
In many multiagent domains, includ-
ing sensor networks, teams of
unmanned air vehicles, or teams of

personal assistant agents, a set of agents
chooses a joint action as a combination
of individual actions. Often, the locality
of agents’ interactions means that the
utility generated by each agent’s action
depends only on the actions of a subset
of the other agents. In this case, the out-
comes of possible joint actions can be
compactly represented by graphical mod-
els, such as a distributed constraint opti-
mization problem (DCOP) (Modi et al.
2005, Mailler and Lesser 2004) for coop-
erative domains or by a graphical game
(Kearns, Littman, and Singh 2001; Vick-
rey and Koller 2002) for noncooperative
domains. Each of these models can take
the form of a graph in which each node is
an agent and each (hyper)edge denotes a
subset of locally interacting agents. In
particular, associated with each such
hyperedge is a reward matrix that indi-
cates the costs or rewards incurred due to
the joint action of the subset of agents
involved, either to the agent team (in
DCOPs) or to individual agents (in graph-
ical games). Here, costs refer to negative
real numbers and rewards refer to posi-
tive real numbers to reflect intuition; we
could use either costs or rewards exclu-
sively if we assume they can span all real
numbers. Local interaction is a key prop-
erty captured in such graphs; not all
agents interact with all other agents. This
article focuses on the team setting, using

DCOP, whose applications include multi-
agent plan coordination (Cox, Durfee,
and Bartold 2005), sensor networks
(Zhang et al. 2003), meeting scheduling
(Petcu and Faltings 2005), and RoboCup
soccer (Vlassis, Elhorst, and Kok 2004).

Traditionally, researchers have focused
on obtaining a single, globally optimal
solution to DCOPs, introducing complete
algorithms such as Adopt (Modi et al.
2005), OptAPO (Mailler and Lesser 2004),
and DPOP (Petcu and Faltings 2005).
However, because DCOP is NP-hard (Modi
et al. 2005), as the scale of these domains
become large, current complete algo-
rithms can incur large computation or
communication costs. For example, a
large-scale network of personal assistant
agents might require global optimization
over hundreds of agents and thousands of
variables. However, incomplete algo-
rithms—in which agents form small
groups and optimize within these
groups—can lead to a system that scales
up easily and is more robust to dynamic
environments. In existing incomplete
algorithms, such as DSA (Fitzpatrick and
Meertens 2003) and DBA (Yokoo and
Hirayama 1996, Zhang et al. 2003), agents
are bounded in their ability to aggregate
information about one another’s con-
straints; in these algorithms, each indi-
vidual agent optimizes based on its indi-
vidual constraints, given the actions of all
its neighbors, until a local optimum is
reached where no single agent can
improve the overall solution. Unfortu-

Articles

FALL 2008 47Copyright © 2008, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Solving Multiagent
Networks Using Distributed

Constraint Optimization

Jonathan P. Pearce, Milind Tambe,
and Rajiv Maheswaran

� In many cooperative multiagent
domains, the effect of local interactions
between agents can be compactly repre-
sented as a network structure. Given that
agents are spread across such a network,
agents directly interact only with a small
group of neighbors. A distributed con-
straint optimization problem (DCOP) is a
useful framework to reason about such
networks of agents. Given agents’ inabili-
ty to communicate and collaborate in
large groups in such networks, we focus on
an approach called k-optimality for solv-
ing DCOPs. In this approach, agents form
groups of one or more agents until no
group of k or fewer agents can possibly
improve the DCOP solution; we define this
type of local optimum, and any algorithm
guaranteed to reach such a local optimum,
as k-optimal. The article provides an
overview of three key results related to k-
optimality. The first set of results gives
worst-case guarantees on the solution
quality of k-optima in a DCOP. These
guarantees can help determine an appro-
priate k-optimal algorithm, or possibly an
appropriate constraint graph structure, for
agents to use in situations where the cost
of coordination between agents must be
weighed against the quality of the solution
reached. The second set of results gives
upper bounds on the number of k-optima
that can exist in a DCOP. These results are
useful in domains where a DCOP must
generate a set of solutions rather than a
single solution. Finally, we sketch algo-
rithms for k-optimality and provide some
experimental results for 1-, 2- and 3-opti-
mal algorithms for several types of
DCOPs.

nately, no guarantees on solution quality current-
ly exist for these types of local optima.

This article presents an overview of a general-
ization of such incomplete algorithms through an
approach called k-optimality. The key idea is that
agents within small DCOP subgraphs optimize
such that no group of k or fewer agents can possi-
bly improve the solution; we define this type of
local optimum as a k-optimum. (Note that we do
not require completely connected DCOP sub-
graphs for k-optimality.) According to this defini-
tion of k-optimality, for a DCOP with n agents,
DSA and DBA are 1-optimal, while all complete
algorithms are n-optimal. Here, we focus on k-
optima and k-optimal algorithms for 1 < k < n.
The k-optimality concept provides an algorithm-
independent classification for local optima in a
DCOP that allows for quality guarantees.

In addition to the introduction of k-optimality
itself, the article presents an overview of three sets
of results about k-optimality. The first set of results
gives worst-case guarantees on the solution quali-
ty of k-optima in a DCOP. These guarantees can
help determine an appropriate k-optimal algo-
rithm, or possibly an appropriate constraint graph
structure, for agents to use in situations where the
cost of coordination between agents must be
weighed against the quality of the solution
reached. If increasing the value of k will provide a
large increase in guaranteed solution quality, it
may be worth the extra computation or communi-
cation required to reach a higher k-optimal solu-
tion.

As an example of the use of these worst-case
bounds, consider a team of mobile sensors that
must quickly choose a joint action in order to
observe some transitory phenomenon. This prob-
lem can be represented as a DCOP graph, where
constraints exist between nearby sensors, and
there are no constraints between faraway sensors.
In particular, the combination of individual
actions by nearby sensors may generate costs or
rewards to the team, and the overall utility of the
joint action is determined by the sum of these
costs and rewards. Given such a large-sized DCOP
graph, and time limits to solve it, an incomplete, k-
optimal algorithm, rather than a complete algo-
rithm, must be used to find a solution. However,
what is the right level of k in this k-optimal algo-
rithm? Answering this question is further compli-
cated because the actual DCOP rewards may not be
known until the sensors are deployed. In this case,
worst-case quality guarantees for k-optimal solu-
tions for a given k, independent of the actual costs
and rewards in the DCOP, are useful to help decide
which k-optimal algorithm to use. Alternatively,
the guarantees can help to choose between differ-
ent sensor formations, that is, different constraint
graphs.

The second set of results provides upper bounds
on the number of k-optima that can exist in a
DCOP. These results are valuable in domains where
we need the DCOP to generate a set of k-optimal
assignments, that is, multiple assignments to the
same DCOP. Generating sets of assignments is use-
ful in domains such as disaster rescue (to provide
multiple rescue options to a human commander)
(Schurr et al. 2005) or patrolling (to execute multi-
ple patrols in the same area) (Ruan et al. 2005) and
others. Given that we need a set of assignments,
the upper bounds are useful given two key features
of the domains of interest. First, each k-optimum
in the set consumes some resources that must be
allocated in advance. Such resource consumption
arises because: (1) a team actually executes each k-
optimum in the set, or (2) the k-optimal set is pre-
sented to a human user (or another agent) as a list
of options to choose from, requiring time. In each
case, resources are consumed based on the k-opti-
mal set size. Second, while the existence of the
constraints between agents is known a priori, the
actual rewards and costs on the constraints depend
on conditions that are not known until run time,
and so resources must be allocated before the
rewards and costs are known and before the agents
generate the k-optimal set.

To understand the utility of these upper bounds,
consider another domain involving a team of dis-
aster rescue agents that must generate a set of k-
optimal joint actions. This set is to be presented as
a set of diverse options to a human commander, so
the commander can choose one joint action for
the team to actually execute. Constraints exist
between agents whose actions must be coordinat-
ed (that is, members of subteams), but their costs
and rewards depend on conditions on the ground
that are unknown until the time when the agents
must be deployed. Here, the resource is the time
available to the commander to make the decision,
and examination of each option consumes this
resource. Thus, presenting too many options will
cause the commander to run out of time before
considering them all, but presenting too few may
cause high-quality options to be omitted. Knowing
the maximal number of k-optimal joint actions
that could exist for a given DCOP allows us to
choose the right level of k given the amount of
time available or allocate sufficient resources (time)
for a given level of k.

The third result is a set of 2- and 3-optimal algo-
rithms and an experimental analysis of the per-
formance of 1-, 2- and 3-optimal algorithms on
several types of DCOPs. Although we now have
theoretical lower bounds on solution quality of k-
optima, experimental results are useful to under-
stand average-case performance on common
DCOP problems.

Articles

48 AI MAGAZINE

DCOP
A distributed constraint optimization problem
consists of a set of variables, each assigned to an
agent which must assign a value to the variable;
these values correspond to individual actions that
can be taken by the agents. Constraints exist
between subsets of these variables that determine
costs and rewards to the agent team based on the
combinations of values chosen by their respective
agents. Because in this article we assume each
agent controls a single variable, we will use the
terms agent and variable interchangeably.

Formally, a DCOP is a set of variables (one per
agent) N := {1, …, n} and a set of domains A := {A1,
…, An}, where the ith variable takes value ai in Ai.
We denote the joint action (or assignment) of a
subgroup of agents S � N by aS and the joint action
of the multiagent team by a = [a1, …, an].

Valued constraints exist on various minimal sub-
sets S � N of these variables. A constraint on S is
expressed as a reward function RS(aS). This function
represents the reward to the team generated by the
constraint on S when the agents take assignment
aS. By minimality of S, we mean that the reward
RS(aS) obtained by that subset of agents cannot be
decomposed further through addition of other
joint rewards. We will refer to these subsets S as
constraints and the functions RS(∙) as constraint
reward functions. The cardinality of S is also referred
to as the arity of the constraint. Thus, for example,
if the maximum cardinality is of S is two, the
DCOP is a binary DCOP. The solution quality for a
particular complete assignment a, R(a), is the sum
of the rewards for that assignment from the set of
all constraints (which we denote by �) in the
DCOP.

As discussed earlier, several algorithms exist for
solving DCOPs: complete algorithms, which are
guaranteed to reach a globally optimal solution,
and incomplete algorithms, which reach a local
optimum, and do not provide guarantees on solu-
tion quality. These algorithms differ in the num-
bers and sizes of messages that are communicated
among agents. In this article, we provide k-opti-
mality as an algorithm-independent classification
of local optima, and show how their solution qual-
ity can be guaranteed.

k-Optimality
Before formally introducing the concept of k-opti-
mality, we must define the following terms. For
two assignments, a and ã, the deviating group,
D(a, ã) is the set of agents whose actions in assign-
ment ã differ from their actions in a. For example,
in figure 1, given an assignment [1 1 1] (agents 1,
2 and 3 all choose action 1) and an assignment [0
1 0], the deviating group D([1 1 1], [0 1 0]) = {1, 3}.

The distance between two assignments, d(a, ã), is
the cardinality of the deviating group, that is, the
number of agents with different actions. The rela-
tive reward of an assignment a with respect to
another assignment ã is �(a, ã) := R(a) – R(ã). We
classify an assignment a as a k-optimal assignment
or k-optimum if

�(a, ã) ≥ 0 �ã such that d(a, ã) ≤ k.

That is, a has a higher or equal reward to any
assignment a distance of k or less from a. Equiva-
lently, if the set of agents have reached a k-opti-
mum, then no subgroup of cardinality k or less can
improve the overall reward by choosing different
actions; every such subgroup is acting optimally
with respect to its context. Let Aq(n, k) be the set of
all k-optima for a team of n agents with domains of
cardinality q. It is straightforward to show Aq (n, k
+ 1) � Aq (n ,k), that all k + 1-optimal solutions are
also k-optimal.

If no ties occur between the rewards of DCOP
assignments that are a distance of k or less apart,
then all assignments in any collection of k-optima
must be mutually separated by a distance of at least
k + 1 as they each have the highest reward within
a radius of k. Thus, if no ties occur, higher k implies
that the k-optima are farther apart, and each k-
optimum has a higher reward than a larger pro-
portion of assignments. (This assumption of no
ties will be exploited only in our results related to
upper bounds in this article.)

For illustration, let us go back to figure 1. The
assignment a = [1 1 1] (with a total reward of 16) is
1-optimal because any single agent that deviates
reduces the team reward. For example, if agent 1
changes its action from 1 to 0, the reward on S1,2
decreases from 5 to 0 (and hence the team reward
from 16 to 11). If agent 2 changes its action from 1
to 0, the rewards on S1,2 and S2,3 decrease from 5 to
0 and from 11 to 0, respectively. If agent 3 changes
its action from 1 to 0, the reward on S2,3 decreases
from 11 to 0. However, [1 1 1] is not 2-optimal

Articles

FALL 2008 49

1 2 3

R
23

R
12

501

0100

10

1101

0200

10

Figure 1. DCOP Example.

Example 1 Figure 1 shows a binary DCOP in which agents choose
actions from the domain {0,1}, with rewards shown for the two con-
straints S1,2 = {1, 2} and S2,3 = {2, 3}. Thus for example, if agent 2 choos-
es action 0, and agent 3 chooses action 0, the team gets a reward of 20.

because if the group {2,3} deviated, making the
assignment ã = [1 0 0], team reward would increase
from 16 to 20. The globally optimal solution, a* =
[0 0 0], with a total reward of 30, is k-optimal for all
k � {1, 2, 3}.

Properties of k-Optimal
DCOP Solutions

We now show, in an experiment, the advantages of
k-optimal assignment sets as capturing both diver-
sity and high reward compared with assignment
sets chosen by other metrics. Diversity is important
in domains where many k-optimal assignments are
presented as choices to a human or the agents
must execute multiple assignments from their set
of assignments. In either case, it is important that
all these assignments are not essentially the same
with very minor discrepancies either to provide a
useful choice or to ensure that the agents’ actions
cover different parts of the solution space.

This illustrative experiment is based on a
patrolling domain. In particular, domains requir-
ing repeated patrols in an area by a team of UAVs
(unmanned air vehicles), UGVs (unmanned
ground vehicles), or robots, for peacekeeping or
law enforcement after a disaster, provide one key
illustration of the utility of k-optimality. Given a
team of patrol robots in charge of executing multi-
ple joint patrols in an area as in Ruan and col-
leagues (2005), each robot may be assigned a
region within the area. Each robot is controlled by
a single agent, and hence, for one joint patrol, each
agent must choose one of several possible routes to
patrol within its region. A joint patrol is an assign-
ment where each agent’s action is the route it has

chosen to patrol, and rewards and costs arise from
the combination of routes patrolled by agents in
adjacent or overlapping regions.

For example, if two nearby agents choose routes
that largely overlap on a low-activity street, the
constraint between those agents would incur a
cost, while routes that overlap on a high-activity
street would generate a reward. Agents in distant
regions would not share a constraint.

Given such a patrolling domain, the lower half
of figure 2a shows a DCOP graph representing a
team of 10 patrol robots, each of whom must
choose one of two routes to patrol in its region.
The nodes are agents, and the edges represent bina-
ry constraints between agents assigned to overlap-
ping regions. The actions (that is, the chosen
routes) of these agents combine to produce a cost
or reward to the team. For each of 20 runs, the
edges were initialized with rewards from a uniform
random distribution. The set of all 1-optima was
enumerated. Then, for the same DCOP, we used
two other metrics to produce equal-sized sets of
assignments. For one metric, the assignments with
highest reward were included in the set, and for
the next metric, assignments were included in the
set by the following method, which selects assign-
ments purely based on diversity (expressed as dis-
tance).

We repeatedly cycled through all possible assign-
ments in lexicographic order and included an
assignment in the set if the distance between it and
every assignment already in the set was not less
than a specified distance, in this case 2. The aver-
age reward and the diversity (expressed as the min-
imum distance between any pair of assignments in
the set) for the sets chosen using each of the three
metrics over all 20 runs is shown in the upper half

Articles

50 AI MAGAZINE

a

 1-optima

 reward only

 dist. of 2

avg.
reward

avg. min.
distance

b c

.850

.950

.037

2.25

1.21

2.00

 1-optima

 reward only

 dist. of 2

avg.
reward

avg. min.
distance

.809

.930

-.101

2.39

1.00

2.00

 1-optima

 reward only

 dist. of 2

avg.
reward

avg. min.
distance

.832

.911

.033

2.63

1.21

2.00

Figure 2. 1-optima Versus Assignment Sets Chosen Using Other Metrics

of figure 2a. While the sets of 1-optima come close
to the reward level of the sets chosen purely
according to reward, they are clearly more diverse
(t-test significance within 0.0001 percent). If a
minimum distance of 2 is required in order to guar-
antee diversity, then using reward alone as a met-
ric is insufficient; in fact the assignment sets gen-
erated using that metric had an average minimum
distance of 1.21, compared with 2.25 for 1-optimal
assignment sets (which guarantee a minimum dis-
tance of k + 1 = 2). The 1-optimal assignment set
also provides significantly higher average reward
than the sets chosen to maintain a given mini-
mum distance, which had an average reward of
0.037 (t-test significance within 0.0001 percent).
Similar results with equal significance were
observed for the 10-agent graph in figure 2b and
the 9-agent graph in figure 2c. Note also that this
experiment used k = 1, the lowest possible k.
Increasing k would, by definition, increase the
diversity of the k-optimal assignment set as well as
the neighborhood size for which each assignment
is optimal.

In addition to categorizing local optima in a
DCOP, k-optimality provides a natural classifica-
tion for DCOP algorithms. Many known algo-
rithms are guaranteed to converge to k-optima for
k = 1, including DBA (Zhang et al. 2003), DSA (Fitz-
patrick and Meertens 2003), and coordinate ascent
(Vlassis, Elhorst, and Kok 2004). Complete algo-
rithms such as Adopt (Modi et al. 2005), OptAPO
(Mailler and Lesser 2004), and DPOP (Petcu and
Faltings 2005) are k-optimal for k = n.

Lower Bounds on Solution Quality
In this section we introduce the first known guar-
anteed lower bounds on the solution quality of k-
optimal DCOP assignments. These guarantees can
help determine an appropriate k-optimal algo-
rithm, or possibly an appropriate constraint graph
structure, for agents to use in situations where the
cost of coordination between agents must be
weighed against the quality of the solution
reached. If increasing the value of k will provide a
large increase in guaranteed solution quality, it
may be worth the extra computation or communi-
cation required to reach a higher k-optimal solu-
tion.

For example, consider a team of mobile sensors
mentioned earlier that must quickly choose a joint
action in order to observe some transitory phe-
nomenon. While we wish to use a DCOP formal-
ism to solve this problem, and utilize a k-optimal
algorithm, exactly what level of k to use remains
unclear. In attempting to address this problem, we
also assume the actual costs and rewards on the
DCOP are not known a priori (otherwise the DCOP
could be solved centrally ahead of time; or all k-

optima could be found by brute force, with the
lowest-quality k-optimum providing an exact guar-
antee for a particular problem instance).

In cases such as these, worst-case quality guar-
antees for k-optimal solutions for a given k, that are
independent of the actual costs and rewards in the
DCOP, are useful to decide which algorithm (level
of k) to use. Alternatively, these guarantees can
help to choose between different constraint
graphs, for example different sensor network for-
mations. To this end, this section provides reward-
independent guarantees on solution quality for
any k-optimal DCOP assignment. We provide a
guarantee for a k-optimal solution as a fraction of
the reward of the optimal solution, assuming that
all rewards in the DCOP are nonnegative (the
reward structure of any DCOP can be transformed
to meet this condition if no infinitely negative
rewards exist).

Proposition 1 For any DCOP of n agents, with max-
 imum constraint arity of m, where all constraint
rewards are nonnegative, and where a* is the global-
ly optimal solution, then, for any k-optimal assign-
ment, a, where R(a) < R(a*) and m ≤ k < n, we have:

Given our k-optimal assignment a and the glob-
al optimal a*, the key to proving this proposition is
to define a set Âa,k that contains all assignments â
where exactly k variables have deviated from their
values in a, and these variables are taking the same
values that they take in a*. This set allows us to
express the relationship between R(a) and R(a*).
While a detailed proof of this proposition appears
in Pearce and Tambe (2007), we provide an exam-
ple providing an intuitive sense for this result.

Consider a DCOP with five variables numbered
1 to 5, with domains of {0, 1}. Suppose that this
DCOP is a fully connected binary DCOP with con-
straints between every pair of variables (that is, |S|
= 2 for all RS). Suppose that a = [0 0 0 0 0] is a 3-
optimum, and that a* = [1 1 1 1 1] is the global
optimum. Then d(a, a*) = 5. We now consider the
set Âa,k discussed previously (k = 3, in this exam-
ple). We can show that Âa,k contains

assignments, listed as follows:
{ [1 1 1 0 0], [1 1 0 1 0], [1 1 0 0 1], [1 0 1 1 0], [1 0 1 0 1],
[1 0 0 1 1], [0 1 1 1 0], [0 1 1 0 1], [0 1 0 1 1], [0 0 1 1 1] }.

These are all the assignments that deviate from
a by 3 actions and take the value from the optimal
solution in those deviations. We can now use this
set Âa,k to express R(a) in terms of R(a*). We begin
by noting that R(a) ≥ R(â) for all â � Âa,k, because a

R a

n m

k m

n

k

n m

k

R a() ≥

−
−

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ −

−⎛

⎝
⎜

⎞

⎠
⎟

()*

d a a

k

, *()⎛
⎝⎜

⎞
⎠⎟

= 10

Articles

FALL 2008 51

is a 3-optimum. Then, by adding this over all the
assignments in Âa,k we get

We can then engage in a counting exercise by
types of constraints. For example, for S = {1, 2}, a*

1
= â1 = 1 and a*

2 = â2 = 1 for â = [1 1 1 0 0], [1 1 0 1
0], and [1 1 0 0 1]. Here we are counting the num-
ber of assignments where, for a given constraint,
all values are the same as the optimal assignment.
We can also count how often for a given constraint
all values are the same as the k-optimal assign-
ment. For example, for S = {1, 2}, a1 = â1 = 0 and a2
= â2 = 0 only for â = [0 0 1 1 1]. By doing this count-
ing over all the constraints, we can bound the sum
of rewards of the assignments in Âa,k in terms of
the rewards R(a*) and R(a). For our example, we can
obtain a bound that states:

and hence R(a) ≥ 3R(a*) / (10 – 1) = R(a*) / 3. By
solving for R(a), we get the bound in proposition 1.

Graph-Based Quality Guarantees
The guarantee for k-optima in the previous section
applies to all possible DCOP graph structures.
However, knowledge of the structure of constraint
graphs can be used to obtain tighter guarantees. If
the graph structure of the DCOP is known, we can
exploit it by refining our definition of Âa,k. In the
previous section, we defined Âa,k as all assignments
â that have a distance of k from a k-optimal assign-
ment a where the values of the deviating variables
take on those from the optimal solution a*.

If the graph is known, let Âa,k contain all possi-
ble deviations of k connected agents rather than all
possible deviations of k agents. With this refine-
ment, we can produce tighter guarantees for k-
optima in sparse graphs.

To illustrate graph-based bounds, let us consider
binary DCOPs where all constraint rewards are
nonnegative and a* is the globally optimal solu-
tion. For ring graphs (where each variable has two
constraints), we have R(a) ≥ (k – 1)R(a*) / (k + 1).
For star graphs (each variable has one constraint
except the central variable, which has n – 1), we
have R(a) ≥ (k – 1)R(a*) / (n – 1). These are provably
tight guarantees.

Finally, bounds for DCOPs with arbitrary graphs
and nonnegative constraint rewards can be found
using a linear-fractional program (LFP) (Pearce and
Tambe 2007). A linear-fractional program consists
of a set of variables, an objective function of these
variables to be maximized or (in this case) mini-
mized, and a set of equations or inequalities repre-
senting constraints on these variables. It is impor-
tant to distinguish between the variables and
constraints in the LFP and the variables and con-
straints in the DCOP.

10 3 1R a R R a R a() () (*) ()≥ ≥ +∑ â
Âa,k

10R a R() ()≥ ∑ â
Âa,k

In our LFP, we have two variables for each con-
straint S in the DCOP graph. The first variable,
denoted as RS(a

*) represents the reward that occurs
on S in the globally optimal solution a*. The other,
RS(a), represents the reward that occurs on S in a k-
optimal solution a. The objective is to find a com-
plete set of rewards that minimizes our objective
function:

(1)

In other words, we want to find the set of
rewards that will bring about the worst possible k-
optimal solution to get our lower bound.

We minimize this objective function subject to a
set of constraints that ensure that a is in fact k-opti-
mal. We have one constraint in the LFP for every
assignment ã in the DCOP such that (1) all vari-
ables in ã take only values that appear in either a
or a* and (2) the distance between a and ã is less
than or equal to k. These constraints are of the
form R(a) – R(ã) ≥ 0 for every possible ã. The first
condition ensures R(a) and R(ã) can be expressed
in terms of our variables RS(a) and RS(a

*). The sec-
ond condition ensures that a will be k-optimal.

LFPs have been shown to be reducible to stan-
dard linear programs (LPs) (Boyd and Vanden-
berghe 2004). This method gives a tight bound for
any graph but requires a globally optimal solution
to the resulting LP, in contrast to the constant-time
guarantees of the bounds for the fully connected,
ring, and star graphs.

Experimental Results for Lower Bounds
While we have so far focused on theoretical guar-
antees for k-optima, this section provides an illus-
tration of these guarantees in action and shows
how they are affected by constraint graph struc-
ture. Figures 3a, 3b, and 3c show quality guaran-
tees for binary DCOPs with fully connected graphs,
ring graphs, and star graphs, calculated directly
from the bounds discussed earlier.

Figure 3d shows quality guarantees for DCOPs
whose graphs are binary trees, obtained using the
LFP mentioned in the previous section. Construct-
ing these LFPs and solving them optimally with
LINGO 8.0 global solver took about two minutes
on a 3 GHz Pentium IV with 1 GB RAM.

For each of the graphs, the x-axis plots the value
chosen for k, and the y-axis plots the lower bound
for k-optima as a percentage of the optimal solu-
tion quality for systems of 5, 10, 15, and 20 agents.
These results show how the worst-case benefit of
increasing k varies depending on graph structure.
For example, in a five-agent DCOP, a 3-optimum is
guaranteed to be 50 percent of optimal whether
the graph is a star or a ring. However, moving to k
= 4 means that worst-case solution quality will
improve to 75 percent for a star, but only to 60 per-

R a

R a

R a

R a

SS

SS

()

(*)

()

(*)
.= ∈

∈

∑
∑

θ

θ

Articles

52 AI MAGAZINE

cent for a ring. For fully connected graphs, the ben-
efit of increasing k goes up as k increases, whereas
for stars it stays constant, and for chains it decreas-
es, except for when k = n. Results for binary trees
are mixed.

Upper Bounds on the
Number of k-Optima

Traditionally, researchers have focused on obtain-
ing a single DCOP solution, expressed as a single
assignment of actions to agents. However, in this
section, we consider a multiagent system that gen-
erates a set of k-optimal assignments, that is, mul-
tiple assignments to the same DCOP. Generating
sets of assignments is useful in domains such as
disaster rescue (to provide multiple rescue options
to a human commander) (Schurr et al. 2005),
patrolling (to execute multiple patrols in the same
area) (Ruan et al. 2005), training simulations (to

provide several options to a student), and others
(Tate, Dalton, and Levine 1998). As discussed earli-
er in the context of the patrolling domain, when
generating such a set of assignments, use of
rewards alone leads to somewhat repetitive and
predictable solutions (patrols). Picking diverse
joint patrols at random on the other hand leads to
low-quality solutions. Using k-optimality directly
addresses such circumstances; if no ties exist
between the rewards of patrols a distance k or few-
er apart, k-optimality ensures that all joint patrols
differ by at least k + 1 agents’ actions, as well as
ensuring that this diversity would not come at the
expense of obviously bad joint patrols, as each is
optimal within a radius of at least k agents’ actions.

Our key contribution in this section is address-
ing efficient resource allocation for the multiple
assignments in a k-optimal set, by defining tight
upper bounds on the number of k-optimal assign-
ments that can exist for a given DCOP. These

Articles

FALL 2008 53

0

20

40

60

80

100

0 2 4 6 8 10

p
er

ce
nt

 o
f o

p
tim

al

k

0

20

40

60

80

100

0 2 4 6 8 10

p
er

ce
nt

 o
f o

p
tim

al

k

0

20

40

60

80

100

0 2 4 6 8 10

p
er

ce
nt

 o
f o

p
tim

al

k

0

20

40

60

80

100

0 2 4 6 8 10

p
er

ce
nt

 o
f o

p
tim

al

k

a. Fully Connected b. Ring

c. Star d. Binary Tree

5 agents
10 agents
15 agents
20 agents

Figure 3. Quality Guarantees for k-optima with Respect to the Global Optimum for DCOPs of Various Graph Structures.

bounds are necessitated by two key features of the
typical domains where a k-optimal set is applica-
ble. First, each assignment in the set consumes
some resources that must be allocated in advance.
Such resource consumption arises because: (1) a
team actually executes each assignment in the set,
as in our patrolling example above, or (2) the
assignment set is presented to a human user (or
another agent) as a list of options to choose from,
requiring time. In each case, resources are con-
sumed based on the assignment set size. Second,
while the existence of the constraints between
agents is known a priori, the actual rewards and
costs on the constraints depend on conditions that
are not known until runtime, and so resources
must be allocated before the rewards and costs are
known and before the agents generate the k-opti-
mal assignment set. In the patrolling domain, con-
straints are known to exist between patrol robots
assigned to adjacent or overlapping regions. How-
ever, their costs and rewards depend on recent field
reports of adversarial activity that are not known
until the robots are deployed. At this point the
robots must already be fueled in order for them to
immediately generate and execute a set of k-opti-
mal patrols. The resource to be allocated to the
robots is the amount of fuel required to execute
each patrol; thus it is critical to ensure that enough
fuel is given to each robot so that each assignment
found can be executed, without burdening the
robots with wasted fuel that will go unused. Recall
the other domain mentioned earlier of a team of
disaster rescue agents that must generate a set of k-
optimal assignments in order to present a set of
diverse options to a human commander. Upper
bounds were useful in this domain to choose the
right level of k. Choosing the wrong k would result
in possibly presenting too many options, causing
the commander to run out of time before consid-
ering them all, or presenting too few (causing
high-quality options to be omitted).

Thus, because each assignment consumes
resources, it is useful to know the maximal number
of k-optimal assignments that could exist for a giv-
en DCOP. Unfortunately, we cannot predict this
number because the costs and rewards for the
DCOP are not known in advance. Despite this
uncertainty, reward-independent bounds can be
obtained on the size of a k-optimal assignment set,
that is, to safely allocate enough resources for a giv-
en value of k for any DCOP with a particular graph
structure. In addition to their uses in resource allo-
cation, these bounds also provide insight into the
problem landscapes.

From Coding Theory to Upper Bounds
To find the first upper bounds on the number of k-
optima (that is on |Aq(n, k)|) for a given DCOP
graph, we discovered a correspondence to coding

theory (Ling and Xing 2004), yielding bounds
independent of both reward and graph structure.
In the next section, we provide a method to use
the structure of the DCOP graph (or hypergraph of
arbitrary arity) to obtain significantly tighter
bounds.

In error-correcting codes, a set of codewords
must be chosen from the space of all possible
words, where each word is a string of characters
from an alphabet. All codewords are sufficiently
different from one another so that transmission
errors will not cause one to be confused for anoth-
er. Finding the maximum possible number of k-
optima can be mapped to finding the maximum
number of codewords in a space of qn words where
the minimum distance between any two code-
words is d = k + 1. We can map DCOP assignments
to words and k-optima to codewords as follows: an
assignment a taken by n agents each with a
domain of cardinality q is analogous to a word of
length n from an alphabet of cardinality q. The dis-
tance d(a, ã) can then be interpreted as a Hamming
distance between two words. Then, if a is k-opti-
mal, and d(a, ã) ≤ k, then ã cannot also be k-opti-
mal by definition. Thus, any two k-optima must be
separated by a distance of at least k + 1. (In this sec-
tion, we assume no ties in k-optima).

Three well-known bounds on codewords are the
Hamming, Singleton, and Plotkin bounds (Ling
and Xing 2004). We will refer to �HSP to mean the
maximum (tightest) of these three graph-indepen-
dent bounds.

Graph-Based Upper Bounds
The �HSP bound depends only on the number of
agents n, the degree of optimality k, and the num-
ber of actions available to each agent q. It ignores
the graph structure and thus how the team reward
is decomposed onto constraints; that is, the
bounds are the same for all possible sets of con-
straints �. For instance, the bound on 1-optima for
example 1 according to �HSP is 4, and it ignores the
fact that agents 1 and 3 do not share a constraint,
and yields the same result independent of the
DCOP graph structure. However, exploiting this
structure (as captured by �) can significantly tight-
en the bounds on the number of k-optimal solu-
tions that could exist.

In particular, when obtaining the bounds in the
previous section, pairs of assignments were mutu-
ally exclusive as k-optima (only one of the two
could be k-optimal) if they were separated by a dis-
tance of at least k. We now show how some assign-
ments separated by a distance of k + 1 or more
must also be mutually exclusive as k-optima.

If we let G be some subgroup of agents, then let
DG(a, ã) be the set of agents within the subgroup G
whose chosen actions in assignments a and ã dif-
fer. Let V(G) be the set of agents (including those in

Articles

54 AI MAGAZINE

G) who are a member of some constraint S � � inci-
dent on a member of G (for example, G and the
agents who share a constraint with some member
of G). Then, this set’s complement, V(G)C is the set
of all agents whose contribution to the team
reward is independent of the values taken by G.

Proposition 2 Let there be an assignment a* �

Aq(n, k) and let ã � A be another assignment for
which d(a*, ã) > k. If there exists a set G � N, G ≠ �
for which |G| ≤ k and DV(G)(a

*, ã) = G, then ã � Aq(n,
k).

In other words, if an assignment ã contains some
group G that is facing the same context as it does
in the k-optimal assignment a*, but chooses differ-
ent values than those in a*, then ã cannot be k-
optimal even though its distance from a* is greater
than k.

Proposition 2 provides conditions where if a* is
k-optimal then ã, which may be separated from a*

by a distance greater than k, may not be k-optimal,
thus tightening bounds on k-optimal assignment
sets. With proposition 2, since agents are typically
not fully connected to all other agents, the rele-
vant context a subgroup faces is not the entire set
of other agents. Thus, the subgroup and its rele-
vant context form a view (captured by V(G)) that is
not the entire team. We note that this proposition
does not imply any relationship between the
reward of a* and that of ã.

Figure 4a shows G, V(G), and V(G)C for a sample
DCOP of six agents with a domain of two actions,
white and gray. Without proposition 2, ã1, ã2, and
ã3 could all potentially be 2-optimal. However,
proposition 2 guarantees that they are not, leading
to a tighter bound on the number of 2-optima that
could exist. To see the effect, note that if a* is 2-
optimal, then G = {1, 2}, a subgroup of size 2, must

have taken an optimal subgroup joint action (all
white) given its relevant context (all white). Even
though ã1, ã2, and ã3 are a distance greater than 2
from a*, they cannot be 2-optimal, since in each of
them, G faces the same relevant context (all white)
but is now taking a suboptimal subgroup joint
action (all gray).

Based on proposition 2 we investigated heuristic
techniques to obtain an upper bound on Aq(n, k)
that exploits DCOP graph structure. One key
heuristic we developed is the symmetric region
packing bound, �SRP. More details about �SRP are
presented in Pearce, Tambe, and Maheswaran
(2006).

Experimental Results for Upper Bounds
We present two evaluations to explore the effec-
tiveness of the different bounds on the number of
k-optima. First, for the three DCOP graphs shown
in figure 2, figure 5 provides a concrete demon-
stration of the gains in resource allocation due to

Articles

FALL 2008 55

2

1 3

4

5

6G
V (G) V (G)C

a* :
Joint actions (JAs):DCOP graph:

ã1 :

ã2 :

ã3 :

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

a b

Figure 4. A Visual Representation of the Effect of Proposition 2.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

b
o

un
d

k

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

b
o

un
d

k

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

b
o

un
d

k

a b c

Figure 5. �SRP Versus �HSP for DCOP Graphs from Figure 2.

the tighter bounds made possible with graph-based
analysis. The x-axis in figure 5 shows k, and the y-
axis shows the �HSP and �SRP bounds on the num-
ber of k-optima that can exist.

To understand the implications of these results
on resource allocation, consider a patrolling prob-
lem where the constraints between agents are
shown in the 10-agent DCOP graph from figure 2a,
and all agents consume one unit of fuel for each

assignment taken. Suppose that k = 2 has been cho-
sen, and so at run time, the agents will use a 2-opti-
mal algorithm (to be described in the next section),
repeatedly, to find and execute a set of 2-optimal
assignments. We must allocate enough fuel to the
agents a priori so they can execute up to all possi-
ble 2-optimal assignments. Figure 5a shows that if
�HSP is used, the agents would be loaded with 93
units of fuel to ensure enough for all 2-optimal

Articles

56 AI MAGAZINE

Number of Agents: 7 8 9 10

k :

1

2

3

4

0

25

50

75

0 6 12

bo
un

d

No. links removed

0

5

10

15

20

0 6 12

bo
un

d

No links removed

0

5

10

15

0 6 12

bo
un

d

No links removed

0

1

2

3

4

0 6 12

bo
un

d

No links removed

0

50

100

150

0 6 12 18

bo
un

d

No links removed

0

10

20

30

40

0 6 12 18

bo
un

d

No links removed

0

10

20

30

0 6 12 18

bo
un

d

No links removed

0

2

4

6

8

0 6 12 18

bo
un

d

No links removed

0

100

200

300

0 8 16 24

bo
un

d

No links removed

0

20

40

60

80

0 8 16 24

bo
un

d

No links removed

0

20

40

60

0 8 16 24

bo
un

d

No links removed

0

4

8

12

16

0 8 16 24

bo
un

d

No links removed

0

200

400

600

0 12 24 36

bo
un

d

No links removed

0

40

80

120

160

0 12 24 36

bo
un

d

No links removed

0

40

80

120

0 12 24 36
bo

un
d

0

8

16

24

32

0 12 24 36

bo
un

d

No links removed

No links removed

Figure 6. Comparisons of �SRP Versus �HSP

assignments. However, �SRP reveals that only 18
units of fuel are sufficient, a fivefold savings. (For
clarity we note that on all three graphs, both
bounds are 1 when k = n and 2 when n – 3 ≤ k < n.)

Second, to systematically investigate the impact
of graph structure on bounds, we generated a large
number of DCOP graphs of varying size and densi-
ty. We started with complete binary graphs (all
pairs of agents are connected) where each node
(agent) had a unique ID. To gradually make each
graph sparser, edges were repeatedly removed
according to the following two-step process: (1)
Find the lowest-ID node that has more than one
incident edge. (2) If such a node exists, find the
lowest-ID node that shares an edge with it, and
remove this edge. Figure 6 shows the �HSP and �SRP
bounds for k-optima for k � {1, 2, 3, 4} and n � {7,
8, 9, 10}. For each of the 16 plots shown, the y-axis
shows the bounds and the x-axis shows the num-
ber of links removed from the graph according to
the above method.

While �HSP < �SRP for very dense graphs, �SRP-
provides significant gains for the vast majority of
cases. For example, for the graph with 10 agents,
and 24 links removed, and a fixed k = 1, �HSP
implies that we must equip the agents with 512
resources to ensure that all resources are not
exhausted before all 1-optimal actions are execut-
ed. However, �SRP indicates that a 15-fold reduction
to 34 resources will suffice, yielding a savings of
478 due to the use of graph structure when com-
puting bounds.

Algorithms
This section contains a description of existing 1-
optimal algorithms, new 2- and 3-optimal algo-
rithms, as well as a theoretical analysis of key prop-
erties of these algorithms and experimental
comparisons.

1-Optimal Algorithms
We begin with two algorithms that only consider
unilateral actions by agents in a given context. The
first is the maximum gain message (MGM) algo-
rithm, which is a simplification of the distributed
breakout algorithm (DBA) (Yokoo and Hirayama
1996). MGM is not a novel algorithm, but simply
a name chosen to describe DBA without the
changes on constraint costs that DBA uses to break
out of local minima. We note that DBA itself can-
not be applied in an optimization context, as it
would require global knowledge of solution quali-
ty (it can be applied in a satisfaction context
because any agent encountering a violated con-
straint would know that the current solution is not
a satisfying solution). The second is the distributed
stochastic algorithm (DSA) (Fitzpatrick and
Meertens 2003), which is a randomized algorithm.

Our analysis will focus on synchronous applica-
tions of these algorithms.

Let us define a round as involving multiple
broadcasts of messages. Every time a messaging
phase occurs in a round, we will count that as one
cycle, and cycles will be our performance metric
for speed, as is common in DCOP literature. Let ai

denote the assignment of all values to agents at the
beginning of the ith round. We assume that every
agent will broadcast its current value to all its
neighbors at the beginning of the round taking up
one cycle. Once agents are aware of their current
contexts (that is values of neighboring agents),
they will go through a process as determined by
the specific algorithm to decide which of them will
be able to modify their value. Let Mi � N denote
the set of agents allowed to modify the values in
the ith round. For MGM, each agent broadcasts a
gain message to all its neighbors that represents
the maximum change in its local utility if it is
allowed to act under the current context. An agent
is then allowed to act if its gain message is larger
than all the gain messages it receives from all its
neighbors (ties can be broken through variable
ordering or another method) (Yokoo and Hiraya-
ma 1996). For DSA, each agent generates a random
number from a uniform distribution on [0, 1] and
acts if that number is less than some threshold p
(Fitzpatrick and Meertens 2003). We note that
MGM has a cost of two cycles per round while DSA
only has a cost of one cycle per round. Pseudocode
for DSA and MGM is given in algorithms 1 and 2
respectively.

We are able to prove the following monotonici-
ty property of MGM. Let us refer to the set of ter-
minal states of the class of 1-optimal algorithms as
AE, that is, no unilateral modification of values will
increase the sum of all constraint utilities connect-
ed to the acting agent(s) if a � AE.

Proposition 3 When applying MGM, the global
reward R(ai) is strictly increasing with respect to the
round i until ai � AE.

Why is monotonicity important? In anytime
domains where communication may be halted
arbitrarily and existing strategies must be executed,
randomized algorithms risk being terminated at
highly undesirable assignments. Given a starting
condition with a minimum acceptable global util-
ity, monotonic algorithms guarantee lower bounds
on performance in anytime environments. Con-
sider the following example.

Example 2 Consider two variables, both of which
can take on the values red or green, with a con-
straint that takes on utilities as follows:

U(red,red) = 0.
U(red,green) = U(green,red) = 1.
U(green,green) = –1000.

If (red, red) is the initial condition, each agent
would choose to alter its value to green if given the

Articles

FALL 2008 57

opportunity to move. If both agents are allowed to
alter their value in the same round, we would end
up in the adverse state (green, green). When using
DSA, there is always a positive probability for any
time horizon that (green, green) will be the resulting
assignment.

2-Optimal Algorithms
When applying 1-optimal algorithms, the evolu-
tion of the assignments will terminate at a 1-opti-
mum within the set AE described earlier. One
method to improve the solution quality is for
agents to coordinate actions with their neighbors.
This allows the evolution to follow a richer space
of trajectories and alters the set of terminal assign-
ments. In this section we introduce two 2-optimal
algorithms, where agents can coordinate actions
with one other agent. Let us refer to the set of ter-
minal states of the class of 2-optimal algorithms as
A2E, that is neither a unilateral nor a bilateral mod-
ification of values will increase the sum of all con-
straint utilities connected to the acting agent(s) if
a � A2E.

We now introduce two algorithms that allow for
coordination while maintaining the underlying
distributed decision-making process: MGM-2
(maximum gain message-2) and SCA-2 (stochastic
coordination algorithm-2). Both MGM-2 and SCA-
2 begin a round with agents broadcasting their cur-
rent values.

The first step in both algorithms is to decide
which subset of agents is allowed to make offers.
We resolve this by randomization, as each agent

generates a random number uniformly from [0, 1]
and considers itself to be an offerer if the random
number is below a threshold q. If an agent is an
offerer, it cannot accept offers from other agents.

All agents who are not offerers are considered to
be receivers. Each offerer will choose a neighbor at
random (uniformly) and send it an offer message
that consists of all coordinated moves between the
offerer and receiver that will yield a gain in local
utility to the offerer under the current context. The
offer message will contain both the suggested val-
ues for each agent and the offerer’s local utility
gain for each value pair.

Each receiver will then calculate the global util-
ity gain for each value pair in the offer message by
adding the offerer’s local utility gain to its own
utility change under the new context and (very
importantly) subtracting the difference in the link
between the two so it is not counted twice. If the
maximum global gain over all offered value pairs is
positive, the receiver will send an accept message to
the offerer with the appropriate value pair, and
both the offerer and receiver are considered to be
committed. Otherwise, it sends a reject message to
the offerer, and neither agent is committed.

At this point, the algorithms diverge. For SCA-2,
any agent who is not committed and can make a
local utility gain with a unilateral move generates
a random number uniformly from [0, 1] and con-
siders itself to be active if the number is under a
threshold p. At the end of the round, all commit-
ted agents change their values to the committed
offer and all active agents change their values

Articles

58 AI MAGAZINE

1: SendValueMessage(myNeighbors, myValue)
2: currentContext = GetValueMessages(myNeighbors)
3: [gain,newValue] = BestUnilateralGain(currentContext)
4: if Random(0,1) < Threshold then myValue = newValue

1: SendValueMessage(myNeighbors, myValue)
2: currentContext = GetValueMessages(myNeighbors)
3: [gain,newValue] = BestUnilateralGain(currentContext)
4: SendGainMessage(myNeighbors,gain)
5: neighborGains = ReceiveGainMessages(myNeighbors)
6: if gain > max(neighborGains) then myValue = newValue

Algorithm 1. DSA (myNeighbors, myValue)

Algorithm 2. MGM (myNeighbors, myValue)

according to their unilateral best response. Thus,
SCA-2 requires three cycles (value, offer,
accept/reject) per round.

In MGM-2 (after the offers and replies are set-
tled), each agent sends a gain message to all its
neighbors. Uncommitted agents send their best
local utility gain for a unilateral move.

Committed agents send the global gain for their
coordinated move. Uncommitted agents follow
the same procedure as in MGM, where they modi-
fy their value if their gain message was larger than
all the gain messages they received. Committed
agents send their partners a confirm message if all
the gain messages they received were less than the
calculated global gain for the coordinated move
and send a deconfirm message otherwise. A com-
mitted agent will only modify its value if it receives
a confirm message from its partner. We note that
MGM-2 requires five cycles (value, offer, accept or
reject, gain, confirm or deconfirm) per round, and
has less concurrency than SCA-2 (since no two
neighboring groups in MGM-2 will ever move
together). Given the excess cost of MGM-2, why
would one choose to apply it? We can show that
MGM-2 is monotonic in global utility (proof omit-
ted here).

Proposition 4 When applying MGM-2, the global
reward R(ai) is strictly increasing with respect to the
round i until ai � A2E.

Furthermore, 2-optimal algorithms will some-
times yield a solution of higher quality than 1-
optimal algorithms as shown in the example
below; however, this is not true of all situations.

Example 3 Consider two agents trying to schedule
a meeting at either 7:00 AM or 1:00 PM with the total
reward to the team on the constraint between the
two agents as follows: R(7, 7) = 1, R(7, 1) = R(1, 7) =
–100, R(1, 1) = 10. If the agents started at (7, 7), any
1-coordinated algorithm would not be able to reach
the global optimum, while 2-coordinated algo-
rithms would.

3-Optimal Algorithms
The main complication with moving to 3-optimal-
ity is the following: With 2-optimal algorithms,
the offerer could simply send all information the
receiver needed to compute the optimal joint
move in the offer message itself. With groups of
three agents, this is no longer possible, and thus
two more message cycles are needed. MGM-3, the
monotonic version of the 3-optimal algorithm
thus requires seven cycles. However, SCA-3, the
stochastic version only requires five.

Experiments
We performed two groups of experiments—one for
“medium-sized” DCOPs of 40 variables and one for
DCOPs of 1000 variables, larger than any problems

considered in papers on complete DCOP algo-
rithms.

We considered three different domains for our
first group of experiments. The first was a standard
graph-coloring scenario, in which a cost of one is
incurred if two neighboring agents choose the
same color, and no cost is incurred otherwise.
Real-world problems involving sensor networks,
in which it may be undesirable for neighboring
sensors to be observing the same location, are
commonly mapped to this type of graph-coloring
scenario. The second was a fully randomized
DCOP, in which every combination of values on a
constraint between two neighboring agents was
assigned a random reward chosen uniformly from
the set {1, …, 10}. The third domain was chosen to
simulate a high-stakes scenario, in which misco-
ordination is very costly. In this environment,
agents are negotiating over the use of resources. If
two agents decide to use the same resource, the
result could be catastrophic. An example of such a
scenario might be a set of unmanned aerial vehi-
cles (UAVs) negotiating over sections of airspace,
or rovers negotiating over sections of terrain. In
this domain, if two neighboring agents take the
same value, there is a large penalty incurred (–
1000). If two neighboring agents take different
values, they obtain a reward chosen uniformly
from {10, …, 100}. In all of these domains, we con-
sidered 10 randomly generated graphs with 40
variables, three values per variable, and 120 con-
straints. For each graph, we ran 100 runs of each
algorithm.

We used communication cycles as the metric for
our experiments, as is common in the DCOP liter-
ature, since it is assumed that communication is
the speed bottleneck. (However, we note that, as
we move from 1-optimal to 2-optimal to 3-optimal
algorithms, the computational cost at each agent i
increases by a polynomial factor. For brevity, com-
putational load is not discussed further in this arti-
cle. Although each run was for 256 cycles, most of
the graphs display a cropped view, to show the
important phenomena.

Figure 7 shows a comparison between MGM
and DSA for several values of p. For graph color-
ing, MGM is dominated, first by DSA with p = 0.5,
and then by DSA with p = 0.9. For the randomized
DCOP, MGM is completely dominated by DSA
with p = 0.9. MGM does better in the high-stakes
scenario as all DSA algorithms have a negative
solution quality (not shown in the graph) for the
first few cycles. This happens because at the
beginning of a run, almost every agent will want
to move. As the value of p increases, more agents
act simultaneously, and thus, many pairs of
neighbors are choosing the same value, causing
large penalties. Thus, these results show that the
nature of the constraint utility function makes a

Articles

FALL 2008 59

fundamental difference in which algorithm dom-
inates. Results from the high-stakes scenario con-
trast with Zhang and colleagues (2003) and show
that DSA is not necessarily the algorithm of
choice when compared with DBA across all
domains.

Figure 8 compares MGM, MGM-2, and MGM-3
for q = 0.5. In all three cases, MGM-3 increases at
the slowest rate, but eventually overtakes MGM-2.
Similar results were observed in our comparison of
DSA, SCA-2, and SCA-3.

For our second group of experiments, we con-
sidered DCOPs of 1000 variables using the graph-
coloring and random DCOP domains. The main
purpose of these experiments was to demonstrate
that the k-optimal algorithms quickly converge to
a solution even for very large problems such as
these. A random DCOP graph was generated for
each domain, for link densities ranging from 1 to
5, and results for MGM and MGM-3 are shown in
the following tables. The tables shown represent
an average of 100 runs (from a random initial set
of values) for each DCOP. For comparison, com-
plete algorithms (Modi et al. 2005) require thou-
sands of cycles just for graphs of less than 50 vari-
ables and constraint density of 3.

Conclusion
In multiagent domains involving teams of sen-
sors, or teams of unmanned air vehicles or of per-
sonal assistant agents, the effect of local interac-
tions between agents can be compactly
represented as a network structure. In such agent
networks, not all agents interact with all others.
DCOP is a useful framework to reason about
agents’ local interactions in such networks. This
article considers the case of k-optimality for
DCOPs: agents optimize a DCOP by forming
groups of one or more agents until no group of k
or fewer agents can possibly improve the solu-
tion. The article provides an overview of three
key results related to k-optimality. The first set of
results gives worst-case guarantees on the solu-
tion quality of k-optima in a DCOP. These guar-
antees can help determine an appropriate k-opti-
mal algorithm, or possibly an appropriate
constraint graph structure, for agents to use in
situations where the cost of coordination
between agents must be weighed against the
quality of the solution reached. The second set of
results gives upper bounds on the number of k-
optima that can exist in a DCOP. Because each
joint action consumes resources, knowing the
maximal number of k-optimal joint actions that
could exist for a given DCOP allows us to allocate
sufficient resources for a given level of k. Finally,
we sketched algorithms for k-optimality and pro-
vided some experimental results on the perform-

Articles

60 AI MAGAZINE

Graph Coloring Randomized DCOP

High-Stakes Scenario

-30

-25

-20

-15

-10

-5

0 50

so
lu

tio
n

q
ua

lit
y

cycles

700

705

710

715

720

725

730

735

740

745

750

0 100

so
lu

tio
n

q
ua

lit
y

cycles

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60

so
lu

tio
n

q
ua

lit
y

MGM

DSA, p = .1

DSA, p = .5

DSA, p = .9

Figure 7. Comparison of the Performance of MGM and DSA.

Density Cycles (MGM) Cycles (MGM-3)

1 7.12 270.62

2 11.74 3277.89

3 15.58 4708.06

4 19.92 5220.46

5 23.30 5448.10

Table 1. Results for MGM and MGM-3
for Large DCOPs: Graph Coloring.

ance of 1-, 2- and 3-optimal algorithms for sever-
al types of DCOPs.

References
Boyd, S., and Vandenberghe, L. 2004. Convex Optimiza-
tion. New York: Cambridge University Press.

Cox, J.; Durfee, E.; and Bartold, T. 2005. A Distributed
Framework for Solving the Multiagent Plan Coordination
Problem. In Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2005). New York: Association for Computing
Machinery

Fitzpatrick, S., and Meertens, L. 2003. Distributed Coor-
dination through Anarchic Optimization. In Distributed
Sensor Networks: A Multiagent Perspective, V. Lesser, C.
Ortiz, and M. Tambe, eds. Dortrecht, The Netherlands:
Kluwer, 257–295.

Kearns, M.; Littman, M.; and Singh, S. 2001. Graphical
Models for Game Theory. In Proceedings of the 17th Con-
ference in Uncertainty in Artificial Intelligence. San Francis-
co: Morgan Kaufmann Publishers.

Ling, S., and Xing, C. 2004. Coding Theory: A First Course.
New York: Cambridge University Press.

Mailler, R., and Lesser, V. 2004. Solving Distributed Con-
straint Optimization Problems Using Cooperative Medi-
ation. In Proceedings of the Fifth International Joint Confer-
ence on Autonomous Agents and Multiagent Systems
(AAMAS 2006). New York: Association for Computing
Machinery.

Modi, P. J.; Shen, W.; Tambe, M.; and Yokoo, M. 2005.
Adopt: Asynchronous Distributed Constraint Optimiza-
tion with Quality Guarantees. Artificial Intelligence 161(1-
2): 149–180.

Pearce, J., and Tambe, M. 2007. Quality Guarantees on k-
optimal Solutions for Distributed Constraint Optimiza-
tion. In Proceedings of the Twentieth International Joint Con-
ference on Artificial Intelligence. Menlo Park, CA: AAAI
Press.

Pearce, J.; Tambe, M.; and Maheswaran, R. 2006. Solution
Sets for DCOPs and Graphical Games. In Proceedings of the
Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2006). New York: Associ-
ation for Computing Machinery.

Petcu, A., and Faltings, B. 2005. A Scalable Method for
Multiagent Constraint Optimization. In Proceedings of the
Nineteenth International Joint Conference on Artificial Intel-
ligence. Denver, CO: Professional Book Center.

Ruan, S.; Meirina, C.; Yu, F.; Pattipati, K. R.; and Popp, R.
L. 2005. Patrolling in a Stochastic Environment. Paper
presented at the 10th International Command and Con-
trol Research and Technology Symposium. June 13–16,
2005. McLean, Virginia.

Schurr, N.; Marecki, J.; Scerri, P.; Lewis, J.; and Tambe, M.
2005. The DEFACTO System: Training Tool for Incident
Commanders. In Proceedings of the Seventeenth Conference
on Innovative Applications of Artificial Intelligence. Menlo
Park, CA: AAAI Press

Tate, A.; Dalton, J.; and Levine, J. 1998. Generation of
Multiple Qualitatively Different Plan Options. In Proceed-
ings of the Third International Conference on Artificial Intel-
ligence Planning Systems. Menlo Park, CA: AAAI Press.

Vickrey, D., and Koller, D. 2002. Multi-Agent Algorithms

Articles

FALL 2008 61

Graph Coloring Randomized DCOP

High-Stakes Scenario

-30

-25

-20

-15

-10

-5

0 20 40 60

so
lu

tio
n

q
ua

lit
y

cycles

700

705

710

715

720

725

730

735

740

745

750

0 50 100

so
lu

tio
n

q
ua

lit
y

cycles

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60

so
lu

tio
n

q
ua

lit
y

cycles

MGM

MGM-2, q = .1

MGM-2, q = .5

MGM-2, q = .9

Figure 8. Comparison of the Performance of MGM,
MGM-2, and MGM-3.

for Solving Graphical Games. In Proceedings of the Eigh-
teenth AAAI Conference on Artificial Intelligence, 345–351.
Menlo Park, CA: AAAI Press.

Vlassis, N.; Elhorst, R.; and Kok, J. R. 2004. Anytime Algo-
rithms for Multiagent Decision Making Using Coordina-
tion Graphs. In Proceedings of the IEEE International Con-
ference on Systems, Man and Cybernetics. Piscataway, NJ:
Institute of Electrical and Electronics Engineers.

Yokoo, M., and Hirayama, K. 1996. Distributed Breakout
Algorithm for Solving Distributed Constraint Satisfaction
and Optimization Problems. In Proceedings of the Second
International Conference on Multiagent Systems. Menlo
Park, CA: AAAI Press.

Zhang, W.; Xing, Z.; Wang, G.; and Wittenburg, L. 2003.
An Analysis and Application of Distributed Constraint
Satisfaction and Optimization Algorithms in Sensor Net-
works. In Proceedings of the Second International Joint Con-
ference on Autonomous Agents & Multiagent Systems
(AAMAS 2003). New York: Association for Computing
Machinery.

Jonathan Pearce received his Ph.D. in
computer science at the University of
Southern California and is now a
quantitative trader at JPMorganChase.
He received his bachelor’s and master’s
degrees in computer science from MIT.
He is interested in multiagent systems,
distributed constraint reasoning, game

theory, and finance, and his papers have been published
in the IJCAI, AAAI, and AAMAS conferences. He was the
organizer of the Ninth International Workshop on Dis-
tributed Constraint Reasoning in 2007.

Milind Tambe is a professor of com-
puter science at the University of
Southern California (USC). He
received his Ph.D. from the School of
Computer Science at Carnegie Mellon
University. He leads the Teamcore
research group at USC, with research
interests in multiagent systems, specif-

ically multiagent and agent-human teamwork. He is a fel-
low of AAAI (Association for Advancement of Artificial
Intelligence) and recipient of the ACM (Association for
Computing Machinery) SIGART Agents Research award.
He is also recipient of the Okawa foundation faculty
research award, the RoboCup Scientific Challenge Award
for outstanding research, and the ACM recognition of
service award; and his papers have been selected as best
papers or finalists for best papers at premier agents con-
ferences and workshops including ICMAS’98, Agents’99,
AAMAS’02, AAMAS’03, CEEMAS’05, SASEMAS’05,
DCR’07, CTS’08, and AAMAS’08. He was general cochair
of the International Joint Conference on Agents and
Multiagent Systems (AAMAS) 2004 and program cochair
of the International Conference on Multiagent systems
(ICMAS) 2000. Currently on the board of directors of the
International Foundation for Multiagent Systems, he has
also served as the associate editor of the Journal of Artifi-
cial Intelligence Research (JAIR) and the Journal of
Autonomous Agents and Multiagent Systems (JAAMAS).

Rajiv Maheswaran is a research assis-
tant professor at the University of
Southern California's Computer Sci-
ence Department and a research scien-
tist at the University of Southern Cali-
fornia's Information Sciences Institute.
He received a B.S. in applied mathe-
matics, physics, and engineering from

the University of Wisconsin-Madison in 1995. He
received M.S. and Ph.D. degrees in electrical and com-
puter engineering from the University of Illinois at
Urbana-Champaign in 1998 and 2003, respectively. His
research spans various aspects of multiagent systems and
distributed artificial intelligence, focusing on decision-
theoretic and game-theoretic frameworks and solutions.
He has written more than 45 papers and book chapters

in artificial intelligence, decision and control theory, and
been an active reviewer for major conferences and jour-
nals in these fields. He has served on the senior program
committee for AAMAS 2008 and on the program com-
mittees for several AAMAS and AAAI conferences. He was
a co-organizer of the 2007 and 2008 AAMAS workshops
on multiagent sequential decision-making in uncertain
domains..

Articles

62 AI MAGAZINE

THE THIRD INTERNATIONAL
AAAI CONFERENCE ON

WEBLOGS
AND SOCIAL MEDIA

Papers are solicited in areas including (but not limited to) the
following:

� Psychological, personality-based, sociological, or ethno-
graphic studies of social media, or the relationship between
social media and mainstream media.

� Analysis of patterns and/or spreading of influence between
bloggers; tools for assessing trust and reputation; social net-
work analysis (for example, community identification,
expertise discovery, and so on), as applied to social media;
and analysis of trends and time series in social media.

� Methods for ranking bloggers and/or blogs by user relevance,
or ranking web pages based on blogs; and techniques for
crawling, spidering and indexing social media.

� Human-computer interaction studies of tools for using social
media; novel ways of applying or interacting with social
media; and visualization of social media or social networks.

� Application of computational linguistics to of social media
(e.g. entity or fact extraction, discourse analysis, summa-
rization, sentiment analysis, etc); probabilistic modeling of
social media; and identification of demographic information
(for example, gender, age, and so on) in social media.

� Semantic web approaches to managing socially constructed
knowledge or collaborative creation of structured knowl-
edge.

General Chairs
William W. Cohen (Carnegie Mellon/Google)
Nicolas Nicolov (J.D.Power and Assoc., McGraw-Hill)

Program Chairs
Natalie Glance (Google Inc)
Matthew Hurst (Live Labs, Microsoft)

Data Chairs
Ian Soboroff (NIST)
Akshay Java (UMBC)

Local Chair
Cameron Marlow (Facebook)

Details
www.aaai.org/Conferences/ICWSM/icwsm009.php
icswm09@aaai.org

