
over both multiagent systems and centralized architectures. It has the robust-
ness of a multiagent system without the significant complexity and overhead
required for interagent communication and negotiation. In contrast to central-
ized approaches, it does not require managing the large amounts of data that
the coordinating process needs to compute a global view. In a PIM, the process
moves to the data and may perform computations on the components where the
data is locally available, transporting only the information needed for coordi-
nation within the PIM. While there are many remaining research issues to be
addressed, we believe that PIMs offer an important and novel technique for the
control of distributed systems.

Process-integrated mechanisms (PIMs) offer a new approach
to the problem of coordinating the activity of physically
distributed systems or devices. This includes situations

where these systems must achieve a high degree of coordination
in order to deal with complex and changing goals within
dynamically changing, uncertain, and possibly hostile environ-
ments.

Current approaches to coordination all have well-recognized
strengths and weaknesses. Centralized coordination uses a sin-
gle coordinating authority that directs and coordinates the
activities of all devices (for example, Stephens and Merx [1990]).
This approach, however, incurs a high communication over-
head in many domains because the coordinating authority
needs to have a complete and up-to-date global view of the
world as well as information about the operational state of each
of the devices. In addition, the overall system is inherently frag-
ile, as any damage to the controlling authority can render the

Articles

SUMMER 2010 9Copyright © 2010, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

PIM: A Novel Architecture
for Coordinating Behavior of

Distributed Systems

Kenneth M. Ford, James Allen, Niranjan Suri,
Partrick J. Hayes, and Robert A. Morris

n Current approaches to the problem of coor-
dinating the activity of physically distributed
systems or devices all have well-recognized
strengths and weaknesses. We propose adding
to the mix a novel architecture, the process-inte-
grated mechanism (PIM), that enjoys the
advantages of having a single controlling
authority while avoiding the structural difficul-
ties that have traditionally led to the rejection of
centralized approaches in many complex set-
tings. In many situations, PIMs improve on pre-
vious models with regard to coordination, secu-
rity, ease of software development, robustness,
and communication overhead. In the PIM
architecture, the components are conceived as
parts of a single mechanism, even when they
are physically separated and operate asynchro-
nously. The PIM model offers promise as an
effective infrastructure for handling tasks that
require a high degree of time-sensitive coordina-
tion between the components, as well as a clean
mechanism for coordinating the high-level
goals of loosely coupled systems. The PIM mod-
el enables coordination without the fragility
and high communication overhead of central-
ized control, but also without the uncertainty
associated with the system-level behavior of a
multiagent system (MAS). The PIM model pro-
vides an ease of programming with advantages

entire collection leaderless. While election mecha-
nisms exist to select a new leader, recovering the
state of the distributed system after the failure of
the leader is often complicated. The chief advan-
tage of having a single controlling authority, how-
ever, is simplicity of implementation and pre-
dictability of overall coordinated behavior.

Distributed coordination, on the other hand,
involves each device making decisions about its
own actions and maintaining its own world view.
As a result, such systems can be more robust to
component failure. To be effective as an overall sys-
tem, each device requires something akin to social
negotiation with the other devices, with all its con-
comitant uncertainties and communication costs.
Distributed devices cannot make effective global
decisions about what information to communicate
to all involved parties to enable effective decision
making without a global view of the world. Many
systems have been developed that are intended to
demonstrate such distributed coordination, such
as Teamcore (Tambe 1997), CAST (Yen et al. 2001),
and BITE (Kaminka and Frenkel 2005), but they
remain most effective for preplanned, relatively
loosely coupled distributed activities. Tightly cou-
pled coordination that requires near real-time
adjustment of the behavior of multiple agents
remains a significant challenge for such approach-
es. In addition, the overall behavior of distributed
intelligent systems is typically very hard to predict,
making them problematic for many applications.

Partly as a reaction to these problems, biologi-
cally inspired approaches attempt to avoid explic-
it coordination altogether. In some of these
approaches, organized behavior emerges dynami-
cally from the collective actions of swarms of sim-
ple devices. These approaches have proven difficult
to program for predictable behavior and do not
have the capability for highly coordinated activity
or for quickly changing group focus as the situa-
tion changes. Another variant on this theme is
architectures where devices do not negotiate but
broadcast their current activities and each device
decides its own course of action individually (for
example, Alliance [Parker 1998]). While leading to
robust behavior, coordination is necessarily only
loosely coupled.

Each of the aforementioned approaches has
applications where they are effective. We propose
a novel architecture to add to the mix, a process-
integrated mechanism that enjoys the advantages
of having a single controlling authority while
avoiding the structural difficulties that have tradi-
tionally led to its rejection in many complex set-
tings. In many situations, PIMs improve on previ-
ous models with regard to coordination, security,
ease of software development, robustness and
communication overhead. In the PIM architecture,
the components are conceived as parts of a single

Articles

10 AI MAGAZINE

mechanism, even when they are physically sepa-
rated and operate asynchronously. As you will see,
a PIM model bears many resemblances to the Borg
in Star Trek—a set of highly autonomous agents
that somehow share a single “hive mind.” A PIM is
a mechanism integrated at the software level rather
than by physical connection. It maintains a single
unified world view, and the behavior of the whole
mechanism is controlled by a single coordinating
process, but this process does not reside on any
one device.

The PIM Model
The core idea of the PIM is to retain the perspective
of the single controlling authority but abandon
the notion that it must have a fixed location in the
system. Instead, the computational state of the
coordinating process is rapidly moved among the
component parts of the PIM. More precisely, a PIM
consists of a single coordinating process (CP) and a
set of components each capable of running the CP.
The CP cycles among the components at a speed
that is sufficient to meet the overall coordination
needs of the PIM, so that it can react to new events
in a timely manner. The time that the CP runs on
a component is called its residency time. Each com-
ponent maintains the code for the CP, so the con-
trolling process can move from component to
component by passing only a small run-time state
using the mechanisms of strong mobility (Suri et al.
2000). The underlying PIM run-time system man-
ages the actual movement of the CP across the
components and presents the programmer with a
virtual machine (VM) in which there is a single
coordinating process operating with a unified
global view although, in fact, the data and com-
putation remain distributed across the compo-
nents.

The PIM model addresses some key problems
associated with traditional approaches. In compar-
ison to centralized approaches, the PIM model
ameliorates the robustness problem because the
coordinating process is not resident (except transi-
torily, with backups at all other nodes) at any one
location. It also ameliorates the communication
bottleneck by moving the process to the data
rather than the data to the process. While multia-
gent systems (MASs) address the robustness issue,
they introduce significant complexity and uncer-
tainty in achieving highly coordinated behavior.
The PIM approach removes the complications of
negotiation protocols and timing problems in dis-
tributed systems, enabling an ease of programming
and a conceptual simplicity similar to centralized
models and often offering conceptual advantages
over the centralized model.

The PIM Illusion
The PIM model presents the programmer with an
intuitive abstraction that greatly simplifies con-
trolling distributed coordination. One can draw an
analogy to time-sharing. Time-sharing models rev-
olutionized computing because they allowed mul-
tiple processes to run on the same computer at the
same time as though each was the only process
running on that machine. The programmer could
construct the program with no concern for the
details of the process switching that is actually
happening on the processor. To the programmer it
is as though the program has the entire processor,
even though in reality it is only running in bursts
as it is switched in and out. The PIM model, on the
other hand, provides a different illusion. To the
programmer the PIM appears as one process run-
ning on a single machine, but the CP is actually
cycling from component to component. Further-
more, the programmer sees a single uniform mem-
ory, even though memory is distributed, like in a
distributed memory system. In other words, the set
of components appears to be a single entity (that
is, a PIM). The programmer need not be concerned
with the details of moving the CP among the com-
ponents or on which component data is actually
stored.

In the time-sharing model, it is important that
each process be run sufficiently frequently to pre-
serve the illusion that it is constantly running on
the machine. Likewise, with the PIM model, it is
important that the CP run on each component suf-
ficiently frequently so that the PIM can react
appropriately to any changing circumstances in
the environment. The contrast between the time-
sharing model and the PIM model is shown in
table 1.

An Example
To help make this concrete, consider some exam-
ple PIM systems. First, consider a trivial PIM sys-
tem involving fine-grained coordination. Say we
have two robotic manipulators, R1 and R2, that
must act together to lift a piano (see figure 1). Each
arm has a sensor, H, which indicates the absolute
height of its “hand,” and an action, Adjust-Arm,
which raises or lowers its arm by a specified dis-
tance. There are inaccuracies in the actuators so
the actual height levels have to be continually
monitored. We present a simplistic algorithm to
control the robots so that they lift the piano while
keeping it balanced: if the difference in height of the
arms is greater than some value e then adjust R2’s arm
to match R1’s. Otherwise, raise R1’s arm a small incre-
ment. We omit the required termination condition
in this simple example.

if |R1:H - R2:H|> e
Then R2:Adjust-Arm(R1:H - R2:H)
Else R1:Adjust-Arm(.2)

The prefixes indicate the “namespace” for each arm.
Note that this program is for illustration only—we
do not claim that this is a particularly good solution
or that other methods cannot solve this problem
more effectively. The point here is to provide a sim-
ple, concrete example to illustrate the idea.

This example illustrates some key points about
PIMs. First, as mentioned above, the code for the
CP does not involve any explicit intercomponent
communication to obtain information or coordi-
nate behavior. Second, neither arm has independ-
ent goals or needs to reason about the goals of the
other arm, even though the arms’ behavior makes
it appear that they are sensing and adjusting to
each other. These arms are not independent enti-

Articles

SUMMER 2010 11

Time-Sharing Process-Integrated Mechanism

One processor, many processes One process, many processors

Supports the illusion that each process is the
only one on the machine

Supports the illusion that there is one entity controlled
by a single process

Each process sees only its “allocated” memory
(a subpart of the overall system’s memory).

All memory on every processor is accessible as though it
were one memory.

Processes must be switched frequently enough
to maintain the illusion that each is running all
the time.

Process must execute on each component frequently
enough to maintain illusion that it can control any of the
components at any time

Programmer writes program as though it is the
only one on the machine.

Programmer writes program as though there is a single
machine.

Table 1. Comparing the PIM Model with Time-Sharing

ties. Rather they act like two parts of a single enti-
ty, just like our two arms act as part of our body.
The only difference in this case is that these arms
are physically disconnected while our arms are
physically attached through our body. A key
insight underlying the PIM idea is that physical
contiguity has no computational significance.

While this article is concerned with the concep-
tual framework of PIMs, just for once we will drill
down a level and consider the actual execution of
the CP in the PIM model. Table 2 shows three pos-
sible ways the code fragment R2:Adjust-Arm(R1:H -
R2:H) executes. These differ solely in terms of where
the CP is resident during each step of the computa-
tion. Note that to be effective, process shifting must
occur quickly enough relative to the robots’
required rate of movement to keep the piano bal-
anced. As long as this is true, the programmer does
not care which of these possible executions occurs.
This is just as in tthe componentime sharing, where
the actual number of times your program is exe-

Articles

12 AI MAGAZINE

cuting is irrelevant to the computation as long as
the process runs quickly enough.

As a second example, consider a loosely coupled
set of intelligent components, each with consider-
able autonomy yet needing to coordinate high-lev-
el goals, for example, a RoboCup team, in which
each robot does all its own motion planning, can
control the ball, and negotiates coordination with
the other agents. In contrast, in a PIM version of
this scenario, the previously independent robots
become components of the PIM (they joined the
Borg). They can still perform reactive functions
locally, such as controlling the ball. However, the
CP plans which roles each robot component plays
and coordinates behaviors such as passing. In plan-
ning a pass, the CP computation is simple as it can
set the time and location of the pass and know
where the receiver will be. In other words, each
robot component has no need to try to predict the
behavior of the other robot components because
they are each part of the same mechanism.

R1 R2

Piano

Figure 1: A Simple Coordination Problem.

Execution Possibility No. 1 Execution Possibility No. 2 Execution Possibility No. 3

R1 Evaluate expression R1:H -
R2:H Cache value R1:H

R1 Evaluate R1:H - R2:H
Cache value R1:H

R1 Evaluate R1:H - R2:H
Cache value R1:H

R2 Evaluate R1:H - R2:H
Cache value R2:H
Cache result of evaluating the
expression (say .1),
Execute R2:Adjust-Arm(.1)

R2 Evaluate R1:H - R2
Cache value R2:H
Cache result of evaluating
the expression (say .1)

R2 Evaluate R1:H - R2:H
Cache value R2:H

R1 Nothing R1 Evaluate R1:H - R2:H
Cache result of evaluating
the expression (say .1)

R2 Execute R2:Adjust-Arm(.1) R2 Execute R2:Adjust-Arm(.1)

Table 2. Three Possible Executions of R2:Adjust-Arm(R1:H - R2:H)

A Component-Based View of a PIM
So far we have focused on the programmer’s per-
spective, that is, from the point of view of someone
who is trying to solve a distributed coordination
problem. We’ve suggested that PIM offers a way to
enable the programmer to describe a solution that
abstracts away the details related to intercompo-
nent communication. In this section, we will con-
sider a PIM from the perspective of one of its com-
ponents, where the overall system is shown in
figure 2. Each component has an arbitrary set of
local processes running that perform local compu-
tations. Local processes are any processes that can
run without coordinating their activity with
another component. In a robot, these would
include processes that interpret sensor data,
processes that control the actuators, as well as local
planning processes that connect the component’s
current goals to its activity. In addition, the com-
ponent is sometimes running the CP that coordi-
nates with other components. To the component,
it appears that the CP is always running and has a
global view of the situation and “omniscience”
about the behavior of the other components.

It is important to clarify what a component is

not. It is not an independent agent that makes its
own high-level decisions and coordinates its activ-
ity with other agent components. There is no
negotiation or any other explicit communication
between components and no notion of independ-
ent goals. A component is much like one’s hand—
it receives “action directives” from a single deci-
sion-making process (the brain) and executes
them. It does not have to reason about coordinat-
ing with the other hand as the brain is coordinat-
ing the activities of both. However, this analogy is
still very approximate, as in a PIM there is no sin-
gle physical part that acts as a “brain,” but there is
a single computational process that coordinates its
behavior. An external observer of the PIM-con-
trolled system might infer that each component is
an independent agent in the sense of something
that executes its own sense-think-act algorithm
independently. This is another aspect of the PIM
illusion.

Analyzing the PIM Model
It might seem that it is simply too expensive to be
moving the CP rapidly among the components. It
turns out, however, that the amount of informa-

Articles

SUMMER 2010 13

Coordinating Process

Local
Processes

Local
Processes

Local
Processes

Local
Processes

Local
Processes

Figure 2: Local and Global Processing among Components in a PIM

tion that needs to be transferred between compo-
nents can be quite small. First, all the code for the
CP is resident on each component, so only the exe-
cution state needs to be transferred. At the mini-
mum this would be the current process stack—the
stack in the virtual machine with sufficient infor-
mation so that the next step in the process can be
executed. Beyond that there is a time-space trade-
off on how much data is transferred with the
process. At one extreme, no data is transferred and
computations that involve a memory access might
block until the CP is once again resident on the
component that physically manages that memory
location. More optimized performance can be
obtained by moving a cache with the coordinating
process so that many delays are avoided.

Table 3 shows the trade-off between the reactivi-
ty of the PIM and the amount of computation it can
do. A longer residency time reduces the total fraction
of time lost to transmission delays, thereby increas-
ing the computational resources available to the CP
algorithms. This increases the latency of the CP as it
moves among the components, thereby decreasing
the coordination and reactivity of the PIM. Con-
versely, a shorter residency time enhances the sys-
tem’s ability to coordinate overall responses to new
and unexpected events since the overall cycle time
of the CP will be shorter. But as we reduce the resi-
dency time, we increase the ratio of the overhead
associated with moving the CP and thus decrease
the computation available to the CP for problem
solving. In the extreme case, this could lead to a
new form of thrashing, where little computation
relevant to coordination is possible because most
cycles are being used to migrate the CP.

These competing factors can be characterized by
the following formulas:

Cycle-time = #components * (Residency-Time
+ Time-to-move-CP)

Percent-computation-available = Residency-Time
/ (Residency-Time + Time-to-move-CP)

There is a clearly a trade-off between reactivity
(that is, cycle time), number of components, and
the percent effective computation available. As the
number of components grows, or the required
cycle time diminishes, the CP gets less processing
time. Note that with the speed of current proces-
sors, and the fact that the CP needs mainly to do
management and decision functions and can
offload expensive computation to local processors,
even modest percentages may be quite adequate.
However, when designing a PIM for an application
that requires very fast coordinated reactions, one
may need to limit the number of components in
order to attain the needed reactivity.

Note that this trade-off could be explicitly mon-
itored and balanced during execution. When faced
with the sudden need for increased coordination,
the CP might temporarily decommission some
components, decreasing the cycle time among the
remaining components without reducing the resi-
dency time.

Note also that if the perception and response to
an event are wholly local to one component, then
the component may react independently of the
CP, much like “reflex” responses in animals. It is
only those responses that require the coordination
of multiple components that are sensitive to the
cycle time. A PIM that has a very rapid cycle time
can realize highly coordinated behavior, like an
athlete, but has relatively little time to compute a
“thoughtful” response. A PIM that has a relatively
slow cycle time has more computation time for
reflective thinking at the expense of rapid respons-
es, like a thoughtful academic.

Before we consider another example, consider
one more comparison. The execution of a PIM can
be compared to a single central processor model,
where the cycling of the CP in the PIM model cor-
responds to a cycling of queries for sensor updates
from each component. This captures the observa-
tion that when the CP is resident on a component,
it has access to the most recent data on that com-

Articles

14 AI MAGAZINE

No. of Components 400 ms 800 ms 1200 ms 1600 ms

4 75% 88% 92% 94%

8 50% 75% 83% 86%

12 25% 63% 75% 81%

16 N/A 50% 67% 75%

20 N/A 38% 58% 69%

24 N/A 25% 50% 63%

Cycle Time

Table 3. Percent Effective Computation Time Given Cycle Time and Number of Components.

(Assuming 25 ms communication cost per hop.)

ponent. The centralized model can access the same
data with a query to the component, at the
expense of a high communication overhead. The
difference between these two models is that in the
PIM model, the coordinating process moves to the
data, where in the centralized model the data
moves to the coordinating process. In a large num-
ber of modern applications involving sensors, it is
the data that is overwhelmingly large, so much so
that the thought of communicating it all to a sin-
gle processor is untenable. PIM models function
perfectly well in such situations, since the execut-
ing process moves to the data rather than the data
to the process. Unlike the centralized model, a PIM
always “knows” everything known at all of its
components within a single CP cycle.

A More Detailed Example:
Sensor Fusion

Let us consider a more extensive example, one that
we have implemented in a simulated environ-
ment. The problem is an elaboration of the pursuit
domain (Benda, Jagannathan, and Dodhiawala
1986) and involves three types of robots herding
sheep in a simple world that contains two other
types of objects, rocks and cats. The types of robots
are shown in table 4. The Seers are ground vehicles
with shape sensors having a range of 30 meters.
Based on shape, Seers cannot distinguish between
animals and rocks, but can tell large (sheep or rock)

from small (cat or rock). The Trackers are aerial
vehicles and have infrared sensors, so they can dis-
tinguish animals from rocks, but cannot distin-
guish cats from sheep. Finally, the Herders are
ground vehicles that have both sensors but only a
very limited range. The properties of the objects in
the world are shown in table 5.

To simplify the example for this article, let us
assume that all sensors are totally reliable and that
each robot has accurate GPS-based positioning so
the location of each is known (and stored locally
on each robot). The more complicated cases can be
handled by PIM models (in fact the more complex
the problem the more compelling the PIM model
is), but we need a simple case for expository pur-
poses. Given these robots to control, the task is to
herd a set of sheep into the center and keep them
there, as shown in figure 3.

We will focus on that part of the coordinating
process that is doing the sensor fusion to identify
sheep. To simplify the example, let us assume the
Seers and Trackers follow predetermined paths
specified in the coordinating process code. It is
often useful in designing a PIM program first to
solve the problem assuming an omniscient, cen-
tralized processor, that is, a centralized processor
that knows everything that is known to any com-
ponent in the PIM. Given these assumptions, we
can implement the global view using a grid/array
representation of the world indicating the pres-
ence of sheep at each coordinate location, where

Articles

SUMMER 2010 15

Seers Trackers Herders

Symbol S T H

Type UGV UAV UGV

Sensor Shape Heat Shape and Heat

Sensor Range 30m 50m 15m

Speed 2 m/s 167 m/s 4 m/s

Table 4. The Robot Characteristics.

Sheep Cats Rocks

Symbol s c r

Temperature warm warm cold

Size medium small medium

Table 5. Objects in World.

the values might be (sheep, sheep-shape, warm-
object, or none). A new observation consists of a
feature value, its coordinates, and the time of
observation. Each new observation can be used to
update the global view using the information sum-
marized in table 6. Because of the nature of the
data, an efficient implementation would use a data
structure suitable for representing sparse arrays.

With this, the algorithm for the omniscient cen-
tralized process would be:

Loop {When observation (f, x, y) arrives,
Update global view entry for
position (x, y) according to table 6}

Now we can consider how to implement this on
the PIM. The first observation to make is that vir-
tually the same algorithm could run directly on
the PIM! The only change would be to use a prior-
ity queue based on time-stamp order. Each compo-

nent would locally process its sensor data and
queue a set of new observations. When the coordi-
nating process is resident it has access to the new
observations and processes them as usual. In the
simplest implementation, we would move the
global view data (as a sparse matrix representation)
with the process. If this creates a coordinating
process that is too heavyweight for the application,
there are many ways to reduce the size of the data
stored by trading off execution time (see figure 4).
We could, for instance, distribute the global view
evenly across all the components and not move
any of it with the coordinating process. We could
then define some fixed cache size of new observa-
tions that is moved with the coordinating process.
When the CP is resident on a component that
stores the relevant parts of the global view for some
of the observations, they are removed from the
cache and replaced with new observations. In the

Articles

16 AI MAGAZINE

H

H

H

H

H
H

HH

H
H

T
T

T

T

S

S

r r
s

s s

c

c
r r

s

Figure 3. Herding Sheep.

(a) Initial World: Sheep Scattered. (b) Final World: Sheep Rounded Up.

New Observation
at (x, y)

Old Value Updated Value

None Anything None

Warm Sheep-shape Sheep

Warm Sheep Sheep

Warm Warm or none Warm

Sheep-shape Warm Sheep

Sheep-shape Sheep Sheep

Sheep-shape Sheep-shape or none Sheep-Shape

Sheep Anything Sheep

Table 6. Updating the World State.

(a) (b)

worst case assuming a computation speed suffi-
cient to process all new observations, an observa-
tion would stay in the cache for at most one cycle
through the components. By adjusting the cache
size, we can trade off effective computational speed
for size of the CP footprint. This trade-off is similar
in many ways to the trade-off between effective
computation speed and page swapping with virtu-
al memory.

As this example illustrates, there are some key
trade-offs between moving the global view in the
CP versus storing it in a distributed fashion in the
component memories. The best approach will
depend on the information and the criticality of
the data. Note in the distributed version, if a com-
ponent is destroyed, its part of the global view will
be lost and will need to be recomputed from new
sources. On the other hand, if the global view is
moved with the CP, then the CP has to be lost
before the PIM loses data. In this case, as we dis-
cuss in the next section, we can revert to a previous
version of the CP stored on a component that is
still running. In the sensor fusion case above where
the world is changing dynamically based on new
sensor data, distributing the global view does not

incur much risk (as it would have been recomput-
ed soon anyway).

Note that while the actual CP algorithms resem-
ble those for a centralized system with a global
view, the PIM version of this code would be much
simpler. To implement these algorithms with a true
centralized process, much of the code and process-
ing would be concerned with collecting and man-
aging the global view. This would entail either sig-
nificant communication overhead to transmit all
the data to the central process or complex code in
the centralized process to determine when to query
the other components to obtain new sensor data.

Robustness to Failure
One of the key advantages of the PIM is the robust-
ness to component failure. PIMs can produce
robust behavior in the face of component failure
with little effort required from the programmer.

There is one key requirement on the style of pro-
gramming the CP in order to attain significant flex-
ibility and robustness, namely that the CP should
not be written in a way that depends on being res-
ident on any specific component. Rather, it should

Articles

SUMMER 2010 17

CP

CP

 A two component PIM with "global view" distributed between components

Component 2

Component 2 Component 1

Component 1

Commands

mem. access

sensor updates

Cached updates

Commands

mem. access

sensor updates

Cached updates

CommandsCommands

sensor updatessensor updates

 A two component PIM with CP storing "global view"

Cache

Figure 4. Ways of Maintaining a Global World View.

be written in terms of available capabilities, main-
tained by the PIM run time. For example, with the
sheep herding, the CP cares about what herding
robots are available and where they are but does
not care about the identity of specific components.
The algorithm continually optimizes the activities
of the herders that are currently available. If a par-
ticular herder component is destroyed, then the
PIM run time may be able to “recruit” a new herder
invisibly to the CP. Likewise, whenever a new
herder becomes available (that is, added to the
PIM), the CP can then utilize the new herder in the
next cycle.

With this requirement at the algorithmic level,
the CP can handle the loss or gain of new compo-
nents transparently. There are two possible situa-
tions that can occur when a component is disabled
(or loses communication capability with the other
components). The situations differ only in
whether the CP is resident on the component at
the time it is destroyed. In the case where a com-
ponent that does not have the resident CP disap-
pears, the PIM run time will detect that the com-
ponent is missing at the time it attempts to move
the CP to it. In this case, the CP is forwarded on to
the next component in line in the cycle, and the
list of available components is updated. If there is
a possibility that the component is only temporar-
ily out of communication range, the run time
might continue to poll for it for some amount of
time before it is considered permanently lost. The
process is shown in figure 5.

The case in which a component is destroyed
while the CP is resident is slightly more compli-
cated. The CP is lost and will not be passed on. It
is fairly simple to have a time-out mechanism in
the run time so that this situation is detected. In
that case, the run time then restarts using a copy of
the CP from that last known active component. As
the CP migration restarts, the PIM continues as

before. Because of the short cycle time of the
process, the CP is only slightly out of date, and the
PIM continues probably without any noticeable
effect (except that whatever happened on the com-
ponent that was destroyed is now missing). This
process is shown in figure 6.

Note that we do lose some recent state if the CP
needs to be recovered, but it is only slightly out of
date. In many domains, this loss is insignificant,
especially since the lost computation only
involved new data from the lost component.
Whether losing a small amount of data is impor-
tant depends on the domain. For example, a
RoboCup team of robots constantly needs to be
recomputing its state in every cycle anyway, so los-
ing the most recent computation does not matter
much. In domains with critical actions that should
only be performed once (for example, withdrawing
funds from an ATM), if the knowledge that this
action was just performed was lost, then we would
need some way to infer that it had been done from
the current state (for example, checking whether
your bank balance is lower). Domains with critical
events with no observable effects would not be
amenable to our recovery strategy, but it does not
seem that the other approaches would do better in
this situation.

More complex cases arise when communication
links fail, which could lead to two separate sub-
groups each operating with its own CP unaware of
the other. And if communication links are reestab-
lished, we might have two CPs operating on the
same cluster of components. There are relatively
simple strategies for detecting an obsolete CP and
disabling it simply by not passing it on. We are still
studying the full range of complications in order
to prove robustness properties as well as an upper
bound on the time taken to recover from various
types of failure.

Articles

18 AI MAGAZINE

?

Figure 5. Loss of a Component.

Shaded component shows the coordinating process. (a) The component is lost. (b) CP moves to next process. (c) Problem is detected. (d)
CP is passed to next component in cycle.

(a) (b) (c) (d)

Some Initial Evaluations
There is clearly both more theoretical and practical
work required to validate some of the claims we
have made. But we hope we have convinced the
reader that the approach has promise. Here we pro-
vide some preliminary experiments we have per-
formed to explore the framework.

We have developed two different prototype
implementations of the PIM. Both implementa-
tions support the use of Java as the programming
language for the CP. The first implementation uses
the Aroma Virtual Machine (Suri et al. 2001)
whereas the second version uses a modified version
of the IBM Jikes Research Virtual Machine
(Quitadamo, Cabri, and Leonardi 2006). Both of
these VMs provide the key technical capability for
realizing the PIM run time—the ability to capture
the execution state of Java threads that are running
inside the VM. This allows the PIM run time to
asynchronously stop the execution of the CP, cap-
ture the state of the CP, migrate it to another node,
and restart the execution of the CP. This entire
process is completely transparent to the CP itself.

Each component in a PIM has a PIM run time,
which is the container for the VM that executes
the CP and provides the capabilities of detecting
other nodes, establishing network connections,
detecting node failure, and migrating the CP from
node to node. The PIM run time also provides any
necessary interfaces to the underlying hardware. In
the case of Aroma, the PIM run time is imple-
mented in C++, whereas in the case of Jikes, the
PIM run time is implemented as a combination of
C++ and Java.

Figure 7 shows an implemented architecture
using the Aroma-based PIM run time, with the nec-
essary components to communicate with a robot-
ic platform. In this particular implementation, the
robotic hardware consists of Pioneer robots from

Mobile Robots. The PIM run time also provides
hardware interfaces to a GPS receiver and an
indoor positioning system, along with other utili-
ty libraries.

MRLib (the mobile robotics library) provides a
rich API for the CP to interact with the underlying
robotic hardware. In particular, MRLib provides
methods to read sensors and move the robot with
commands that do waypoint navigation, with or
without collision avoidance. The type of process-
ing done at the level of MRLib is an example of the
local processing that can occur at each node inde-
pendent of the CP and in parallel with other
nodes. When the CP is resident on a particular
node, it interacts with the MRLib instance on that
node.

To demonstrate feasibility, we measured the per-
formance of the prototype implementations of the
PIM run time. In the first experiment we used three
laptops connected with a high-speed network. A
simple CP that performs a matrix multiplication of
a 100 x 100 matrix was used, and the residency
time was set to 50 ms. The results show that the
per hop migration cost is quite reasonable, on the
order of 5 – 10 ms. The second experiment used
wireless connections and measured the impact of
the size of the state information in the CP with
respect to migration times. Three laptops were con-
nected using an 802.11b-based ad hoc network
operating at 11 Mbps. The CP was modified to car-
ry a variable-sized payload. The residency time in
this test was set to 100 ms. The experiment meas-
ured the round-trip times for payloads of size 0,
1024, 10240, and 20480 bytes. The results for the
Jikes implementation are shown in table 7.

To evaluate our claims that PIM models simplify
the code complexity compared to a multiagent
approach, we implemented a simplified version of
the Capture the Flag game, played by two teams
with two to seven players on each side. One team

Articles

SUMMER 2010 19

??

Figure 6. Loss of a Component with Coordinating Process.

(a) The component and CP are lost. (b) Problem is detected. (c) Old copy of CP activated. (d) CP is passed to next component in cycle.

(a) (b) (c) (d)

is a PIM, whereas the other team is a multiagent
system. The agent-based system is implemented
using the A-globe multiagent platform (Šišlák et al.
2005). A-globe is a lightweight multiagent plat-
form that supports mobility and integration with
powerful environment simulation components. A-
globe has been used successfully for free-flight col-
lision avoidance among autonomous aerial vehi-

cles and also for modeling collaborative underwa-
ter mine-sweeping search. The environment simu-
lation components support realistic testing of the
multiagent algorithms and facilitate straightfor-
ward migration to real distributed environments
(such as robotic hardware).

The detailed results of this experiment are
reported in other papers (Ford et al. 2008), and we

Articles

20 AI MAGAZINE

Aroma VM

PIM Runtime – Node 2

MR
Lib

LP
Lib

DP
Lib

TRIPS
Lib

Coordinating process

Aroma VM

PIM Runtime – Node 1

Aria
Lib

Garmin
Lib

NorthStar
Lib

MR
Lib

LP
Lib

DP
Lib

TRIPS
Lib

Aroma VM

PIM Runtime – Node 2

Aria
Lib

Garmin
Lib

NorthStar
Lib

Coordinating process

MobileSim

Figure 7. Architecture of the PIM Run Time on Robotic Hardware.

Jikes VM:
Payload Size (bytes)

Average Cycle Time (ms) Overhead per Hop (ms)

0 330.85 10.28

1024 334.95 11.65

10240 381.47 27.16

20480 446.76 48.92

Table 7. Migration Performance Using 11 Mbps Network.

only summarize the results briefly here. As a meas-
ure of code complexity, we counted the number of
classes and the lines of code for each of the two
solutions. While this has weaknesses as a measure
of complexity, it is still widely used. The solution
had three primary components: a role assignment
component (that decided whether a robot would
be an attacker or a defender), a path planning com-
ponent, and the main coordination component.
Table 8 shows the results of the comparison.

As the results show, there is a significant differ-
ence in the number of classes and the lines of code
required for the Coordination component. Of
course, this is just one comparison against a single
framework. To make strong claims about code
complexity we would need to perform similar
analyses with implementations in other frame-
works, such as the teamwork models.

Discussion
In this section we will address a number of issues
that often are sources of confusion in understand-
ing the PIM model. Many of these points have
been raised before, but it is good to revisit them
now that we have discussed the ideas in more
depth. As we do this, we will compare the
approach to other approaches in the literature.

The first key point is that a PIM is not a mecha-
nism for controlling a set of autonomous agents.
The components do not negotiate with each other
(for example, Contract Nets or other approaches
[Smith 1980; Aknine, Pinson, and Shakun 2004])
and thus avoid issues of communication complex-
ity from the need to negotiate (Endriss and
Maudett 2005). The PIM model does not place con-
straints on the internal workings of a component
except that it prohibits components from explicit-
ly communicating with each other to coordinate
behavior. Under PIM control, a set of components
may resemble and act like a set of agents to an out-
side observer, but there is no communication
between agents that resembles negotiation of
behavior. As such, PIM models resemble a central-

ized approach to coordination as described by
Stone and Veloso (2000):

Centralized systems have a single agent which
makes all the decisions, while the others act as
remote slaves… A single-agent system might still
have multiple entities—several actuators, or even
several physically separated components. However,
if each entity sends its perceptions to and receives
its actions from a single central process, then there
is only a single agent: the central process. The cen-
tral agent models all of the entities as a single “self.”

Note some important distinctions to make. First,
in a PIM there is no component acting as the cen-
tral controller, although the PIM does have a sin-
gle process, namely the coordinating process that
migrates between the components. Second, there
is no need for a component to “send its percep-
tions” to this process, as the process migrates to it.
Taking into account these differences, our notion
of component is quite similar to the above descrip-
tion.

Our approach for taking the process to the data
rather than the data to the process has similarities
to the smart-messages approach (Borcea et al.
2002) for distributed embedded systems. Borcea et
al. are interested in controlling networks of embed-
ded systems (NESs) in which availability of nodes
may vary greatly over time. A smart message is a
code and data combination that migrates through
nodes that can provide good execution environ-
ments for the process (for example, availability of
sensor data locally). They argue that smart mes-
sages provide a robust mechanism for computation
in volatile environments and avoid the need to
move large amounts of data. We claim similar
advantages for the PIM model.

Smart messages are organized around specific
computations that need to be completed and are
designed to not depend or care on which node the
computation is done. The PIM likewise does not
care on which component the computation is
done, but the focus of the computation is on coor-
dination of the current set of components. That is
why the behavior of a PIM model resembles a mul-

Articles

SUMMER 2010 21

PIM Multiagent

Component Lines Classes Lines Classes

Coordination 671 11 4851 33

Role Assignment 538 3 1027 7

Path Planning 430 3 681 2

Table 8. Code Complexity Comparison between PIM and Multiagent Systems.

tiagent system while the actual computation
resembles a centralized coordination of actuators.
In the smart-messages approach, the size of the
code that needs to be passed by caching code at
nodes is reduced. In the PIM models, we take this
one step further: the entire CP code is preloaded
on a component when it is initiated, so we never
need to pass code, just the current execution state.
Another key difference is that smart messages do
not follow any specific routing pattern but move
opportunistically between nodes. The PIM CP fol-
lows a systematic migration pattern as it is focused
on coordinating the real-time behavior of all the
components and must visit each component fre-
quently enough to meet the reactivity needs of the
coordinated system. And one final important dif-
ference: the code in smart messages must explicit-
ly invoke the mechanisms for migration—in a PIM
the CP code does not need to consider migration
issues as this is handled by the PIM run time. In
fact, migration is invisible to the CP.

Scalability
A critical limitation on the PIM model appears to
be the number of components a single PIM can
support. As the number of components grows, the
overall cycle time of the CP increases (or the resi-
dency time decreases, limiting CP computation).
As such, PIM models are more appropriate for sys-
tems involving tens to hundreds of components
rather than thousands. However, in most domains
involving large numbers of components, highly
coordinated activity is unlikely to be needed.
Rather, the components would probably cluster
into groups that must be coordinated at, say, the
second level, while the groups themselves can be
more loosely coupled (for example, groups per-
form relatively independent activities possibly
with some coordination checkpoints). In these
applications, we can foresee hierarchical PIM mod-
els, with one PIM controlling each subgroup, and
then higher-level PIMs that coordinate the sub-
groups. This is not an unusual organization. In
fact, all effective large human teams that must
coordinate activity (for example, companies, the
military) use the same hierarchical organization to
effectively control team behavior.

Comparison with Multiagent Systems
Stone and Veloso (2000) identify a number of
advantages of multiagent systems over single-
agent (centralized) systems, including speed-up
from parallel computation, robustness to failure,
modularity leading to simpler programming, and
scalability. It is worth considering how these issues
fare in the PIM model. There is ample opportunity
in a PIM to exploit parallel computation using the
processors on its various components. We have
already discussed the robustness issue and claim

that a PIM can offer significant advantages over a
MAS where close coordination is required. When a
MAS loses a key agent, reconfiguring the remain-
ing agents through a negotiation process could be
very complex. We also demonstrated above that
PIMs offer a much simpler programming model,
relieving the programmers of the need to develop
negotiation protocols and strategies for sharing
data. With regard to scalability, there is an inherent
limit to how many agents or components are
viable in applications where there is a need for
highly reactive coordinated responses. With a PIM
the limit is imposed by the required short cycle
time, while with a MAS, the limit is imposed by the
required negotiation time. In applications involv-
ing loosely coupled behavior with little need for
fast coordinated reactivity, both approaches can
support large numbers of components/agents.

PIMs have an advantage over MASs in applica-
tions that require a capability to rapidly to refocus
the activity of the entire set of components/agents.
In a MAS, a potentially complex negotiation must
occur to change the goals of each agent. The PIM
model, on the other hand, shares the advantages of
a centralized approach where one process makes
the decision for all, and the team can be refocused
in a single cycle of the CP. Furthermore, MASs have
difficulty maintaining a global view. The PIM mod-
el inherently maintains a global view of the situa-
tion. Finally, a core problem with complex MAS
systems is the difficulty in reliably describing and
predicting system behavior, even when the agents
are only loosely coupled.

Summary
We have described a new model for distributed
computation that we believe offers significant
advantages in many situations. The PIM model
offers promise as an effective infrastructure for
handling tasks that require a high degree of time-
sensitive coordination between the components,
as well as a clean mechanism for coordinating the
high-level goals of loosely coupled systems. PIM
models enable coordination without the fragility
and high communication overhead of centralized
control, but also without the uncertainty associat-
ed with the system-level behavior of a MAS.

The PIM model provides an ease of program-
ming with advantages over both multiagent sys-
tems and centralized architectures. It has the
robustness of a multiagent system without the sig-
nificant complexity and overhead required for
interagent communication and negotiation. In
contrast to centralized approaches, it does not
require managing the large amounts of data that
the coordinating process needs to compute a glob-
al view. In a PIM, the process moves to the data
and may perform computations on the compo-

Articles

22 AI MAGAZINE

nents where the data is locally available, sharing
only the information needed for coordination of
the other components. While there are many
remaining research issues to be addressed, we
believe that PIMs offer an important and novel
technique for the control of distributed systems.

References
Aknine, S.; Pinson, S.; and Shakun, M. F. 2004. An
Extended Multi-Agent Negotiation Protocol. Journal of
Autonomous Agents and Multi-Agent Systems 8(1): 5–45.

Benda, M.; Jagannathan, V.; and Dodhiawala, R. 1986.
On Optimal Cooperation of Knowledge Sources—An
Empirical Investigation. Technical Report BCS–G2010-
28, Boeing Advanced Technology Center, Boeing Com-
puting Services, Seattle, WA.

Borcea, C.; Iyer, D.; Kang, P.; Saxena, A.; and Iftode, L.
2002. Cooperative Computing for Distributed Embedded
Systems. In Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS), 227–236. Los
Alamitos: IEEE Computer Society.

Endriss, U., and Maudet, N. 2005. On the Communica-
tion Complexity of Multilateral Trading: Extended
Report. Journal of Autonomous Agents and Multi-Agent Sys-
tems 11(1):91–107.

Ford, K.; Suri, N.; Kosnar, K.; Jisl, P.; Pěchouček, M.; and
Preucil, L. 2008. A Game-Based Approach to Comparing
Different Coordination Mechanisms. In Proceedings of the
2008 IEEE International Conference on Distributed Human-
Machine Systems. Piscataway, NJ: Institute of Electrical
and Electronics Engineers.

Kaminka, G., and Frenkel Flexible Teamwork in Behav-
ior-Based Robots. In Proceedings of the 20th National Con-
ference on Artifical Intelligence (AAAI 2005), 108–113. Men-
lo Park: AAAI Press.

Parker, L. 1998. ALLIANCE: An Architecture for Fault Tol-
erant Multi-Robot Cooperation. IEEE Transactions on
Robotics and Automation 14(2): 220–240.

Quitadamo, R.; Cabri, G.; and Leonardi, L. 2006.
Enabling Java Mobile Computing on the IBM Jikes
Research Virtual Machine. In Proceedings of the 4th Inter-
national Conference on the Principles and Practice of Pro-
gramming in Java 2006 (PPPJ 2006), 62–71. New York:
ACM.

Šišlák, D.; Rehák, M.; Pěchouček, M.; Rollo, M.; and
Pavlíček, D. 2005. A-globe: Agent Development Platform
with Inaccessibility and Mobility Support. In Software
Agent-Based Applications, Platforms, and Development Kits,
ed. R. Unland, M. Klusch, and M. Calisti, 21–46. Basel:
Birkhauser Verlag.

Smith, R. G. 1980. The Contract Net Protocol: High-Lev-
el Communication and Control in a Distributed Problem
Solver. IEEE Transactions on Computers C-29(12):1104–
1113.

Stephens, L., and Merx, M. 1990. The Effect of Agent
Control Strategy on the Performance of a DAI Pursuit
Problem. Paper presented at the 10th International Work-
shop on Distributed Artificial Intelligence, Bandera,
Texas, October 1990.

Stone, P., and Veloso, M. 2000. Multiagent Systems: A
Survey from a Machine Learning Perspective. Autonomous
Robots 8(3): 345–383.

Suri, N.; Bradshaw, J.; Breedy, M.; Groth, P.; Hill, G.; and
Jeffers, R. 2000. Strong Mobility and Fine-Grained
Resource Control in NOMADS. In Proceedings of the 2nd
International Symposium on Agents Systems and Applications
and the 4th International Symposium on Mobile Agents
(ASA/MA 2000), 2–14. Berlin: Springer-Verlag.

Suri, N.; Bradshaw, J.; Breedy, M.; Groth, P.; Hill, G.; and
Saavedra, R. 2001. State Capture and Resource Control for
Java: The Design and Implementation of the Aroma Vir-
tual Machine. Paper presented at the 2001 USENIX JVM
01 Conference Work in Progress Session (Extended ver-
sion available as a Technical Report), Monterey, Califor-
nia, April 23–24.

Tambe, M. 1997. Towards Flexible Teamwork. Journal of
Artificial Intelligence Research 7:83–124.

Yen, J.; Yin; Ioerger; Miller; Xu; Volz CAST: Collaborative
Agents for Simulating Teamwork. In Proceedings of the
17th International Joint Conference on Artificial Intelligence
(IJCAI 20011135–1144. Menlo Park: AAAI Press.

Kenneth M. Ford is founder and CEO of the Institute for
Human and Machine Cognition (IHMC)—a not-for-prof-
it research institute with headquarters in Pensacola, Flori-
da, and a new laboratory in Ocala, Florida. Ford is the
author or coauthor of hundreds of scientific papers and
six books. Ford’s research interests include artificial intel-
ligence, cognitive science, human-centered computing,
and entrepreneurship in government and academia. He
received a Ph.D. in computer science from Tulane Uni-
versity. He is emeritus editor-in-chief of AAAI/MIT Press
and has been involved in the editing of several journals.
Ford is a Fellow of the Association for the Advancement
of Artificial Intelligence (AAAI), a member of the Ameri-
can Association for the Advancement of Science, a mem-
ber of the Association for Computing Machinery (ACM),
a member of the IEEE Computer Society, and a member
of the National Association of Scholars. Ford has received
many awards and honors including the Doctor Honoris
Causas from the University of Bordeaux in 2005 and the
2008 Robert S. Englemore Memorial Award for his work
in artificial intelligence. Ford served on the National Sci-
ence Board (NSB) from 2002–2008 and on the Air Force
Science Advisory Board from 2005–2009. He is also a
member of the NASA Advisory Council and currently
serves as its chairman.

James Allen is an international leader in the areas of nat-
ural language understanding and collaborative human-
machine interaction, the John H. Dessauer Professor of
Computer Science at the University of Rochester, and the
associate director and senior research scientist at the
Institute for Human and Machine Cognition. Allen’s
research interests span a range of issues covering natural
language understanding, discourse, knowledge represen-
tation, commonsense reasoning, and planning, especial-
ly the overlap between natural language understanding
and reasoning. Allen is a Fellow of the Association for the
Advancement of Artificial Intelligence and former editor-
in-chief of Computational Linguistics. He received his
Ph.D. from the University of Toronto.

Niranjan Suri is a research scientist at the Institute of
Human and Machine Cognition. He received his Ph.D. in

Articles

SUMMER 2010 23

computer science from Lancaster University, England,
and his M.Sc. and B.Sc. in computer science from the
University of West Florida, Pensacola, Forida. His current
research activity is focused on the notion of agile com-
puting, which supports the opportunistic discovery and
exploitation of resources in highly dynamic networked
environments. He also works on process-integrated
mechanisms—a novel approach to coordinating the
behavior of multiple robotic, satellite, and human plat-
forms. Suri has been a principal investigator of numerous
research projects sponsored by the U.S. Army Research
Laboratory (ARL), the U.S. Air Force Research Laboratory
(AFRL), the Defense Advanced Research Projects Agency
(DARPA), the Office of Naval Research (ONR), and the
National Science Foundation (NSF). He has authored or
coauthored more than 50 papers, has been on the tech-
nical program committees of several international con-
ferences, and has been a reviewer for NSF as well as sev-
eral international journals.

Patrick J. Hayes is a senior research scientist at the Insti-
tute of Human and Machine Cognition. He has a B.A. in
mathematics from Cambridge University and a Ph.D. in
artificial intelligence from Edinburgh. He has been a pro-
fessor of computer science at the University of Essex and
philosophy at the University of Illinois, and the Luce Pro-
fessor of cognitive science at the University of Rochester.
He has been a visiting scholar at Université de Genève

and the Center for Advanced Study in the Behavioral
Studies at Stanford and has directed applied AI research
at Xerox-PARC, SRI, and Schlumberger, Inc. At various
times, Hayes has been secretary of AISB, chairman and
trustee of IJCAI, associate editor of Artificial Intelligence, a
governor of the Cognitive Science Society, and president
of AAAI. His research interests include knowledge repre-
sentation and automatic reasoning, especially the repre-
sentation of space and time; the semantic web; ontology
design; image description; and the philosophical foun-
dations of AI and computer science. During the past
decade Hayes has been active in the Semantic Web ini-
tiative, largely as an invited member of the W3C Work-
ing Groups responsible for the RDF, OWL, and SPARQL
standards. He is a member of the Web Science Trust and
of OASIS, where he works on the development of ontol-
ogy standards. Hayes is a charter Fellow of AAAI and of
the Cognitive Science Society.

Robert A. Morris is a computer science researcher in the
planning and scheduling group in the Intelligent Systems
division at NASA Ames Research Center. He received a
B.A. from the University of Minnesota and a Ph.D. from
Indiana University. He has led a number of projects relat-
ed to observation planning and scheduling for remote
sensing instruments. His technical interests include opti-
mization planning and scheduling and representing and
reasoning about preferences.

Articles

24 AI MAGAZINE

Introduction to Machine Learning
SECOND EDITION
Ethem Alpaydın
“A comprehensive exposition of the kinds of model-
ing and prediction problems addressed by machine
learning, as well as an overview of the most com-
mon families of paradigms, algorithms, and tech-
niques in the field. The volume will be particularly
useful to the newcomer eager to quickly get a grasp
of the elements that compose this relatively new
and rapidly evolving field.”

— Joaquin Quiñonero-Candela, coeditor, Data-Set
Shift in Machine Learning
584 pp., 172 figures, $55 cloth

Language and Equilibrium
Prashant Parikh
“The book is an intriguing mixture of linguistics,
computer science, game theory, and philosophy.
It does much to illuminate an enduring mystery:
how language acquires meaning.” — Eric S. Maskin,
2007 Nobel Laureate in Economics
360 pp., 45 illus., $40 cloth

The MIT Press

Now in Paper

Semi-Supervised Learning
edited by Olivier Chapelle,
Bernhard Schölkopf, and Alexander Zien
A comprehensive review of an area of machine
learning that deals with the use of unlabeled data in
classification problems: state-of-the-art algorithms,
a taxonomy of the field, applications, benchmark
experiments, and directions for future research.
528 pp., 98 illus., $26 paper

Visit our e-books store: http://mitpress-ebooks.mit.edu
To order call 800-405-1619 http://mitpress.mit.edu

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

