Notation
and Problem Definition

Collective classification is a combinatorial prob-
lem, in which we are given a set of nodes, V =
{V1,….Vn} and a neighborhood function N, where
Ni � V \ {Vi}, which describes the underlying net-
work structure. Each node in V is a random vari-
able that can take a value from an appropriate do-
main. V is further divided into two sets of nodes:
X, the nodes for which we know the correct values
(observed variables), and Y, the nodes whose val-
ues need to be determined. Our task is to label the
nodes Yi � Y with one of a small number of labels,
L = {L1,…, Lq}; we will use the shorthand yi to de-
note the label of node Yi.

We explain the notation further using a web
page classification example, motivated by Craven
and colleagues (1998), that will serve as a running
example throughout the article. Figure 1 shows a
network of web pages with hyperlinks. In this ex-
ample, we will use the words (and phrases) con-
tained in the web pages as node attributes. For
brevity, we abbreviate the node attributes, thus,
“ST” stands for “student,” “CO” stands for
“course,” “CU” stands for “curriculum,” and “AI”

stands for “artificial intelligence.” Each web page
is indicated by a box, the corresponding topic of
the web page is indicated by an ellipse inside the
box, and each word in the web page is represented
using a circle inside the box. The observed random
variables X are shaded, whereas the unobserved
ones Y are not. We will assume that the domain of
the unobserved label variables, L, in this case, is a
set of two values: “student homepage” (abbreviat-
ed to “SH”) and “course homepage” (abbreviated
to “CH”). Figure 1 shows a network with two un-
observed variables (Y1 and Y2), which require pre-
diction, and seven observed variables (X3, X4, X5,
X6, X7, X8, and X9). Note that some of the observed
variables happen to be labels of web pages (X6 and
X8) for which we know the correct values. Thus,
from the figure, it is easy to see that the web page
W1, whose unobserved label variable is represent-
ed by Y1, contains two words “ST” and “CO” and
hyperlinks to web pages W2, W3, and W4.

As mentioned in the introduction, due to the
large body of work done in this area of research, we
have a number of approaches for collective classi-
fication. At a broad level of abstraction, these ap-
proaches can be divided into two distinct types,
one in which we use a collection of unnormalized
local conditional classifiers and one in which we
define the collective classification problem as one
global objective function to be optimized. We next
describe these two approaches, and for each ap-
proach, we describe two approximate inference al-
gorithms. For each topic of discussion, we will try
to mention the relevant references so that the in-
terested reader can follow up for a more in-depth
view.

Approximate Inference Algorithms
for Approaches Based on Local

Conditional Classifiers
Two of the most commonly used approximate in-
ference algorithms following this approach are the
iterative classification algorithm (ICA) (Neville and
Jensen 2000, Lu and Getoor 2003) and Gibbs sam-
pling (GS), and we next describe these in turn.

Iterative Classification
The basic premise behind ICA is extremely simple.
Consider a node Yi � Y whose value we need to de-
termine and suppose we know the values of all the
other nodes in its neighborhood Ni (note that Ni
can contain both observed and unobserved vari-
ables). Then, ICA assumes that we are given a local
classifier f that takes the values of Ni as arguments
and returns the best label value for Yi from the class
label set L. For local classifiers f that do not return
a class label but a goodness or likelihood value giv-
en a set of attribute values and a label, we simply
choose the label that corresponds to the maximum

Articles

94 AI MAGAZINE

goodness or likelihood value; in other words, we
replace f with argmaxl�Lf. This makes the local clas-
sifier f an extremely flexible function, and we can
use anything ranging from a decision tree to an
SVM in its place. Unfortunately, it is rare in prac-
tice that we know all values in Ni, which is why
we need to repeat the process iteratively, in each it-
eration, labeling each Yi using the current best es-
timates of Ni and the local classifier f, and contin-
uing to do so until the assignments to the labels
stabilize.

Most local classifiers are defined as functions
whose argument consists of a fixed-length vector
of attribute values. Going back to the example we
introduced in the last section in figure 1, assume
that we are looking at a snapshot of the state of the
labels after a few ICA iterations have elapsed and
the label values assigned to Y1 and Y2 in the last it-

eration are “SH” and “CH,” respectively. a′1 in fig-
ure 1 denotes one attempt to pool all values of N1
into one vector. Here, the first entry in a′1 that cor-
responds to the first neighbor of Y1 is a “1,” denot-
ing that Y1 has a neighbor that is the word “ST”
(X3), and so on. Unfortunately, this not only re-
quires putting an ordering on the neighbors, but
since Y1 and Y2 have a different number of neigh-
bors, this type of encoding results in a′1 consisting
of a different number of entries than a′2. Since the
local classifier can take only vectors of a fixed
length, this means we cannot use the same local
classifier to classify both a′1 and a′2.

A common approach to circumvent such a situ-
ation is to use an aggregation operator such as
count, mode, or prop. Figure 1 shows the two vectors
a1 and a2 that are obtained by applying the count
operator to a′1 and a′2, respectively. The count op-

Articles

FALL 2008 95

ST CO

CH

AI

X6

X7

X3 X4

Y1

CU
X5

Y2

ST

SH

X8

X9

1010010011

N13 = CHN13 = SHN12 = CHN12 = SHN11 = CHN11 = SHAICUCOST

a′1

10010100

N21 = SHAICUCOST

N11

N12
N13

a′2

N21

N22

Aggregation

210011

CHSHAICUCOST

a1

110100

CHSHAICUCOST

a2

W1

W2

W3

W4

Neighbor Labels

Neighbor Labels

N21 = CH N22 = SH N22 = CH

Figure 1. A Small Web Page Classification Problem.
Each box denotes a web page, each directed edge between a pair of boxes denotes a hyperlink, each oval node denotes a random variable,
each shaded oval denotes an observed variable, whereas an unshaded oval node denotes an unobserved variable whose value needs to be
predicted. Assume that the set of label values is L = {′SH′, ′CH′}. The figure shows a snapshot during a run of ICA. Assume that during the
last ICA labeling iteration we chose the following labels: y1 =′ SH′ and y2 =′ CH′. a′1 and a′2 show what may happen if we try to encode the
respective values into vectors naively, that is, we get variable-length vectors. The vectors a1 and a2, obtained after applying count aggrega-
tion, show one way of getting around this issue to obtain fixed-length vectors. See the article for more explanation.

erator simply counts the number of neighbors as-
signed “SH” and “CH” and adds these entries to
the vectors, while the prop operator returns the
proportion of neighbors with each label. Thus we
get one new value for each entry in the set of label
values. Assuming that the set of label values does
not change from one unobserved node to another,
this results in fixed-length vectors that can now be
classified using the same local classifier. Thus, a1,
for instance, contains two entries beside the entries
corresponding to the local word attributes, encod-
ing that Y1 has one neighbor labeled “SH” (X8),
and two neighbors currently labeled “CH” (Y2 and
X6). Algorithm 1 depicts the ICA algorithm as
pseudocode where we use ai to denote the vector
encoding the values in Ni obtained after aggrega-
tion. Note that in the first ICA iteration, all labels
yi are undefined, and to initialize them we simply
apply the local classifier to the observed attributes
in the neighborhood of Yi; this is referred to as
“bootstrapping” in algorithm 1.

Gibbs Sampling
Gibbs sampling (GS) (Gilks, Richardson, and
Spiegelhalter 1996) is widely regarded as one of the
most accurate approximate inference procedures.
It was originally proposed by Geman and Geman
(1984) in the context of image restoration. Unfor-
tunately, it is very slow, and a common issue while
implementing GS is to determine when the proce-
dure has converged. Even though there are tests
that can help one determine convergence, they are
usually expensive or complicated to implement.

Due to the issues with traditional GS, researchers
in collective classification (Macskassy and Provost
2007; McDowell, Gupta, and Aha 2007) use a sim-
plified version where they assume, just like in the

case of ICA, that we have access to a local classifier
f that can be used to estimate the conditional prob-
ability distribution of the labels of Yi given all the
values for the nodes in Ni. Note that, unlike tradi-
tional GS, there is no guarantee that this condi-
tional probability distribution is the correct condi-
tional distribution to sample from. At best, we can
only assume that the conditional probability dis-
tribution given by the local classifier f is an ap-
proximation of the correct conditional probability
distribution. Neville and Jensen (2007) provide
more discussion and justification for this line of
thought in the context of relational dependency
networks, where they use a similar form of GS for
inference.

The pseudocode for GS is shown in algorithm 2.
The basic idea is to sample for the best label esti-
mate for Yi given all the values for the nodes in Ni
using local classifier f for a fixed number of itera-
tions (a period known as “burn-in”). After that, not
only do we sample for labels for each Yi � Y but we
also maintain count statistics as to how many
times we sampled label l for node Yi. After collect-
ing a predefined number of such samples, we out-
put the best label assignment for node Yi by choos-
ing the label that was assigned the maximum
number of times to Yi while collecting samples. For
all our experiments (that we report later) we set
burn-in to 200 iterations and collected 800 sam-
ples.

Feature Construction
and Further Optimizations
One of the benefits of both ICA and GS is the fact
that it is fairly simple to make use of any local clas-
sifier. There is some evidence to indicate that some
local classifiers tend to produce higher accuracies
than others, at least in the application domains
where such experiments have been conducted. For
instance, Lu and Getoor (2003) report that on bib-
liography data sets and web page classification
problems logistic regression outperforms naïve
Bayes.

Recall that, to represent the values of Ni, we de-
scribed the use of an aggregation operator. In the
example, we used the count operator to aggregate
values of the labels in the neighborhood, but count
is by no means the only aggregation operator avail-
able. Past research has used a variety of aggregation
operators including minimum, maximum, mode, ex-
ists, and proportion. The choice of which aggrega-
tion operator to use depends on the application
domain and relates to the larger question of rela-
tional feature construction where we are interested
in determining which features to use so that clas-
sification accuracy is maximized. In addition, val-
ues derived from the graph structure of the net-
work in the data, such as the clustering coefficient
and betweenness centrality, may be beneficial to

Articles

96 AI MAGAZINE

for each node Yi � Y do // bootstrapping
// compute label using only observed nodes in Ni

compute ai using only X � Ni
yi ← f(ai)

end for
repeat // iterative classification

generate ordering O over nodes in Y
for each node Yi � O do

// compute new estimate of yi
compute ai using current assignements to Ni
yi ← f(ai)

end for
until all class labels have stabilized or a threshold number of
iterations have elapsed

Algorithm 1. Iterative Classification Algorithm (ICA).

the accuracy of the classification task. Within the
inductive logic programming community, aggre-
gation has been studied as a means for proposi-
tionalizing a relational classification problem
(Knobbe, deHaas, and Siebes 2001; Kramer, Lavrac,
and Flach 2001). Within the statistical relational
learning community, Perlich and Provost (2003,
2006) have studied aggregation extensively, and
Popescul and Ungar (2003) have worked on feature
construction using techniques from inductive log-
ic programming. In addition, Macskassy and
Provost (2007) have investigated approaches that
only make use of the labels of neighbors.

Other aspects of ICA that have been the subject
of investigation include the ordering strategy to
determine in which order to visit the nodes to re-
label in each ICA iteration. There is some evidence
to suggest that ICA is fairly robust to a number of
simple ordering strategies such as random order-
ing, visiting nodes in ascending order of diversity
of its neighborhood class labels, and labeling
nodes in descending order of label confidences.
However, there is also some evidence that certain
modifications to the basic ICA procedure tend to
produce improved classification accuracies. For in-
stance, both Neville and Jensen (2005) and Mc-
Dowell, Gupta, and Aha (2007) propose a strategy
where only a subset of the unobserved variables are
utilized as inputs for feature construction. More
specifically, in each iteration, they choose the top-
k most confident predicted labels and use only
those unobserved variables in the following itera-
tion’s predictions, thus ignoring the less confident
predicted labels. In each subsequent iteration they
increase the value of k so that in the last iteration
all nodes are used for prediction. McDowell and
colleagues report that such a “cautious” approach
leads to improved accuracies.

Approximate Inference Algorithms
for Approaches based on

Global Formulations
An alternate approach to performing collective
classification is to define a global objective func-
tion to optimize. In what follows, we will describe
one common way of defining such an objective
function and this will require some more notation.

We begin by defining a pairwise Markov random
field (pairwise MRF) (Taskar, Abbeel, and Koller
2002). Intuitively, a pairwise MRF is a graph where
each node denotes a random variable and every
edge denotes a correlation between a pair of ran-
dom variables. Let G = (V, E) denote a graph of ran-
dom variables as before where V consists of two
types of random variables, the unobserved vari-
ables, Y, which need to be assigned values from la-
bel set L, and observed variables X whose values
we know.

To quantify the exact nature of each correlation
in an MRF we use small functions usually referred
to as clique potentials. A clique potential is simply a
function defined over a small set of random vari-
ables that maps joint assignments of the set of ran-
dom variables to goodness values, numbers that re-
flect how favorable the assignment is. Let Ψ denote
a set of clique potentials. Ψ contains three distinct
types of functions:

(1) For each Yi � Y, ψi � Ψ is a mapping ψi :
L → �≥ 0, where �≥ 0 is the set of nonnegative real
numbers.

(2) For each (Yi, Xj) � E, ψij � Ψ is a mapping ψij : L
→ �≥ 0.

(3) For each (Yi, Yj) � E, ψij � Ψ is a mapping ψij : L
� L → �≥ 0.

Let x denote the values assigned to all the ob-
served variables in G and let xi denote the value as-
signed to Xi. Similarly, let y denote any assignment
to all the unobserved variables in G and let yi de-
note a value assigned to Yi. For brevity of notation
we will denote by φi the clique potential obtained
by computing

Articles

FALL 2008 97

for each node Yi � Y do // bootstrapping
// compute label using only observed nodes in Ni

compute ai using only X � Ni
yi ← f(ai)

end for
for n = 1 to B do // burn-in

generate ordering O over nodes in Y
for each node Yi � O do

compute ai using current assignements to Ni
yi ← f(ai)

end for
end for
for each node Yi � Y do // initialize sample counts

for each label l � L do
c[i, l] = 0

end for
end for
for n = 1 to S do // collect samples

generate ordering O over nodes in Y
for each node Yi � O do

compute ai using current assignements to Ni
yi ← f(ai)
c[i, yi] ← c[i, yi] + 1

end for
end for
for each node Yi � Y do // compute final labels

yi ← argmaxl�L c[i, l]
end for

Algorithm 2. Gibbs Sampling Algorithm (GS).

.

We are now in a position to define a pairwise MRF.

Definition 1. A pairwise Markov random field
(MRF) is given by a pair �G, Ψ� where G is a graph
and Ψ is a set of clique potentials with φi and ψij as
defined previously. Given an assignment y to all the
unobserved variables Y, the pairwise MRF is associ-
ated with the probability distribution

where x denotes the observed values of X and

In figure 2, we show our running example aug-
mented with clique potentials. MRFs are defined on
undirected graphs and thus we have dropped the
directions on all the hyperlinks in the example.
Thus, ψ1 and ψ2 denote two clique potentials de-
fined on the unobserved variables (Y1 and Y2) in the
network. Similarly, we have one ψ defined for each
edge that involves at least one unobserved variable
as an end point. For instance, ψ13 defines a map-

Z
Y

() = () (,
' (,)

x
y∑ ∏ ∏∈ ∈

′ ′ ′
Yi

i i Yi Yj E ij i jy y yφ ψ).

P y y y
Yi

i i Yi Yj E ij i j(|) =
1
()

() (,)
(,)

y x
xZ Y∈ ∈∏ ∏φ ψ

φ ψ ψi i i i Yi Xj E ij iy y y() = () ()
(,)∈∏ ping from L (which is set to {SH, CH} in the exam-

ple) to nonnegative real numbers. There is only one
edge between the two unobserved variables in the
network, and this edge is associated with the clique
potential ψ12 that is a function over two arguments.
Figure 2 also shows how to compute the φ clique
potentials. Essentially, given an unobserved vari-
able Yi, one collects all the edges that connect it to
observed variables in the network and multiplies
the corresponding clique potentials along with the
clique potential defined on Yi itself. Thus, as the fig-
ure shows, φ2 = ψ2 � ψ25 � ψ26.

Given a pairwise MRF, it is conceptually simple
to extract the best assignments to each unobserved
variable in the network. For instance, we may adopt
the criterion that the best label value for Yi is sim-
ply the one corresponding to the highest marginal
probability obtained by summing over all other
variables from the probability distribution associat-
ed with the pairwise MRF. Computationally, how-
ever, this is difficult to achieve since computing
one marginal probability requires summing over an
exponentially large number of terms, which is why
we need approximate inference algorithms.

Articles

98 AI MAGAZINE

ST CO

CH

AI

X6

X7

X3 X4

Y1

CU
X5

Y2

ST

SH

X8

X9

0.9CHCH

0.1SHCH

0.1CHSH

0.9SHSH

Ψ12y2y1

0.9CH

0.1SH

Ψ26y2

0.2CH

0.8SH

Ψ18y1

0.4CH

0.6SH

Ψ13y1

0.6CH

0.4SH

Ψ14y1

Φ1 = Ψ1* Ψ13 * Ψ14 * Ψ16 * Ψ18 =

0.0216CH

0.0096SH

Φ1y1

Φ2 = Ψ2* Ψ25 * Ψ26 =

0.405CH

0.005SH

Φ2y2

Y1

Y2

m
1 2

(y
2
)= Σy1

Φ
1
(y

1
) Ψ

12
(y

1
,y

2
)

m
2 1

(y
1
) = Σy2

Φ
2
(y

2
) Ψ

12
(y

1
,y

2
)

0.9CH

0.1SH

Ψ25y2

0.5CH

0.5SH

Ψ1y1

0.5CH

0.5SH

Ψ2y2

0.9CH

0.1SH

Ψ16y1

Figure 2. A Small Web Page Classification Problem Expressed as a Pairwise Markov Random Field with Clique Potentials.
The figure also shows the message-passing steps followed by LBP. See text for more explanation.

We describe two approximate inference algo-
rithms in this article. Both of them adopt a similar
approach to avoiding the computational complex-
ity of computing marginal probability distribu-
tions. Instead of working with the probability dis-
tribution associated with the pairwise MRF direct-
ly (definition 1) they both use a simpler “trial”
distribution. The idea is to design the trial distri-
bution so that once we fit it to the MRF distribu-
tion then it is easy to extract marginal probabili-
ties from the trial distribution (as easy as reading
off the trial distribution). This is a general principle
that forms the basis of a class of approximate in-
ference algorithms known as variational methods
(Jordan et al. 1999).

We are now in a position to discuss loopy belief
propagation (LBP) and mean-field relaxation label-
ing (MF).

Loopy Belief Propagation
Intuitively, loopy belief propagation (LBP) is an it-
erative message-passing algorithm in which each
random variable Yi in the MRF sends a message
mi→j to a neighbouring random variable Yj depict-
ing its belief of what Yj’s label should be. Thus, a
message mi→j is simply a mapping from L to �≥ 0.
The point that differentiates LBP from other gos-
sip-based message protocols is that when comput-
ing a message mi→j to send from Yi to Yj, LBP dis-
counts the message mi→j (the message Yj sent to Yi
in the previous iteration) in an attempt to stop a
message computed by Yj from going back to Yj. LBP
applied to pairwise MRF 〈G, Ψ〉 can be concisely ex-
pressed as the following set of equations:

(1)

(2)

where mi→j is a message sent by Yi to Yj and α de-
notes a normalization constant that ensures that
each message and each set of marginal probabili-
ties sum to 1; more precisely,

The algorithm proceeds by making each Yi � Yj
communicate messages with its neighbors in Ni �
Y until the messages stabilize (equation 1). After
the messages stabilize, we can calculate the mar-
ginal probability of assigning Yi with label yi by
computing bi(yi) using equation 2. The algorithm is
described more precisely in algorithm 3. Figure 2
shows a sample round of message-passing steps fol-
lowed by LBP on the running example.

LBP has been shown to be an instance of a vari-
ational method. Let bi(yi) denote the marginal

yj
i j j yi

i im y b y∑ ∑→ () = 1 () = 1and .

b y y m y yi i i i
Yj i

j i i i() = () (),αφ
∈ ∩

→∏ ∀ ∈
N Y

L

Yk i Yj

k i i jm y y
∈ ∩

→∏ ∀ ∈
N Y

L
\

(),

m y y y yi j j
yi

ij i j i i→
∈

∑() = (,) ()α ψ φ
L

probability associated with assigning unobserved
variable Yi the value yi and let bij(yi, yj) denote the
marginal probability associated with labeling the
edge (Yi ,Yj) with values (yi, yj). Then Yedidia, Free-
man, and Weiss (2005) showed that the following
choice of trial distribution

and subsequently minimizing the Kullback-Leibler
divergence between the trial distribution from the
distribution associated with a pairwise MRF gives
us the LBP message-passing algorithm with some
qualifications. Note that the trial distribution ex-
plicitly contains marginal probabilities as vari-
ables. Thus, once we fit the distribution, extracting
the marginal probabilities is as easy as reading
them off.

Relaxation Labeling through
Mean-Field Approach
Another approximate inference algorithm that can
be applied to pairwise MRFs is mean-field relax-
ation labeling (MF). The basic algorithm can be de-
scribed by the following fixed-point equation:

b

b y y

b y

Yi Yj E
ij i j

Yi

i i
i

() =

(,)

()

(,)

| |y
∈

∈

∩ −

∏

∏
Y

Y N 11

Articles

FALL 2008 99

for each (Yi, Yj) � E(G) s.t. Yi, Yj � Y do
for yj � L do

mi→ j (yj) ← 1
end for

end for
repeat // perform message passing

for each (Yi, Yj) � E(G) s.t. Yi, Yj � Y do
for each yj � L do

end for
end for

until mi→ j (yj) stop showing any change
for each Yi � Y do // compute beliefs

for each yi � L do

end for
end for

b y y m yi i i i Yj i
j i i() () ()←

∈ ∩ →∏αφ
N Y

Yk i Yj
k i im y

∈ ∩ →∏ N Y\
()

m y y y yi j j yi
ij i j i i→ ← ∑() (,) ()α ψ φ

Algorithm 3. Loopy Belief Propagation (LBP).

where bj(yj) denotes the marginal probability of as-
signing Yj � Y with label yj and α is a normaliza-
tion constant that ensures

The algorithm simply computes the fixed-point
equation for every node Yj and keeps doing so un-
til the marginal probabilities bj(yj) stabilize. When
they do, we simply return bj(yj) as the computed
marginals. The pseudocode for MF is shown in al-
gorithm 4.

MF can also be justified as a variational method
in almost exactly the same way as LBP. In this case,
however, we choose a simpler trial distribution:

We refer the interested reader to the work of
Weiss and collegues (Weiss 2001; Yedidia, Freeman,
and Weiss 2005) for more details.

Experiments
In our experiments, we compared the four collec-
tive classification algorithms (CC) discussed in the
previous sections and a content-only classifier
(CO), which does not take the network into ac-
count, along with two choices of local classifiers on
document classification tasks. The two local classi-
fiers we tried were naïve Bayes (NB) and logistic re-
gression (LR). This gave us eight different classi-
fiers: CO with NB, CO with LR, ICA with NB, ICA
with LR, GS with NB, GS with LR, MF, and LBP. The
data sets we used for the experiments included
both real-world and synthetic data sets.

b y y y yj j j j
Yi j yi

ij
bi yi

i j() = () (,)()αφ ψ
∈ ∩ ∈
∏ ∏
N Y L

,,

b b y
Yi

i i() = ()y
∈

∏
Y

.

yj
j jb y∑ () = 1.

Features Used
For CO classifiers, we used the words in the docu-
ments for observed attributes. In particular, we
used a binary value to indicate whether or not a
word appears in the document. In ICA and GS, we
used the same local attributes (that is, words) fol-
lowed by the count aggregation to count the num-
ber of each label value in a node’s neighborhood.
Finally, for LBP and MF, we used pairwise MRF with
clique potentials defined on the edges and unob-
served nodes in the network.

Experimental Setup
Because we are dealing with network data, tradi-
tional approaches to experimental data prepara-
tion such as using random sampling for construct-
ing training and test sets may not be directly ap-
plicable. To test the effectiveness of collective
classification, we want to have splits such that a
reasonable number of neighbors are unlabeled. In
order to achieve this, we use a snowball sampling
evaluation strategy (SS). In this strategy, we con-
struct splits for test data by randomly selecting the
initial node and expanding around it. We do not
expand randomly; instead, we select nodes based
on the class distribution of the whole corpus; that
is, the test data is stratified. The nodes selected by
the SS are used as the test set while the rest are used
for training. We repeat this process k times to ob-
tain k test-train pairs of splits. Besides experiment-
ing on test splits created using SS, we also experi-
mented with splits created using the standard k-
fold cross-validation methodology where we
choose nodes randomly to create splits and refer to
this as RS.

When using SS, some of the objects may appear
in more than one test split. In that case, we need
to adjust the accuracy computation so that we do
not overcount those objects. A simple strategy is to
average the accuracy for each instance first and
then take the average of the averages. Further, to
help the reader compare the SS results with the RS
results, we also provide accuracies averaged per in-
stance and across all instances that appear in at
least one SS split. We denote these numbers using
the term matched cross-validation (M).

Learning the Classifiers
One aspect of the collective classification problem
that we have not discussed so far is how to learn
the various classifiers described in the previous sec-
tions. Learning refers to the problem of determin-
ing the parameter values for the local classifier, in
the case of ICA and GS, and the entries in the
clique potentials, in the case of LBP and MF, which
can then be subsequently used to classify unseen
test data. For all our experiments, we learned the
parameter values from fully labeled data sets creat-
ed through the splits generation methodology de-

Articles

100 AI MAGAZINE

for each Yj � Y do // initialize messages
for each yj � L do

bj(yj) ← 1
end for

end for
repeat // perform message passing

for each Yj � Y do
for each Yj � L do

end for
end for

until all bj(yj) stop changing

b y y y yj j j j Yi j yi
ij
bi yi

i j() () (,)
,

()←
∈ ∩ ∈∏αφ ψ
N Y L

Algorithm 4. Mean-Field Relaxation Labeling (MF).

scribed above using gradient-based optimization
approaches. For a more detailed discussion, see, for
example, Taskar, Abbeel, and Koller (2002), and
Sen and Getoor (2007).

Real World Data Sets
We experimented with two real-world biblio-
graphic data sets: Cora (McCallum et al. 2000) and
CiteSeer (Giles, Bollacker, and Lawrence 1998). The
Cora data set contains a number of machine-learn-
ing papers divided into one of seven classes while
the CiteSeer data set has six class labels. For both
data sets, we performed stemming and stop word
removal beside removing the words with docu-
ment frequency less than 10. The final corpus has
2708 documents, 1433 distinct words in the vo-
cabulary, and 5429 links in the case of Cora; and
3312 documents, 3703 distinct words in the vo-
cabulary, and 4732 links in the case of CiteSeer. For
each data set, we performed both RS evaluation
(with 10 splits) and SS evaluation (averaged over
10 runs).

Results. The accuracy results for the real-world da-
ta sets are shown in table 1. The accuracies are sep-
arated by sampling method and base classifier. The
highest accuracy at each partition is in bold. We
performed a t-test (paired where applicable, and
Welch t-test otherwise) to test statistical signifi-
cance between results. Here are the main results:

First, do CC algorithms improve over CO coun-
terparts? In both data sets, CC algorithms outper-
formed their CO counterparts in all evaluation
strategies (SS, RS, and M). The performance differ-
ences were significant for all comparisons except
for the NB (M) results for CiteSeer.

Second, does the choice of the base classifier af-
fect the results of the CC algorithms? We observed
a similar trend for the comparison between NB and
LR. LR (and the CC algorithms that used LR as a
base classifier) outperformed NB versions in all da-
ta sets, and the difference was statistically signifi-
cant for Cora.

Third, is there any CC algorithm that dominates
the other? The results for comparing CC algo-
rithms are less clear. In the NB partition, ICA-NB
outperformed GS-NB significantly for Cora using
SS and M, and GS-NB outperformed ICA-NB for
CiteSeer SS. Thus, there was no clear winner be-
tween ICA-NB and GS-NB in terms of performance.
In the LR portion, again the differences between
ICA-LR and GS-LR were not significant for all data
sets. As for LBP and MF, they often slightly outper-
formed ICA-LR and GS-LR, but the differences were
not significant.

Fourth, how do SS results and RS results com-
pare? Finally, we take a look at the numbers under
the columns labeled M. First, we would like to re-
mind the reader that even though we are compar-
ing the results on the test set that is the intersec-

tion of the two evaluation strategies (SS and RS),
different training data could have been potential-
ly used for each test instance, thus the comparison
can be questioned. Nonetheless, we expected the
matched cross-validation results (M) to outperform
SS results simply because each instance had more
labeled data around it from RS splitting. The dif-
ferences were not big (around 1 or 2 percent); how-
ever, they were significant. These results tell us that
the evaluation strategies can have a big impact on
the final results, and care must be taken while de-
signing an experimental setup for evaluating CC
algorithms on network data (Gallagher and Eliassi-
Rad 2007).

Synthetic Data
We implemented a synthetic data generator fol-
lowing Sen and Getoor (2007). The process pro-
ceeds as follows: At each step, we either add a link
between two existing nodes or create a node based
on the ld parameter (such that higher ld value
means higher link density, that is, more links in
the graph) and link this new node to an existing
node; when we are adding a link, we choose the
source node randomly, but we choose the destina-
tion node using the dh parameter (which varies ho-
mophily by specifying the percentage, on average,
of a node’s neighbor that is of the same type) as
well as the degree of the candidates (preferential at-
tachment). When we are generating a node, we
sample a class for it and generate attributes based
on this class using a binomial distribution. Then,
we add a link between the new node and one of
the existing nodes, again using the homophily pa-
rameter and the degree of the existing nodes. In all
of these experiments, we generated 1000 nodes,
where each node is labeled with one of five possi-
ble class labels and has 10 attributes. We experi-
mented with varying degree of homophily and
link density in the graphs generated.

Results. The results for varying values of dh, ho-
mophily, are shown in figure 3a. When homophi-
ly in the graph was low, both CO and CC algo-
rithms performed equally well, which was the ex-
pected result based on similar work. As we
increased the amount of homophily, all CC algo-
rithms drastically improved their performance
over CO classifiers. With homophily at dh = .9, for
example, the difference between our best perform-
ing CO algorithm and our best performing CC al-
gorithm is about 40 percent. Thus, for data sets
that demonstrate some level of homophily, using
CC can significantly improve performance.

We present the results for varying the ld, link
density, parameter in figure 3(b). As we increased
the link density of the graphs, we saw that accura-
cies for all algorithms went up, possibly because
the relational information became more signifi-
cant and useful. However, the LBP accuracy had a

Articles

FALL 2008 101

sudden drop when the graph became very dense.
The reason behind this result is the well known
fact that LBP has convergence issues when there
are many short loops in the graph.

Practical Issues
In this section, we discuss some of the practical is-
sues to consider when applying the various CC al-
gorithms. First, although MF and LBP performance
is in some cases a bit better than that of ICA and
GS, MF and LBP were also the most difficult to
work with in both learning and inference. Choos-
ing the initial weights so that the weights will con-
verge during training is nontrivial. Most of the
time, we had to initialize the weights with the
weights we got from ICA in order to get the algo-
rithms to converge. Thus, the results reported from
MF and LBP needed some extra help from ICA to
get started. We also note that of the two, we had
the most trouble with MF being unable to con-
verge or, when it did, not converging to the global
optimum. Our difficulty with MF and LBP is con-
sistent with previous work (Weiss 2001, Mooij and
Kappen 2004, Yanover and Weiss 2002) and should
be taken into consideration when choosing to ap-
ply these algorithms.

In contrast, ICA and GS parameter initializations
worked for all data sets we used, and we did not
have to tune the initializations for these two algo-
rithms. They were the easiest to train and test
among all the collective classification algorithms
evaluated.

Finally, while ICA and GS produced very similar

results for almost all experiments, ICA is a much
faster algorithm than GS. In our largest data set,
CiteSeer, for example, ICA-NB took 14 minutes to
run while GS-NB took over 3 hours. The large dif-
ference is due to the fact that ICA converges in just
a few iterations, whereas GS has to go through sig-
nificantly more iterations per run due to the initial
burn-in stage (200 iterations), as well as the need to
run a large number of iterations to get a sufficient-
ly large sampling (800 iterations).

Related Work
Even though collective classification has gained at-
tention only in the past five to seven years, initiat-
ed by the work of Jennifer Neville and David
Jensen (Neville and Jensen 2000; Jensen, Neville,
and Gallagher 2004; Neville and Jensen 2007) and
the work of Ben Taskar and colleagues (Taskar, Se-
gal, and Koller 2001; Getoor et al. 2001; Taskar,
Abbeel, and Koller 2002; Taskar, Guestrin, and
Koller 2003), the general problem of inference for
structured output spaces has received attention for
a considerably longer period of time from various
research communities including computer vision,
spatial statistics, and natural language processing.
In this section, we attempt to describe some of the
work that is most closely related to the work de-
scribed in this article; however, due to the wide-
spread interest in collective classification, our list is
sure to be incomplete.

One of the earliest principled approximate in-
ference algorithms, relaxation labeling (Hummel

Articles

102 AI MAGAZINE

 Cora CiteSeer

Algorithm SS RS M SS RS M

CO-NB 0.7285 0.7776 0.7476 0.7427 0.7487 0.7646

ICA-NB 0.8054 0.8478 0.8271 0.7540 0.7683 0.7752

GS-NB 0.7613 0.8404 0.8154 0.7596 0.7680 0.7737

CO-LR 0.7356 0.7695 0.7393 0.7334 0.7321 0.7532

ICA-LR 0.8457 0.8796 0.8589 0.7629 0.7732 0.7812

GS-LR 0.8495 0.8810 0.8617 0.7574 0.7699 0.7843

LBP 0.8554 0.8766 0.8575 0.7663 0.7759 0.7843

MF 0.8555 0.8836 0.8631 0.7657 0.7732 0.7888

Table 1. Accuracy Results for the Cora and CiteSeer Data Sets.

For Cora, the CC algorithms outperformed their CO counterparts significantly. LR versions significantly outperformed
NB versions. ICA-NB outperformed GS-NB for SS and M; the other differences between ICA and GS were not significant
(both NB and LR versions). Even though MF outperformed ICA-LR, GS-LR, and LBP, the differences were not statisti-
cally significant. For CiteSeer, the CC algorithms significantly outperformed their CO counterparts except for ICA-NB
and GS-NB for matched cross-validation. CO and CC algorithms based on LR outperformed the NB versions, but the
differences were not significant. ICA-NB outperformed GS-NB significantly for SS, but the rest of the differences between
LR versions of ICA and GS, LBP, and MF were not significant.

and Zucker 1983), was developed by researchers in
computer vision in the context of object labeling
in images. Due to its simplicity and appeal, relax-
ation labeling was a topic of active research for
some time, and many researchers developed dif-
ferent versions of the basic algorithm (Li, Wang,
and Petrou 1994). Mean-field relaxation labeling
(Weiss 2001; Yedidia, Freeman, and Weiss 2005),
discussed in this article, is a simple instance of this
general class of algorithms. Besag (1986) also con-
sidered statistical analysis of images and proposed

a particularly simple approximate inference algo-
rithm called iterated conditional modes, which is
one of the earliest descriptions and a specific ver-
sion of the iterative classification algorithm pre-
sented in this article. Besides computer vision, re-
searchers working with an iterative decoding
scheme known as “Turbo Codes” came up with
the idea of applying Pearl’s belief propagation al-
gorithm on networks with loops. This led to the
development of the approximate inference algo-
rithm that we, in this article, refer to as loopy belief

Articles

FALL 2008 103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Link Density

A
cc

u
ra

cy
CO-NB
ICA-NB
GS-NB
CO-LR
ICA-LR
GS-LR
LBP
MF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CO-NB
ICA-NB
GS-NB
CO-LR
ICA-LR
GS-LR
LBP
MF

Homophily

A
cc

u
ra

cy

a

b

Figure 3. Algorithm Accuracy.
(a) Accuracy of algorithms through different values for dh varying the levels of homophily. When the homophily is very
low, both CO and CC algorithms perform equally well, but as we increase homophily, CC algorithms improve over the CO
classifier. (b) Accuracy of algorithms through different values for ld varying the levels of link density. As we increase link
density, ICA and GS improve their performance the most. Next comes MF. However, LBP has convergence issues due to in-
creased cycles and in fact performs worse than CO for high link density.

propagation (LBP) (also known as sum product al-
gorithm).

Another area that often uses collective classifica-
tion techniques is document classification.
Chakrabarti, Dom, and Indyk (1998) were among
the first to apply collective classification to a cor-
pora of patents linked by hyperlinks and reported
that considering attributes of neighboring docu-
ments actually hurts classification performance.
Slattery and Craven (1998) also considered the
problem of document classification by construct-
ing features from neighboring documents using an
inductive logic programming rule learner (Slattery
and Craven 1998). Yang, Slattery, and Ghani
(2002) conducted an in-depth investigation over
multiple data sets commonly used for document
classification experiments and identified different
patterns. Since then, collective classification has al-
so been applied to various other applications such
as part-of-speech tagging (Lafferty, McCallum, and
Pereira 2001), classification of hypertext docu-
ments using hyperlinks (Taskar, Abbeel, and Koller
2002), link prediction in friend-of-a-friend net-
works (Taskar et al. 2003), classification of email
“speech acts” (Carvalho and Cohen 2005), coun-
terterrorism analysis (Macskassy and Provost
2005), and targeted marketing (Hill, Provost, and
Volinsky 2007).

Besides the four approximate inference algo-
rithms discussed in this article, there are other al-
gorithms that we did not discuss, such as graph-
cuts based formulations, and formulations based
on linear programming relaxations. More recently,
there have been some attempts to extend collec-
tive classification techniques to the semisupervised
learning scenario (Xu et al. 2006; Macskassy 2007).

Conclusion
In this article, we gave a brief description of four
popular collective classification algorithms. We ex-
plained the algorithms, showed how to apply
them to various applications using examples and
highlighted various issues that have been the sub-
ject of investigation in the past. Most of the infer-
ence algorithms available for practical tasks relat-
ing to collective classification are approximate. We
believe that a better understanding of when these
algorithms perform well will lead to more wide-
spread application of these algorithms to more re-
al-world tasks and that this should be a subject of
future research. Most of the current applications of
these algorithms have been on homogeneous net-
works with a single type of unobserved variable
that share a common domain. Even though ex-
tending these ideas to heterogeneous networks is
conceptually simple, we believe that a further in-
vestigation into techniques that do so will lead to
novel approaches to feature construction and a

deeper understanding of how to improve the clas-
sification accuracies of approximate inference al-
gorithms. Collective classification has been a topic
of active research for the past decade, and we hope
that articles such as this one will help more re-
searchers gain introduction to this area, thus pro-
moting further research into the understanding of
existing approximate inference algorithms, and
perhaps help develop new, improved inference al-
gorithms.

Acknowledgements

We would like to thank Luke McDowell for his use-
ful and detailed comments. We would also like to
thank Jen Neville, David Jensen, Foster Provost,
and the reviewers for their comments. This mate-
rial is based upon work supported in part by the
National Science Foundation under Grant No.
0308030. In addition, this work was partially per-
formed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344.

References
Besag, J. 1986. On the Statistical Analysis of Dirty Pic-
tures. Journal of the Royal Statistical Society Series B. 48(3):
259–302.

Carvalho, V., and Cohen, W. W. 2005. On the Collective
Classification of Email Speech Acts. In Proceedings of the
28th Annual International ACM Special Interest Group on In-
formation Retrieval Conference on Research and Development
in Information Retrieval, 345–352. New York: Association
for Computing Machinery.

Chakrabarti, S.; Dom, B.; and Indyk, P. 1998. Enhanced
Hypertext Categorization Using Hyperlinks. In Proceed-
ings of the ACM SIGMOD International Conference on Man-
agement of Data, 308–318. New York: Association for
Computing Machinery.

Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A;
Mitchell, T; Nigam, K.; Slattery, S. 1998. Learning to Ex-
tract Symbolic Knowledge from the World Wide Web. In
Proceedings of the Fifteenth National Conference on Artificial
Intelligence. Menlo Park, CA: AAAI Press.

Gallagher, B., and Eliassi-Rad, T. 2007. An Evaluation of
Experimental Methodology for Classifiers of Relational
Data. Paper presented at the Workshop on Mining
Graphs and Complex Structures, IEEE International Con-
ference on Data Mining, Omaha, NE, 28–31 October.

Geman, S. and Geman, D. 1984. Stochastic Relaxation,
Gibbs Distributions and the Bayesian Restoration of Im-
ages. IEEE Transactions on Pattern Analysis and Machine In-
telligence 6(6): 721–742.

Getoor, L.; Segal, E.; Taskar, B.; and Koller, D. 2001. Prob-
abilistic Models of Text and Link Structure for Hypertext
Classification. Paper presented at the IJCAI Workshop on
Text Learning: Beyond Supervision. Seattle, WA, 6 Au-
gust.

Giles, C. L.; Bollacker, K.; and Lawrence, S. 1998. CiteSeer:
An Automatic Citation Indexing System. In Digital Li-
braries 98: The Third ACM Conference on Digital Libraries.
New York: Association for Computing Machinery.

Articles

104 AI MAGAZINE

Gilks, W. R.; Richardson, S.; and Spiegelhalter, D. J. 1996.
Markov Chain Monte Carlo in Practice: Interdisciplinary Sta-
tistics. Boca Raton, FL: Chapman and Hall/CRC Press.

Hill, S.; Provost, F.; and Volinsky, C. 2007. Learning and
Inference in Massive Social Networks. Paper presented at
the Fifth International Workshop on Mining and Learn-
ing with Graphs, Firenze, Italy, August 1–3.

Hummel, R., and Zucker, S. 1983. On the Foundations of
Relaxation Labeling Processes. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 5(3): 267–287.

Jensen, D.; Neville, J.; and Gallagher, B. 2004. Why Col-
lective Inference Improves Relational Classification. In
Proceedings of the 10th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. New York:
Association for Computing Machinery.

Jordan, M. I.; Ghahramani, Z.; Jaakkola, T. S.; and Saul, L.
K. 1999. An Introduction to Variational Methods for
Graphical Models. Machine Learning 37(2): 183–23.

Knobbe, A.; deHaas, M.; and Siebes, A. 2001. Proposition-
alisation and Aggregates. Paper presented at the Fifth Eu-
ropean Conference on Principles of Data Mining and
Knowledge Discovery. Freiburg, Germany, September 3–5.

Kramer, S.; Lavrac, N.; and Flach, P. 2001. Propositional-
ization Approaches to Relational Data Mining. In Rela-
tional Data Mining, ed. S. Dzeroski and N. Lavrac. New
York: Springer-Verlag.

Lafferty, J. D.; McCallum, A; and Pereira, F. C. N. 2001. Con-
ditional Random Fields: Probabilistic Models for Segment-
ing and Labeling Sequence Data. In Proceedings of the Eigh-
teenth International Conference on Machine Learning (ICML
2001). San Francisco: Morgan Kaufmann Publishers.

Li, S. Z.; Wang, H.; Petrou, M. 1994. Relaxation Labeling
of Markov Random Fields. In Proceedings of the 12th IAPR
International Conference Pattern Recognition. Los Alamitos,
CA: IEEE Computer Society.

Lu, Q., and Getoor, L. 2003. Link Based Classification. In
Machine Learning, Proceedings of the Twentieth Internation-
al Conference (ICML 2003). Menlo Park, CA: AAAI Press.

Macskassy, S. 2007. Improving Learning in Networked
Data by Combining Explicit and Mined Links. In Pro-
ceedings of the Twenty-Second Conference on Artificial Intel-
ligence. Menlo Park, CA: AAAI Press.

Macskassy, S., and Provost, F. 2005. Suspicion Scoring Based
on Guilt-by-Association, Collective Inference, and Focused
Data Access. Paper presented at the International Confer-
ence on Intelligence Analysis. McLean, VA, 2 May.

Macskassy, S., and Provost, F. 2007. Classification in Net-
worked Data: A Toolkit and a Univariate Case Study. Jour-
nal of Machine Learning Research. 8(May): 935—983

McCallum, A. K.; Nigam, K.; Rennie, J.; and Seymore, K.
2000. Automating the Construction of Internet Portals
with Machine Learning. Information Retrieval Journal 3(2):
127–163.

McDowell, L. K.; Gupta, K. M.; and Aha, D. W. 2007. Cau-
tious Inference in Collective Classification. In Proceedings
of the Twenty-Second Conference on Artificial Intelligence.
Menlo Park, CA: AAAI Press.

Mooij, J., and Kappen, H. J. 2004. Validity Estimates for
Loopy Belief Propagation on Binary Real-World Net-
works. Paper presented at the Conference on Advances in
Neural Information Processing Systems 17. December
13–18, 2004, Vancouver, British Columbia, Canada.

Neville, J., and Jensen, D. 2000. Iterative Classification in
Relational Data. In Learning Statistical Models from Re-
lational Data: Papers from the AAAI Workshop. Technical
Report WS-00-06. Menlo Park, CA: AAAI Press.

Neville, J., and Jensen, D. 2007. Relational Dependency
Networks. Journal of Machine Learning Research 8: 653–
692.

Perlich, C., and Provost, F. 2003. Aggregation-Based Fea-
ture Invention and Relational Concept Classes. Paper pre-
sented at the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington,
D.C., August.

Perlich, C., and Provost, F. 2006. Distribution-Based Ag-
gregation for Relational Learning with Identifier Attrib-
utes. Machine Learning Journal 62(1–2): 65–105.

Popescul, A., and Ungar, L. 2003. Structural Logistic Re-
gression for Link Analysis. Paper presented at the Second
KDD Workshop on Multi-Relational Data Mining. August
27, Washington, D.C.

Sen, P., and Getoor, L. 2007. Link-based Classification,
Technical Report, CS-TR-4858, University of Maryland,
College Park, MD.

Slattery, S., and Craven, M. 1998. Combining Statistical
and Relational Methods for Learning in Hypertext Do-
mains. In Inductive Logic Programming, 8th International
Workshop, ILP-98. Lecture Notes in Computer Science
1446. Berlin: Springer.

Taskar, B.; Abbeel, P.; and Koller, D. 2002. Discriminative
Probabilistic Models for Relational Data. In Proceedings of
the 18th Conference in Uncertainty in Artificial Intelligence.
San Francisco: Morgan Kaufmann, Publishers.

Taskar, B.; Guestrin, C; and Koller, D. 2003. Max-Margin
Markov Networks. Advances in Neural Information Process-
ing Systems 16. Cambridge, MA: The MIT Press.

Taskar, B.; Segal, E; and Koller, D. 2001. Probabilistic Clas-
sification and Clustering in Relational Data. In Proceed-
ings of the Seventeenth International Joint Conference on Ar-
tificial Intelligence. San Francisco: Morgan Kaufmann Pub-
lishers.

Taskar, B.; Wong, M. F.; Abbeel, P.; and Koller, D. 2003.
Link Prediction in Relational Data. In Proceedings of the
Seventeenth Annual Neural Information Processing Systems
Conference. Cambridge, MA: The MIT Press.

Weiss, Y. 2001. Comparing the Mean Field Method and
Belief Propagation for Approximate Inference in MRFs. In
Advanced Mean Field Methods, ed. M. Opper and D. Saad.
Cambridge, MA: The MIT Press.

Xu, L.; Wilkinson, D.; Southey, F.; and Schuurmans, D.
2006. Discriminative Unsupervised Learning of Struc-
tured Predictors. In Machine Learning, Proceedings of the
Twenty-Third International Conference (ICML 2006). ACM
International Conference Proceeding Series 148. New
York: Association for Computing Machinery.

Yang, Y.; Slattery, S.; and Ghani, R. 2002. A Study of Ap-
proaches to Hypertext Categorization. Journal of Intelli-
gent Information Systems 18(2): 219–241.

Yanover, C., and Weiss, Y. 2002. Approximate Inference
and Protein-Folding. In Proceedings of the Sixteenth Annu-
al Neural Information Processing Systems Conference. Cam-
bridge, MA: The MIT Press.

Yedidia, J. S.; Freeman, W. T.; Weiss, Y. 2005. Construct-
ing Free-Energy Approximations and Generalized Belief

Articles

FALL 2008 105

Spring Symposium Series
Call for Participation

AAAI presents the 2009 Spring Symposium Series, to
be held Monday - Wednesday, March 23-25, 2008, at
Stanford University. The topics of the nine symposia
will be:

� Agents that Learn from Human Teachers. Andrea L.
Thomaz (aaaiss09lfh at easychair.org)

� Benchmarking of Qualitative Spatial and Temporal
Reasoning Systems. Bernhard Nebel (aaai09bench-
qsr at informatik.uni-freiburg.de)

� Experimental Design for Real-World Systems.
Katherine Tsui (aaai-sss-2009 at cs.uml.edu)

� Human Behavior Modeling. Tanzeem Choudhury
(aaai_ss09_hbm at cs.dartmouth.edu)

� Intelligent Event Processing. Nenad Stojanovic
(nstojano at fzi.de)

� Intelligent Narrative Technologies II. Sandy
Louchart, Manish Mehta, and David Roberts (int2 at
cc.gatech.edu)

� Learning by Reading and Learning to Read. Sergei
Nirenburg and Tim Oates (sergei, oates at um-
bc.edu)

� Social Semantic Web: Where Web 2.0 Meets Web
3.0. Jie Bao (dingl at cs.rpi.edu)

� Technosocial Predictive Analytics. Antonio Sanfilip-
po (antonio.sanfilippo at pnl.gov)

Submissions for the symposia are due on October 3,
2008. Notification of acceptance will be given by No-
vember 7, 2008. Material to be included in the work-
ing notes of the symposium must be received by Jan-
uary 16, 2009. The complete Call for Participation is
available at www.aaai.org/Symposia/ Spring/sss09.
php. Registration information will be available by De-
cember 15, 2008.

Please contact AAAI at
sss09@aaai.org

with any questions.

Propagation Algorithms. IEEE Transactions on Information
Theory. 51(7): 2282–2312.

Prithviraj Sen (www.cs.umd.edu/~sen)
is a Ph.D. student in the Department
of Computer Science at the Univeristy
of Maryland, College Park. His primary
interests lie in the fields of machine
learning and probabilistic databases.
He received a BTech (Comp. Sc.) from

the Indian Institute of Technology, Bombay, in 2003 and
an MS (Comp. Sc.) from University of Maryland in 2006.

Galileo Mark Namata (www.cs.umd.
edu/~namatag)is a Ph.D. student at
the University of Maryland, College
Park. He received his B.S. in computer
science from Georgetown University
in 2003 and his M.S. in computer sci-
ence from the University of Maryland

in 2008. His research interests include artificial intelli-
gence, machine learning, knowledge discovery, and data
mining with a particular focus on network data.

Mustafa Bilgic received his MS degree
in computer science from the Univer-
sity of Maryland at College Park in
2006, where he is currently a Ph.D.
candidate. His research interests are in
the areas of machine learning, infor-
mation acquisition, and decision theo-
ry.

Lise Getoor (www.cs.umd.edu/~getoor)
received her Ph.D. in computer science
from Stanford University in 2001. She
is an associate professor in the Depart-
ment of Computer Science and a
member of the Institute for Advanced
Computer Studies, University of Mary-
land, College Park. Her research inter-

ests include machine learning, reasoning under uncer-
tainty, databases, and artificial intelligence.

Brian Gallagher is a computer scien-
tist in the Science and Technology
Computing Division at Lawrence Liv-
ermore National Laboratory. He re-
ceived a B.A. in computer science from
Carleton College in 1998 and an M.S.
in computer science from the Univer-
sity of Massachusetts Amherst in 2004.

His research interests include artificial intelligence, ma-
chine learning, and knowledge discovery and data min-
ing. His current research focuses on classification and
analysis in network-structured data.

Tina Eliassi-Rad is a staff computer
scientist at the Center for Applied Sci-
entific Computing within Lawrence
Livermore National Laboratory. She re-
ceived her Ph.D. in computer sciences
at the University of Wisconsin-Madi-
son in 2001. Broadly speaking, her re-
search interests include artificial intel-

ligence, machine learning, knowledge discovery, and da-
ta mining. Her work has been applied to the world wide
web, scientific simulation data, and complex networks.

Articles

106 AI MAGAZINE

