
An investor composes a portfolio of stocks in order to obtain a high
return on his or her investment with a small risk of incurring a loss; an
oncologist prescribes radiotherapy to a cancer patient so as to destroy the
tumor without causing damage to healthy organs; an airline manager
constructs schedules that incur small salary costs and that ensure smooth
operation even in the case of disruptions. All three decision makers
(DMs) are in a similar situation—they need to make a decision trying to
achieve several conflicting goals at the same time: The highest return
investments are in general the riskiest ones, tumors can always be
destroyed at the expense of irreversible damage to healthy organs, and
the cheapest schedules to operate are ones that leave as little as possible
time between flights, wreaking havoc to operations in the case of unex-
pected delays.

Moreover, the investor, the oncologist, and the airline manager are all
in a situation where the number of available options or alternatives is
very large or even infinite. There are infinitely many ways to invest mon-
ey and infinitely many possible radiotherapy treatments, but the num-
ber of feasible crew schedules is finite, albeit astronomical in practice.
The alternatives are therefore described by constraints, rather than
explicitly known: the sums invested in every stock must equal the total
invested; the radiotherapy treatment must meet physical and clinical
constraints; crew schedules must ensure that each flight has exactly one
crew assigned to operate it.

Mathematically, the alternatives are described by vectors in variable
or decision space; the set of all vectors satisfying the constraints is called
the feasible set in decision space. The consequences or attributes of the
alternatives are described as vectors in objective or outcome space, where
outcome (objective) vectors are a function of the decision (variable) vec-
tors. The set of outcomes corresponding to feasible alternatives is called

Articles

WINTER 2008 47Copyright © 2008, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Multiobjective
Optimization

Matthias Ehrgott

n Using some real-world examples I
illustrate the important role of multiob-
jective optimization in decision making
and its interface with preference han-
dling. I explain what optimization in
the presence of multiple objectives
means and discuss some of the most
common methods of solving multiob-
jective optimization problems using
transformations to single-objective
optimization problems. Finally, I
address linear and combinatorial opti-
mization problems with multiple objec-
tives and summarize techniques for
solving them. Throughout the article I
refer to the real-world examples intro-
duced at the beginning.

the feasible set in objective space. The decision
problem consists in finding that alternative with
the most preferred outcome. But what exactly does
“most preferred outcome” mean? Although in
each of the attributes (or objectives or goals or cri-
teria) the answer is clear (high return is preferred to
low, cheap schedules are preferred to expensive
ones), the situation is more difficult when all crite-
ria are considered together: It is not possible to
compare investments if the first has higher return
but also higher risk than the second unless further
information on trade-offs between the objectives
or other preference information is available. One
can distinguish three situations.

If the decision maker is able to completely spec-
ify his or her preferences explicitly, it is possible to
construct a utility function that combines the cri-
teria in a single function using multiattribute util-
ity theory (see chapter seven in Figueira, Greco,
and Ehrgott [2005]). The decision problem then
turns into a single-objective optimization problem
that can then be solved by traditional mathemati-
cal programming methods. This scenario is very
unrealistic.

If preference information is not complete or not
explicitly available but one assumes that the DM is
implicitly aware of those preferences, one can
involve the DM in the solution process and assess
preferences by asking for pairwise comparisons,
aspiration and reservation levels, and so on. Such
a scenario leads to interactive methods for finding
a preferred alternative, where preference elicitation
from the DM alternates with some calculation,
often the optimization of a function using the
information given by the DM as parameters (see
chapter 16 in Figueira, Greco, and Ehrgott [2005]).

If, however, no preference information is avail-
able, DMs face a multiobjective optimization problem
(chapter 17 in Figueira, Greco, and Ehrgott [2005]).
This is what I am interested in this article. The only
assumption is that for each of the criteria the DM
prefers less to more (which is no loss of generality
because in the case of more is better one can switch
the sign of the objective). The goal of multiobjec-
tive optimization is to identify those alternatives
that cannot be improved according to the “less is
better” paradigm. These alternatives are then sub-
ject to further analysis to find the most preferred
solution for the DM. This latter step is the topic of
multicriteria decision analysis (Figueira, Greco,
and Ehrgott 2005).

In the following section I define multiobjective
optimization a little more formally and explain
what solving such a problem means. Then I talk
about some solution techniques before focusing on
multiobjective optimization problems with linear
objectives and constraints and either continuous
or discrete variables in some more detail. A math-
ematical treatment of what follows including

proofs of all statements can be found in my text-
book (Ehrgott 2005b).

Multiobjective
Optimization Problems

Following the description above, I will assume that
alternatives can be described by vectors x � n, the
decision space. Feasible alternatives are those that
satisfy certain constraints, mathematically
expressed as g(x) 0, where g : n → m is a func-
tion describing the m constraints. I will refer to X
as feasible set in decision space and to elements of X
as feasible solutions. The outcome vector y = f(x)
associated with alternative x is an evaluation of x
according to a function f : n → p, that is, fk(x) is
the value of objective k attained by solution x and
there are p objectives in total. The set of outcome
vectors of all feasible solutions, Y = {f(x): x � X}, is
called the feasible set in objective space p of the
MOP (1).

Because smaller values are preferred for all objec-
tives, a multiobjective optimization problem con-
sists in the minimization of f over all feasible solu-
tions x in the feasible set X = {x � n : g(x) 0}:

min{f(x): g(x) 0, x � n}. (1)

From now on I will refer to the constraints just
as x � X. To solve problem 1 it is not enough to
consider minima of the individual objective func-
tions fk, that is x* � X such that fk (x*) fk (x) for
all x � X.

In multiobjective optimization, illustrations in
objective space are very enlightening. Figure 1
shows the feasible set Y in objective space of a
problem with two objectives. The minimum value
of f1 is 0, attained for a solution x with f2(x) = 8.
The minimum value of f2 is 1, and there are sever-
al minimizers with values for f1 between seven and
eight. As in figure 1, the set of minimizers of all p
functions is usually disjoint.

In fact, because problem 1 implies minimization
over vectors, it is necessary to specify a (partial)
order on p to define the meaning of the min oper-
ator (unlike the set of real numbers , p does not
have a canonical order). I use the following nota-
tions:

y1 y2 ⇔ y1
k y2

k for k = 1, …, p;

y1 < y2 ⇔ y1
k < y2

k for k = 1, …, p;

y1 ≤ y2 ⇔ y1 y2 and y1 ≠ y2;

y1 lex y2 ⇔ y1 = y2 or y1
1 < y2

1 for the smallest index
l with y1

l ≠ y2
l}.

Thus, outcome vectors are compared compo-
nentwise. Weak dominance requires all compo-
nents of y1 to be less than or equal to those of y2.
Strict dominance < asks for strict inequality in all
components and dominance ≤ for strict inequality
in at least one component. Finally, for the lexico-

Articles

48 AI MAGAZINE

graphic order, the first component for which y1

and y2 differ is decisive.
Using the lexicographic order lex, x* is lexico-

graphically minimal if f(x*) lex f(x) for all x � X.
This definition relates to the given order of objec-
tives and implies that the objectives are ordered
according to decreasing importance. A more gen-
eral definition of lexicographic minimality is to
define x* to be lexicographically minimal if fπ(x*)
lex fπ(x) for all x � X and some permutation fπ of
(f1, …, fp). The lexicographic minima in figure 1 are
(0, 8) and (7, 1).

The lexicographic order is total, that is, any two
vectors can be compared. Multiobjective optimiza-
tion most often uses the partial orders ≤ and < , for
which this is not the case (hence the name partial
order). A feasible solution x* is weakly efficient if
there is no x � X with f(x) < f(x*). f(x*) is then
called weakly nondominated point. x* belongs to the
set of efficient solutions XE if there is no x with f(x)
≤ f(x*). In that case f(x*) � YN = f(XE) is nondomi-
nated. In figure 1 the point (2, 7) is (strictly) dom-
inated, as there are feasible points to the left and
down. Point (4, 4), however, is nondominated
whereas (4, 5) is weakly nondominated but domi-
nated by (4, 4).

In other words, x* � X is efficient if a move to
another solution x that improves one objective
implies that at least one other deteriorates. Thus,
efficient solutions and nondominated points are
about trade-offs between the different objectives.
In order to avoid unbounded trade-offs, which are
undesirable in most practical applications, the fol-
lowing definition is often used.

A feasible solution x* is properly efficient if x* is effi-
cient and there is a scalar M > 0 such that for each k
and x with fk(x) < fk(x*) there is l with fl(x*) < fl(x)
and (fk(x*) – fk(x)) / (fl(x) – fl(x*)) M. The outcome
f(x*) is called properly nondominated.

Figure 2 shows weakly nondominated points,
nondominated points, and properly nondominat-
ed points for the same example used in figure 1.
The points on the curves between (0, 8) and (1.2,
6) as well as (3.6, 6) and (8, 1) are all weakly non-
dominated. Among those, only points between (0,
8) and (1.2, 6), between (3.6, 6) and (4, 5) (exclud-
ing those points), and between (4, 4) and (7, 1) are
nondominated. Among the nondominated points,
(1.2, 6) is not properly nondominated.

From the definitions it is clear that each proper-
ly efficient solution is efficient and that each effi-
cient solution is weakly efficient. Correspondingly,
each properly nondominated point is nondomi-
nated and each nondominated point is weakly
nondominated. Figure 2 shows that the inclusions
are strict in general. In fact, it is possible that there
is only one nondominated point among an infi-
nite set of weakly nondominated ones. Also, it is
possible that there are no properly nondominated

points even though every feasible point is non-
dominated.

Having defined the meaning of min in problem
1 and thus the concept of optimality in multiob-
jective optimization, I briefly mention conditions
for the existence of efficient solutions respectively
nondominated points. There are a variety of con-
ditions known in the literature. Just as in the sin-
gle-objective case they usually use some form of
compactness of X and continuity of f, respectively
compactness of Y. Borwein (1983) proved that a
nondominated point exists if there is some feasi-
ble point y0 such that that the set of feasible points
weakly dominating y0 is compact. In figure 2 this is
shown for y0 = (2, 7) and y0 = (4, 4). The result
implies that an efficient solution to problem 1
exists if X is compact and the function f satisfies a
weak continuity condition.

The next question is the range of values of the
objective functions fk over the efficient set. The ide-
al point is a vector of the best (minimal) values
that each fk can take over the feasible, and thus the
efficient set: yI

k = min{fk(x):x � X}. The nadir point,
on the other hand, gives the worst outcomes over
the efficient set, yN

K = max{fk(x):x � XE}. The maxi-
mum of fk over efficient solutions is different from
the maximum over feasible solutions, the latter
defining the antideal point by yAI

k = max{fk(x):x �

Articles

WINTER 2008 49

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Y = f(X)

Figure 1. Feasible Set in Objective Space of a Multiobjective
Optimization Problem with Two Objectives.

X}. Apart from yI, yN, and yAI, utopian points yU = yI

– � for some vector � � p with small positive
entries are often used. Clearly, yI y yN for all y
� YN and under the assumptions of conflicting
objectives, continuity and compactness, for each k
= 1, …, p there is y � YN such that yk = yI

k (yk = yN
k).

Thus, the ideal and nadir points are the best possi-
ble lower and upper bound vectors for the non-
dominated set. Figure 2 illustrates these points for
my little example. Any point strictly to the left and
below yI = (0, 1) is a utopian point.

For the rest of this article I will assume that XE
(and thus YN) is nonempty and that yI ≠ yN, that is,
problem 1 is not trivial. The multiobjective opti-
mization problems faced by the investor, the
oncologist, and the airline manager are then to
identify portfolios for which an increase in return
can only be achieved by accepting higher risk; find
treatment plans that cannot provide better protec-
tion of healthy organs without compromising
tumor control; and determine crew schedules for
which reducing cost implies greater delays during
disruptions.

Finding Efficient Solutions
by Scalarization

In this section I will talk about methods to solve
multiobjective optimization problems using sin-

gle-objective optimization tools. The principle of
scalarization is to convert the multiobjective pro-
gram (1) to a single-objective program that usually
depends on some parameters not included in (1)
and then solve the scalarized problem repeatedly
with different parameter values. A scalarization
method ideally has the properties of correctness,
that is, an optimal solution to the scalarized prob-
lem is a (weakly, properly) efficient solution to (1)
and completeness, that is, every (weakly, properly)
efficient solution to (1) can be found by solving a
scalarized problem with appropriate parameter val-
ues.

There are scores of scalarization techniques in
the literature. Most of them follow one ore more of
three ideas: minimize an aggregation of the objec-
tives, convert objectives to constraints, or mini-
mize the distance to some reference point. In the
rest of this section I explain these three ideas with
the best known scalarization techniques.

The most straightforward idea to scalarize an
MOP is to assign some nonnegative weight (inter-
preted as importance of the objective) to each
objective and add the weighted objectives up to be
minimized. This is known as the weighted-sum
method. With weight vector � ≥ 0 the single-objec-
tive problem to minimize the weighted sum of the
objects subject to the original feasibility con-
straints is

(2)

The (negative of) weight vector � is the normal
of a hyperplane in objective space, and can be
interpreted as a direction of minimization as
shown in figure 3 for � = (1, 1), � = (1, 0), and � =
(0, 1).

Results concerning the correctness of the
method depend on the values of �. Assuming x* to
be an optimal solution to problem 2 it is easy to
see that the following assertions hold.

If � ≥ 0 then x* is a weakly efficient solution to prob-
lem 1.

If furthermore there is no other feasible point y
such that the sum of �k yk equals the sum of �k fk(x*)
then x* is an efficient solution to problem 1.

If all weights are positive then x* is a properly effi-
cient solution to 1.

It is important to note that the weighted-sum
method is not complete in general. There is no
nonnegative nonzero weight vector that can estab-
lish (4, 4) as a nondominated point of the small
example in figure 3 by solving a weighted-sum
problem. For a completeness result, convexity
assumptions are needed. Geoffrion (1968) proved
that if X and f are such that that the set Y, extend-
ed by all points in p that are weakly dominated
by at least one point in Y, is convex then for any

min .λk k
k

p

f x x X() ∈
⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪=

∑ :
1

Articles

50 AI MAGAZINE

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

yI

yAI

yN

Y = f(X)

Figure 2. Weakly Nondominated, Nondominated,
and Properly Nondominated Points.

weakly efficient solution x* there is a weight vector
� ≥ 0 such that x* is an optimal solution to prob-
lem 2; and for any properly efficient solution x*
there is a positive � > 0 such that x* is an optimal
solution to problem 2.

Note that there is no sufficient condition for effi-
cient solutions. Although positive weights will
always yield properly efficient solutions, some zero
weights may be needed to obtain efficient solu-
tions with unbounded trade-offs. Because weight
vectors � ≥ 0 may, however, result in weakly non-
dominated points (such as for � = (0, 1) in figure 3)
it is not possible to give a characterization of effi-
cient solutions. In fact, in multiobjective opti-
mization it is common that statements about
weakly and properly efficient solutions can be
proved, whereas analogous results for efficient
solutions that are “in between” weakly and prop-
erly efficient ones are missing.

To address the issue that some efficient solutions
cannot be found by solving a weighted-sum prob-
lem, the notion of supported efficient solutions,
the set of feasible solutions that are optimal to a
weighted-sum problem with positive weighting
vector, is useful. Geometrically, supported efficient
solutions are efficient solutions with f(x) on the
“lower left” boundary of the convex hull of Y as
shown in figure 3.

I have mentioned earlier that the difference
between nondominated and properly nondomi-
nated points can be large. For convex problems,
however, Hartley (1978) has shown that difference
can only occur on the boundary of the nondomi-
nated set: If Y extended by all points dominated by
some y � Y is closed and convex then the set of
properly nondominated points, which is equal to
the set of outcomes of supported efficient solu-
tions, is contained in the set of nondominated
points, which in turn is contained in the closure of
the set of outcomes of the set of supported efficient
solutions.

The statements mentioned above imply that the
weighted-sum method is unsuitable for solving
nonconvex MOPs. However, because the �’s are
often interpreted as importance weights (that is,
preference information), the temptation to use it
in practice is strong. The lack of mathematical jus-
tification should be a warning not to succumb to
this temptation and to handle preference informa-
tion with care in multiobjective optimization.

The problem of the investor, however, is solved
here as far as multiobjective optimization is con-
cerned. In standard portfolio selection, return is
measured as expected return of the portfolio, a lin-
ear function, and risk is measured as variance, a
concave function. All efficient portfolios are deter-
mined by the weighted-sum method and all irrele-
vant alternatives (following the less is better
assumption) are eliminated. He or she now needs

to analyze the efficient portfolios to make a final
decision, taking into account personal, that is sub-
jective, trade-offs between risk and return.

To solve nonconvex MOPs another idea is need-
ed. The most popular method is to retain only one
of the p objectives and turn all others into con-
straints, a concept known as �-constraint method.
For some vector � � p of upper bounds the scalar
optimization problem becomes

min{fl(x): fk(x) �k for k ≠ l, x � X}. (3)

It is easy to see that the �-constraint method is
correct. It is even complete and does not require
any convexity assumption. Chankong and Haimes
(1983) proved the following statements:

If x* is an optimal solution to problem 3 then x* is
weakly efficient.

If x* is an optimal solution to problem 3 and all
optimal solutions have the same objective value
vector y = f(x*) then x* is efficient.

A feasible solution x* � X is efficient if and only if
there is a vector � * � p of bounds such that x* is
an optimal solution to problem 3 for all l = 1, …, p.

At first glance, the �-constraint method appears
to be superior to the weighted-sum method. This
is, however, not so. To prove that for efficient solu-
tion x* there is some � such that x* is optimal to
problem 3 one only has to choose �k = fk(x*). But,
of course, in practice that value is unknown

Articles

WINTER 2008 51

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Y = f(X)

λ = (0, 1)
λ = (1, 1)

λ = (1, 0)

Figure 3. Solving a Weighted-Sum Problem.

because x* is unknown. Therefore, the method is
appropriate for checking whether or not some x* is
efficient or not, but it cannot easily be used to
derive an algorithm to solve nonconvex MOPs.

The third scalarization idea of minimizing the
distance to a reference point can be exemplified
with the compromise programming method. The
principle is simple: Because there is no feasible
solution that minimizes all objectives simultane-
ously (and thus achieves the ideal point), why not
try and find a feasible solution x such that f(x) is as
close as possible to the ideal point yI? Closeness
can be measured, for example, by a weighted q dis-
tance. A weighting vector � ≥ 0 and an integer 1 ≤
q < ∞ define the two compromise programming
problems

(4)

(5)

These are illustrated in figure 4. Assuming that �
= (1, 1) the feasible points of Y with minimal dis-
tance to yI lie on a circle (q = 2) or a square (q = ∞)
around yI. The choice of q and � determines how

min .
, ,

max
k p k k k

If x y x X
=

()−() ∈{ }
1

λ :

min λk k k
I q

k

p q

f x y x X()−()
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟ ∈

⎧

⎨
⎪

=
∑

1

1

:
⎪⎪⎪

⎩
⎪⎪⎪

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

and

the method behaves. Note that the weighted-sum
method is a special case of problem 4: For q = 1,
problem 4 reduces to the minimization of the
weighted sum of the objective functions.

If x* is a unique optimal solution to problem 4 or if
� > 0 and x* is an optimal solution to problem 4
then x* is efficient.

If x* is an optimal solution to problem 5 and � > 0
then x* is weakly efficient.

If x* is a unique optimal solution to problem 5 and
� > 0 then x* is efficient.

The use of yI makes it impossible to obtain com-
pleteness results. However, the results about cor-
rectness still hold if yI is replaced by a utopian
point yU. With that modification, Sawaragi,
Nakayama, and Tanino (1985) proved that optimal
solutions to problem 4 are properly efficient and
that YN is contained in the closure of the set of the
outcomes f(x) of all optimal solutions obtained
(when varying parameters q and � over all possible
values). Because this result is true without convex-
ity assumption, it is a generalization of the results
for the weighted-sum method to nonconvex prob-
lems. Indeed, the value of q necessary to obtain an
efficient solution x* to the MOP as an optimal solu-
tion to problem 4 can be interpreted as “degree of
nonconvexity” of the problem.

Articles

52 AI MAGAZINE

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

f1(x) 3.7

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

yI

Y = f(X)

Figure 4. The �-Constraint Method (left) and the Compromise Programming Method (right).

So far, I have introduced the three fundamental
ideas for scalarization: aggregation by weights,
conversion of objectives to constraints, and mini-
mizing distance to the ideal point. More generally,
one can write a scalarization method as min{s(f(x))
: r(f(x)) 0, x � X}, where s : p and r : p
t for some t. That is, s is a scalar valued function
of the objectives to be minimized (such as a
weighted sum, choosing one objective, the dis-
tance to the ideal point), subject to the original
constraints of the problem (x � X) and some addi-
tional constraints on the objective values.

Multiobjective
Linear Programming

The more information is available about an MOP,
the better the chance of solving it, that is, finding
its efficient solutions. As explained in the previous
section, (weakly, properly) efficient sets of convex
problems can be found with the weighted-sum
method. In this section, I will restrict this further
to linear problems and talk about algorithms to
solve multiobjective linear programs.

A bit more notation is needed first. In linear ver-
sions of problem 1 the objective function can be
written as f(x) = Cx with a p × n matrix C. Con-
straints are (without loss of generality) equality
constraints Ax = b where A is a m × n matrix plus
nonnegativity constraints x 0 on the variables.
Thus, a multiobjective linear program is

min {Cx : Ax = b, x 0} . (6)

The oncologist deals with a multiobjective lin-
ear program. Designing a radiotherapy treatment
involves the selection of the intensity of radiation
beams. Intensity can be modulated across a beam,
modeled by decomposing a beam into hundreds of
beam elements, each of which has its own variable
intensity. The radiation dose deposited in the
patient body is modeled as a linear function of
intensity. The oncologist specifies a dose to be
delivered to the tumor and prescribes upper limits
of tolerable dose to healthy organs. Because these
prescriptions are most often not simultaneously
achievable, a multiobjective linear program can be
formulated to minimize the underdosing of the
tumor and the overdosing of healthy organs (Shao
2008). All objectives and constraints are linear.

A multiobjective linear program is of course con-
vex. Recall that weakly (properly) efficient solu-
tions to convex MOPs are characterized by weight
vectors � ≥ 0 (respectively � > 0), whereas efficient
solutions cannot be characterized. A fundamental
result of multiobjective linear programming states
that all efficient solutions are properly efficient
and can therefore be obtained by the weighted-
sum method using positive weighting vectors.
More precisely, Isermann (1974) proved that a fea-

sible solution x* � X is an efficient solution to
problem 6 if and only if there is a positive weight
vector � > 0 such that �T Cx* T Cx for all feasible
solutions x � X.

To turn this theoretical result into a practical
algorithm extensions of the simplex algorithm
have been proposed, such as Steuer (1985). These
multiobjective simplex algorithms allow deter-
mining all efficient solutions to problem 6 by
explicitly computing all efficient extreme points of
X (all other efficient solutions are convex combi-
nations of those) and proceed in three phases.

Phase I: By solving a single-objective linear pro-
gram it can be determined whether the MOLP is
feasible. If so, a first feasible extreme point solution
is found, otherwise the algorithm ends.

Phase II: By solving another single-objective lin-
ear program it can be determined whether the
MOLP has any efficient solutions. If so, the LP pro-
vides a positive weight vector � such that an opti-
mal extreme point solution x* to the weighted sum
LP min{�T Cx : Ax = b, x ≥ 0} is an efficient extreme
point solution to problem 6.

Phase III: By modifying the rule for selecting
entering variables in the simplex algorithm to
account for the multiobjective nature of the prob-
lem, it is possible to explore all efficient extreme
point solutions to X starting from x*.

The number of efficient extreme point solutions
to an MOLP grows rapidly with the number of
objectives. Consequently, multiobjective simplex
algorithms are rather inefficient. Moreover, many
points in X map to the same point in Y, so finding
all efficient solutions implies finding all x with Cx
= y for all nondominated points y. This is much
stronger requirement than in the single-objective
case, where one is normally content with finding
one (not all) optimal solutions. Thus it seems more
appropriate to find the nondominated set and, for
each nondominated point y, one efficient solution
x with y = Cx.

The radiotherapy treatment planning problem
the oncologist tries to solve has thousands of vari-
ables and possibly hundreds of thousands of con-
straints, but only three objectives. The oncologist
wouldn’t make a decision based on the intensities
of beamlets, but rather on the dose deposited in
the patient’s body. There seems to be benefit in
solving MOLPs in objective rather than decision
space.

Harold Benson (1998) proposed an algorithm to
do just that. For ease of explanation I will assume
that Y is bounded and has dimension p. The algo-
rithm first constructs a polytope S0 defined by axes-
parallel hyperplanes and a supporting hyperplane
to Y such that Y is contained in S0. This polytope is
updated iteratively until it is assured that the non-
dominated points of Sk are identical to those of Y.
In iteration k, the algorithm first finds a vertex yk of

Articles

WINTER 2008 53

Sk–1 that is not contained in Y. It then finds the
boundary point sk on the line connecting yk with
an arbitrary but fixed point in the interior of Y.
Finally it finds a supporting hyperplane to Y con-
taining the boundary point sk and adds this hyper-
plane to the description of Sk-1 to obtain Sk. Thus,
in every iteration Sk becomes a better description of
Y. The oncologist has a set of outcomes correspon-
ding to efficient treatment plans at his or her dis-
posal. He or she needs to select one of those taking
into account his or her clinical judgment of the
individual patient’s case.

Multiobjective
Combinatorial Optimization

In this section I discuss MOPs that can be formu-
lated with binary variables, linear constraints, and
linear objectives

min{f(x) = Cx : Ax = b, x � {0, 1}n}. (7)

These problems are often used to model optimiza-
tion over some combinatorial structures such as
paths, trees, or tours in a graph; for example, the
traveling salesman problem belongs to this prob-
lem class. For this reason, they are called multiob-

jective combinatorial optimization (MOCO) prob-
lems. Usually, the entries of A, b, C are integers.
Apart from the feasible sets X in decision space and
Y in objective space the convex hull of Y extended
by all points dominated by some y � Y is of utmost
importance (see figure 5). Recall that for MOLPs
(for example, when relaxing the constraint of bina-
ry variables in problem 7) all efficient solutions are
supported. The binary variables in problem 7, how-
ever, destroy the convexity and nonsupported effi-
cient solutions exist. Furthermore, for some sup-
ported efficient solutions x*, Cx* is an extreme
point of the convex hull of Y. These are called
extreme supported efficient solutions. For all other
supported efficient solutions, Cx* is in the relative
interior of a face of the polyhedron. The nonsup-
ported efficient solutions are denoted XnE. For all
nonsupported efficient solutions x*, Cx* is in the
interior of the convex hull of Y.

Figure 5 shows the feasible set in objective space
for some MOCO problem as circles. The shaded
area is the convex hull of Y extended by all domi-
nated points. The problem has four supported
nondominated points, three of which are extreme
points. (5, 3) and (6, 2) are nonsupported non-
dominated points.

The convex hull of Y extended by all dominated
points is a polyhedron, thus it has finitely many
facets and therefore finitely many weight vectors
(the normals to the facets) are sufficient to find all
supported nondominated points by solving
weighted-sum problems, that is, by solving finite-
ly many single-objective combinatorial optimiza-
tion problems. Hence finding supported efficient
solutions is the same as solving several (possibly
many) single-objective combinatorial optimiza-
tion problems.

Note that because of the discrete nature of the
problem, all efficient solutions are properly effi-
cient, thus this distinction, which is so important
in nonlinear multiobjective optimization, disap-
pears for MOCO problems.

Efficient sets can also be classified according to
the definition of (Hansen 1979). Efficient solutions
x1, x2 are equivalent if Cx1 = Cx2. A complete set of
efficient solutions is a subset X* of XE such that for
all y � YN there is x � X* with f(x) = y. A minimal
complete set contains no equivalent solutions,
whereas the maximal complete set XE contains all
equivalent solutions.

Multiobjective combinatorial optimization
problems are hard problems in terms of computa-
tional complexity, that is, they are usually NP-
hard, #P-hard, and there are problem instances
with an exponential number of nondominated
points and thus exponentially many efficient solu-
tions. This is the case even for problems for which
the single-objective version is easily solvable by
polynomial time algorithms such as shortest path,

Articles

54 AI MAGAZINE

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 5. Nondominated Points for a MOCO Problem.

assignment, spanning tree, and network flow prob-
lems; see results and references in Ehrgott (2005b).
Although the number of efficient solutions, and
even the number of extreme supported nondomi-
nated points, can be exponential in the size of the
instance, numerical tests often show that the num-
ber of nonsupported nondominated points grows
exponentially with instance size, whereas the
number of supported nondominated points grows
polynomially with instance size. However, these
numbers do strongly depend on the numerical val-
ues of C so that general statements cannot be
made. In fact the influence of the values of the
entries in C on the difficulty of the problem is very
poorly understood at this time.

Next I will discuss some methods to solve
MOCO problems. First, I will review aspects of
scalarization in the context of MOCO problems.
Apart from correctness and completeness men-
tioned earlier, two further properties of scalariza-
tion methods are relevant. Computability is con-
cerned with whether or not the scalarized problem
is harder than the single-objective version of the
MOCO problem at hand. This question can be
addressed from a theoretical (for example, NP-
completeness) and a practical perspective (that is,
the computational effort needed to solve the
scalarized problem). Linearity refers to the objec-
tive and constraints of the scalarized problem.
Because problem 7 has linear objectives and con-
straints, it is generally desirable to preserve it to
avoid having to solve nonlinear integer programs.

The most common methods applied in MOCO
are the weighted-sum method (2) (despite being
unable to find any nonsupported efficient solu-
tions), the �-constraint method (3) and the com-
promise programming method (5) with maximum
norm, also called the weighted Chebychev
method. Note that the compromise programming
method with norms other than l1 and l∞ leads to
nonlinear objectives. It turns out that these as well
as some other methods that retain linearity and do
not introduce additional variables are special cases
of a general formulation. Let s(f(x)) denote the
function

that is, the sum of the weighted maximum and
weighted average deviation from a reference point
yR, where ck is the k-th row of C. This is used in

min{s(f(x)) : Cx ≤ �, x � X}. (8)

Although the previously mentioned scalariza-
tions are correct and linear, there is a conflict
between completeness and computability. Those
scalarizations that lead to problems that are not
harder than the single-objective MOCO problem
usually fail to find all efficient solutions (most
prominently the weighted-sum method), whereas

k p k k k
R

k k k
Rc x y c x y

=
−()⎡

⎣⎢
⎤
⎦⎥+ −()⎡

⎣⎢
⎤

1, ,
max

ν λ ⎦⎦⎥

=
∑
k

p

1

.

those that are complete involve solving hard
scalarized problems (most prominently the �-con-
straint method). Ehrgott (2005a) proved that the
general scalarization is NP-hard. The difficulty
comes from the maximum term in problem 8 and
the constraints on objective values.

The elastic constraint method of Ehrgott and
Ryan (2003) allows a sort of compromise between
completeness and computability. Like the �-con-
straint method it uses constraints on p – 1 objec-
tives but makes these elastic by allowing them to
be violated and penalizing the violation in the
objective function.

Ehrgott and Ryan (2003) proved that the
method is correct and complete. It comprises both
the weighted-sum and the �-constraint method as
special cases. Although the elastic constraint mod-
el is NP-hard in general it is often solvable in prac-
tice. Numerical tests in Ehrgott and Ryan (2003)
indicate that its computational behavior is much
better than that of the �-constraint method
because it “respects” the problem structure better
and “limits damage” done by adding constraints
on objective values.

In fact Ehrgott and Ryan (2003) studied the air-
line crew scheduling problem. They used a set par-
titioning formulation to model the constraints of
allocating one crew to each scheduled flight. In
addition to a linear cost function they employed a
measure of robustness to calculate the potential
delays that can be caused during disruptions. The
second objective is then to minimize the nonro-
bustness of the crew schedule. Whereas the �-con-
straint scalarization could not be solved within rea-
sonable time, the elastic constraint scalarization
could be solved in the same time as the single-
objective problem. The airline manager can use
this method in two ways — to either compute sev-
eral schedules and evaluate their cost and per-
formance during disruptions, or to find a schedule
that maximizes robustness for a some approximate
allowable cost.

There is no single best approach to solve MOCO
problems. Algorithms are generally problem spe-
cific and exploit the problem structure as much as
possible. Exact solution techniques can be broadly
classified into three groups. First, the single-objec-
tive problem is polynomially solvable and a solu-
tion algorithm can be extended to handle multiple
objectives. Second, the single-objective problem is
polynomially solvable and efficient algorithm to
generate feasible solutions to the single-objective
problem in order of increasing objective values
exist. In this case the two phase method explained
below often works well. Third, if the single-objec-
tive problem is NP-hard more general integer pro-
gramming methods or heuristics are called for.

Sometimes it is possible to adapt single-objective
algorithms for the multiobjective case. The multi-

Articles

WINTER 2008 55

objective shortest path problem consists in finding
the efficient paths from node s to node t in a
directed graph with arc lengths being vectors.
Label correcting and label setting algorithms can
be applied to problems with any number of objec-
tives noting that labels are vectors and that each
node may have a set of labels that do not dominate
one another. Newly generated labels have to be
compared with existing labels to eliminate any
dominated labels. The multiobjective spanning
tree problem can be solved by generalizations of
Prim’s and Kruskal’s algorithms.

If a direct extension of a single-objective algo-
rithm is not available one may think of applying
the so-called two phase method first described by
(Ulungu and Teghem 1995), which is specific for
biobjective problems. It is based on the distinction
between supported and nonsupported efficient
solutions and the fact that supported solutions are
those that can be found by the weighted-sum
method. Supported efficient solutions are comput-
ed in phase one, often following a dichotomic
scheme. First, two lexicographically optimal solu-
tions are found ((1, 8) and (7, 1) in figure 6). Two
current solutions with consecutive points in objec-
tive space are used to find a new weighting vector
�, finally the weighted-sum problem min{�TCx : x
� X} is solved. The procedure proceeds recursively

until no new solutions are found. It finds at least
one efficient solution for each nondominated
extreme point in objective space. In figure 6 the
lexicographically minimal points (1, 8) and (7, 1)
define � = (6, 7). The resulting weighted-sum prob-
lem identifies (3, 4) as nondominated point. Next,
points (1, 8) and (3, 4) define � = (2, 1) and points
(3, 4) and (7, 1) define � = (3, 4). Neither of the two
weighted-sum problems does yield any new solu-
tions.

In phase two, nonsupported efficient solutions
are computed, in general by some enumerative
methods. The set of nondominated extreme
points, which is known after phase 1, restricts the
search area in objective space to triangles defined
by two consecutive nondominated extreme points
as shown in figure 6. Nonsupported efficient solu-
tions are not optimal for any weighted-sum prob-
lem. Several ideas have been proposed to find
them, but the best two phase algorithms available
follow the idea of ranking solutions of single-
objective (weighted-sum) problems. Nonsupported
efficient solutions can be expected to have good
weighted-sum objective values because they are
inside the triangles defined by optimal weighted-
sum solutions. Thus, they are second, third, or k
best solutions to weighted-sum problems. For
many polynomially solvable combinatorial opti-

Articles

56 AI MAGAZINE

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

Figure 6. Phase 1 (left) and Phase 2 (right) of the Two Phase Method.

mization problems efficient ranking algorithms to
find k best solutions do exist. They can be used to
enumerate solutions to the weighted-sum problem
in order of their objective value until it is guaran-
teed that any further solution will be dominated.
In figure 6, points (6, 2) and (5, 3) correspond to
third and fourth-best solutions to the weighted-
sum problem with � = (3, 4) in the triangle given
by points (3, 4) and (7, 1), which both correspond
to optimal (first and second best solutions). The
latter two points define �.

It is important to point out that the two phase
method always requires the solution of enumera-
tion problems. Of course, in order to find a maxi-
mal complete set one must enumerate all solutions
x with Cx = y for all nondominated points y. But
even to find a minimal complete set enumeration
is needed. For example, one can only guarantee to
find an efficient solution corresponding to non-
dominated point (2, 6) in figure 6 by enumerating
all optimal solutions to a weighted-sum problem
with weight vector (2, 1) normal to the line con-
necting (3, 4) and (1, 8).

To design a good two phase algorithm for a
MOCO problem one needs efficient methods to
find one and to enumerate all optimal solutions to
as well as efficient algorithm to rank the feasible
solutions to the single-objective counterpart of the
MOCO problem. Przybylski, Gandibleux, and
Ehrgott (2008) give details of such an algorithm for
the biobjective assignment problem.

To solve MOCO problems for which the two-
phase method is not applicable because of the lack
of efficient single-objective optimization or rank-
ing algorithms, one must resort to more general
integer programming techniques, such as branch
and bound, or heuristics. The branching part in
branch and bound algorithms can be done exactly
as in the single-objective case. The multiple objec-
tives must be dealt with in the bounding step.
Most methods use the ideal point of the problem
at a node of the branch and bound tree and elimi-
nate a node if that ideal point is dominated by a
feasible solution at another node. Such bounding
procedures can be very ineffective because the ide-
al point may be far away from the nondominated
points (see figure 5). A challenge here is the devel-
opment of true multiobjective optimization
bounding schemes. Of course, today there are
many MOCO problems that cannot be exactly
solved at all and heuristics need to be applied. That
topic, however, is beyond the scope of this article.

References
Benson, H. 1998. An Outer Approximation Algorithm for
Generating All Efficient Extreme Points in the Outcome
Set of a Multiple Objective Linear Programming Problem.
Journal of Global Optimization 13(1): 1–24.

Borwein, J. 1983. On the Existence of Pareto Efficient
Points. Mathematics of Operations Research 8(1): 64–73.

Chankong, V., and Haimes, Y. 1983. Multiobjective Deci-
sion Making Theory and Methodology. New York: Elsevier
Science.

Ehrgott, M., and Ryan, D. 2003. Constructing Robust
Crew Schedules with Bicriteria Optimization. Journal of
Multi-Criteria Decision Analysis 12(1): 139–150.

Ehrgott, M. 2005a. A Discussion of Scalarization Tech-
niques for Multiobjective Integer Programming. Annals of
Operations Research 147: 343–360.

Ehrgott, M. 2005b. Multicriteria Optimization. Berlin:
Springer.

Figueira, J.; Greco, S.; and Ehrgott, M., eds. 2005. Multiple
Criteria Decision Analysis: State of the Art Surveys. New
York: Springer.

Geoffrion, A. 1968. Proper Efficiency and the Theory of
Vector Maximization. Journal of Mathematical Analysis
and Applications 22(3): 618–630.

Hansen, P. 1979. Bicriterion Path Problems. In Multiple
Criteria Decision Making Theory and Application, ed. G.
Fandel, and T. Gal, 109–127. Berlin: Springer Verlag.

Hartley, R. 1978. On Cone-Efficiency, Cone-Convexity
and Cone-Compactness. SIAM Journal on Applied Mathe-
matics 34(2): 211–222.

Isermann, H. 1974. Proper Efficiency and the Linear Vec-
tor Maximum Problem. Operations Research 22(1): 189–
191.

Przybylski, A.; Gandibleux, X.; and Ehrgott, M. 2008.
Two-Phase Algorithms for the Biobjective Assignment
Problem. European Journal of Operational Research 185(2):
509–533.

Sawaragi, Y.; Nakayama, H.; and Tanino, T. 1985. Theory
of Multiobjective Optimization. Orlando: Academic Press.

Shao, L. 2008. Multiobjective Linear Programming in
Radiotherapy Treatment Planning. Ph.D. Dissertation,
Department of Engineering Science, The University of
Auckland, Auckland, New Zealand.

Steuer, R. 1985. Multiple Criteria Optimization: Theory,
Computation and Application. New York: John Wiley and
Sons.

Ulungu, E., and Teghem, J. 1995. The Two-Phases
Method: An Efficient Procedure to Solve Bi-Objective
Combinatorial Optimization Problems. Foundations of
Computing and Decision Sciences 20(2): 149–165.

Matthias Ehrgott is associate professor in operations
research at the Department of Engineering Science, The
University of Auckland, New Zealand. He studied math-
ematics, economics, and computer science at the Uni-
versity of Kaiserslautern, Germany, obtaining his M.Sc.,
Ph.D., and Dr. habil. degrees in 1992, 1997, and 2001.
Ehrgott’s research interests are in integer programming
and multicriteria optimization and their application in
real-world operations research problems. He has pub-
lished more than 50 refereed journal and proceedings
papers and written or edited several books and special
issues of journals. Ehrgott is on the editorial board of
Management Science, OR Spectrum, Computers & OR, Asia
Pacific Journal of Operational Research, TOP, and INFOR.
Currently he serves as vice president of the Operational
Research Society of New Zealand and as a member of the
executive committee of the International Society on Mul-
tiple Criteria Decision Making.

Articles

WINTER 2008 57

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

