
Automatic transfer of learned knowledge from one task or
domain to another is a relatively new area of research in
the artificial intelligence community. Broadly speaking,

the goal is to apply knowledge acquired in the context of one
task to a second task in the hopes of reducing the overhead asso-
ciated with training and knowledge engineering in the second
task. The underlying idea is that the human and computation-
al costs of revising and adapting the previously learned knowl-
edge should be less than that of building a new knowledge base
from scratch. 

This article provides an overview of recent work on a system
for transferring knowledge between two tasks in American foot-
ball. In the initial task, known as the source, the system must
learn to recognize plays, including the patterns run by individ-
ual players, from videos of college football games. The second
task, known as the target, requires the system to execute and
improve upon the plays observed in the source in a simulated
football environment, called Rush 2008.1

This case study into transfer from recognition into control
knowledge illustrates an ability to load performance knowledge
into an agent by demonstration, as opposed to manual encod-
ing or search and exploration. Our work uniquely spans the full
range of problems associated with this knowledge-conversion
process and includes learning to process the raw video into a
symbolic format, learning procedures that capture the play
observed in video, and adapting those procedures to the simu-
lated environment. Central to this process is the problem of
how to translate from the declarative knowledge used in parsing
the videos into the procedural knowledge used to control the
simulator. 
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n Automatic transfer of learned knowledge
from one task or domain to another offers great
potential to simplify and expedite the construc-
tion and deployment of intelligent systems. In
practice however, there are many barriers to
achieving this goal. In this article, we present a
prototype system for the real-world context of
transferring knowledge of American football
from video observation to control in a game
simulator. We trace an example play from the
raw video through execution and adaptation in
the simulator, highlighting the system’s compo-
nent algorithms along with issues of complexi-
ty, generality, and scale. We then conclude with
a discussion of the implications of this work for
other applications, along with several possible
improvements. 



The football domain provides an ideal environ-
ment to pursue this work for two reasons. First, the
domain exhibits substantial structure, which is an
important aspect of transfer. Second, football is a
complex and knowledge-intense domain, so that
both interpretation and physical participation in
the game are challenging for inexperienced
humans, much less computer agents. Ideally, the
system should apply the knowledge structures
acquired in the source to support high levels of
performance in the target, similar to those
observed in the original video. 

The goal of this presentation is to describe an
end-to-end transfer system that connects to real-
world data, including the technology that we
developed to address the associated issues of com-
pexity, generality, and scale. We begin with a brief
review of American football, including a summary
of the video footage and simulated environment.
Next, we visit each learning and performance task
in order, tracing a single play from raw video
through execution and adaptation. After this, we
discuss some of the implications of this work,
including strengths and weaknesses of the
approach along with possible next steps and other
potential applications. Finally, we conclude with
several remarks on the future of transfer. 

Transfer in American Football 
American football is a competitive team sport that
combines strategy with physical play. Two 11-play-
er teams play the game on a 100- by 53-1/3-yard
field (slightly smaller than a typical soccer pitch).
The objective is for the offense (team with posses-
sion of the ball) to score points by advancing the
ball down the field until reaching the opponent’s
end, while the defense works to stop forward
progress. The rules governing ball control and
motion are complex, but for this article, only the
notion of a single play is important. 

A play begins with the ball placed at the location
of the end of the previous play, known as the line
of scrimmage. The teams line up horizontally on
opposite sides of the ball. Play begins when the cen-
ter (C) snaps, or hands off, the ball to the quarter-
back (QB), who then attempts to advance the ball
using a variety of techniques. This article presents a
passing play, in which the quarterback attempts to
pass (throw) the ball to a receiver who has moved
downfield. Ideally, the receiver catches the ball and
continues to run downfield until tackled (stopped)
by the opposing team. Again, the rules are com-
plex, but a typical passing play includes five players
that can legally receive the ball. 

Transfer Task 
Broadly speaking, the objective of our transfer sys-
tem is to gain sufficient knowledge by observation

of football videos to support control and adapta-
tion in a simulated environment. More specifical-
ly, the source task requires the system to recognize
plays executed by the offense in the video. This
includes recognizing the patterns run by the indi-
vidual players, along with the actions required to
achieve those patterns. Toward this end, we pro-
vide the system with a set of 20 videos, each of
which depicts one successful passing play. The
plays were selected to illustrate a variety of differ-
ent behaviors and patterns. 

The videos used in the source task each depict a
single passing play as executed by the Oregon State
University football team in a real game. The videos
are shot from a panning and zooming camera
located near the top of the stadium and corre-
spond to those used by coaches for reviewing and
preparing for games. The camera operator attempts
to keep as much of the action in view as possible.
This differs from typical television footage, which
tends to focus primarily on the ball. 

Figure 1a shows a sample video frame, taken
immediately prior to the start of play, from the
play that we trace throughout this article. Figure
1b shows a trace of each offensive player’s motion
throughout the play. Notice how the quarterback
drops backward from the line of scrimmage to buy
time and space from oncoming defenders (not
shown), while the receivers (LWRs, RWR, and RBs)
run a variety of patterns down and across the field
in an effort to get clear of defenders and receive a
pass from the quarterback. The role of the five
players (LT, LG, C, RG, RT) near the center of the
field is to block oncoming defenders from reaching
the quarterback before he throws the ball to an
open receiver. In this case, the quarterback throws
the ball to the right wide receiver, who catches it
and runs an additional five yards down field before
the defense tackles him. 

In the target task, the system must first apply the
knowledge gained in the source to control the
offensive players in the simulator, and then adapt
transferred play to improve performance in the tar-
get domain. The transfer system receives low-level
information, such as player location, direction,
and current action, from the simulator on each
clock tick. In response, it must control all of the
offensive players on a tick-by-tick basis using low-
level commands such as stride, block, and throwTo.
For the purposes of this article, the rules and objec-
tives of the simulated game are the same as in stan-
dard football. 

In spite of these similarities, the transfer system
must still contend with a variety of other differ-
ences that make play adaptation in the target
important. For example, the Rush 2008 football
environment used for the target task simulates an
eight-player variant of standard American football.
The simulator also uses a wider field than regula-
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tion college football, which produces more open
play when combined with the reduced number of
players. Importantly, our transfer system controls
only the offensive players, while the simulator
controls the defense based on one of several strate-
gies. This means that the defensive tactics
employed by the simulator may look nothing like
the tactics employed in the video. As a result, the
transfer system may need to adapt its offensive tac-
tics accordingly. 

Overview of Approach 
Our transfer system consists of three distinct parts,
as shown in figure 2. The first part, which corre-
sponds to the source-learning task, takes the raw
video along with labeled examples as input and
applies statistical machine-learning techniques to
distinguish among the individual players on the
field and to recognize the activities undertaken by
each player. In the second part, the system must
map recognition knowledge acquired in the source
into the procedural knowledge required by the tar-
get. For this, the system uses the Icarus cognitive
architecture (Langley and Choi 2006), which pro-
vides a framework for defining intelligent agents.
Icarus first interprets the play-specific knowledge
acquired in the source in the context of general
football background knowledge, and then con-
structs a set of procedures for executing the
observed play. In the third part, the system uses
Icarus to control players during simulation and
adds a heuristic search mechanism to support
adaptation of the learned plays to the simulated
environment. The following three sections provide
a more detailed look at each learning and per-
formance task addressed by the transfer system. 

The Source Task: Learning 
to Annotate Raw Video with 

Actors and Actions 
The performance goals in the source domain are to
recognize the activities occuring on the field and
to annotate the video appropriately. In particular,
the result of learning should be an annotation sys-
tem that receives raw video of a football play and
outputs a low-level symbolic description of the
actors and actions in the play. These low-level
descriptions will then serve as the primitive vocab-
ulary that Icarus uses for extracting higher-level
knowledge about football plays. 

The problem of computing symbolic annota-
tions from raw video of American football is com-
plicated by several factors. These include the large
number of players on the field (22 offensive and
defensive players), the large degree of occlusion
produced when many players converge on one
location, erratic player movement, and the unifor-
mity of the players’ appearances. Prior work has

attempted to compute symbolic descriptions of
football plays (Intille and Bobick 1999), but has
relied heavily on human assistance for certain
parts of the vision pipeline, such as player tracking
and video registration. We are not aware of any pri-
or work that allows for full automation of the
annotation process. Here we describe our recent
efforts in developing such a system by leveraging
modern ideas from machine learning, probabilis-
tic inference, and computer vision. 

Our football play annotation system consists of
four main components as diagrammed in figure 3.
First, we map the input video to a model of the
field in a process known as registration. Second, we
identify the initial locations and roles of each play-
er on the field, here called formation recognition.
Next, we track each player’s location throughout
the play. Finally, we segment and label each player
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Figure 1. A Sample Video Frame (a) Showing Initial 
Player Positions, along with a Trace of Offensive 
Player Movement throughout the Play (b). 
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track with durative actions. All of these tasks fall
within the leftmost box of figure 2. In the remain-
der of this section, we give a brief overview of each
of these components. 

Video Registration 
As noted earlier, the video used in this work comes
from a camera located in a fixed position at the top
of the stadium. During each play, the operator
pans and zooms significantly to capture all of the
action on the field. This causes the precise video
coordinates to become meaningless, since there is
not a fixed relationship between video coordinates
and locations on the football field. The purpose of
our video registration subsystem is therefore to
compute a mapping between the raw input video
and an overhead scale model of the football field. 

The second box of figure 3 shows the result of
projecting a video frame onto the football field
according to the computed mapping. This is an
important first step in the annotation process
because it allows us to model the action of the
football game in terms of the static coordinate
frame defined by the football field (that is, in terms
of yard and hash lines) rather than in terms of
video coordinates. This component of our system
does not involve learning but is rather a fixed,
stand-alone preprocessor of the video. 

Standard registration approaches use image fea-
tures, such as those computed using SIFT (Lowe
2004), to find point correspondences between the
images or video and the model with which they
are being registered. These correspondences then
get used to analytically compute registration trans-
forms. Unfortunately the image feature matching
techniques used by these approaches are typically
able to match only those image features which are
distinctive, that is, image features whose visual
appearance is unique from the others. In football
video, however, many of the image features that
are most useful for registration, such as hash marks

and numbers, have similar or identical appear-
ances. For this reason, standard registration
approaches generally perform very poorly on foot-
ball video. 

To overcome this difficulty, we developed a reg-
istration algorithm that uses a measure of local dis-
tinctiveness, as opposed to the global distinctive-
ness measures used by standard approaches, to find
video-to-model correspondences even for image
features with near-identical appearances (Hess and
Fern 2007). For football video, this algorithm
yields results that are typically accurate to within
half a yard on the football field. We use the trans-
formations computed using this algorithm in all
later stages of video annotation. 

Initial Formation Recognition 
Recognizing initial player formations entails com-
puting the locations and determining the roles (for
example, quarterback, wide receiver, and so on) of
all the players on the field for a particular play.
Icarus makes extensive use of this information
when constructing and executing play procedures,
so it represents a key output of the source learning
task. We also use the location information to ini-
tialize the player trackers we describe below. An
example output of our formation recognizer is
shown in the third box of figure 3, where each dot
indicates the position of a player and the label next
to each dot (for example, QB for quarterback)
assigns a role to the player at that location. 

In practice, each player’s role and his location
relative to other players on the field are closely
related. This is a useful piece of information since
players in our input video appear nearly identical,
making it impossible to determine a player’s iden-
tity based on his appearance alone. We therefore
rely on the relative spatial configuration of the
players to determine their roles. 

Our approach to formation recognition treats
the entire formation as a single object composed
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Figure 2. Transfer System Overview. 

Player Tracking
and

Activity
Recognition 

 

 

Statistical Machine
Learning 

Play
Recognition

and Skill
Learning 

ICARUS
Architecture

 ICARUS Plus
Heuristic Search 

Source Task Mapping Task  Source Task 

Raw
Video 

Player ID,
Location,
& Actions 

Goals &
Skills 

Control 

Background
Knowledge 

Live
Play 

Simulated
Play 

Play
Execution

and
Adaptation

Labeled
Examples 



of parts (the players). We model each player based
on his appearance and his ideal location relative to
other players, as determined by his role. The key
step of this component is to learn appearance
models from the videos using standard maximum-
likelihood techniques. Given the model we deter-
mine the optimal set of players and their locations
by minimizing an energy function that takes play-
ers’ appearances into account along with deforma-
tions from their ideal spatial configuration. We
perform this minimization using a combination of
branch-and-bound search and an efficient form of
belief propagation. This model, called the mixture-
of-parts pictorial structure, or MoPPS (Hess, Fern,
and Mortenson 2007), achieves more than 98 per-
cent accuracy in classifying players’ roles and is
accurate to within just over half a yard in deter-
mining players’ locations. 

Player Tracking 
Every football play consists of a set of carefully
planned motion trajectories followed by the play-
ers, and reasoning about the action of a football
play requires knowing these trajectories. However,
tracking the motion of football players is one of
the most difficult instances of the object-tracking
problem. It exhibits nearly all of the most chal-
lenging aspects of multiobject tracking, including
a significant number of players to be tracked, play-
ers with near-identical appearances, occlusion
between players, complex interactions sometimes
involving upwards of 5 or 10 players, erratic
motion of the players and camera, and changing
motion characteristics that depend on both a play-
er’s role and the time stage of the football play. 

To solve this tracking problem requires a system
with a great deal of flexibility. To this end, we
designed a particle-filter based tracking framework
that employs pseudoindependent trackers and a
particle weighting function. Here, pseudoindepen-
dent means that the individual trackers perform
inference independently but have the previous
states of other trackers available as observations.
The particle weighting function takes the form of
a log-linear combination of weighted arbitrary fea-
ture functions (similar to the model used in condi-
tional random fields). Importantly, this model
allows us to use different parameters/weights for
each player role, which is beneficial since players
of different roles exhibit very different typical
behaviors. The information about which role each
player in the initial video frame has is obtained by
the MoPPS model described above and is treated as
part of the input to our tracker. 

Tuning the parameters by hand is far too
difficult for this task. Thus, we designed an effi-
cient, discriminative, supervised training proce-
dure for this tracking framework that learns to
improve performance based on errors observed
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Figure 3. An Outline of the Main Components of the Source Task 
System, Which Annotates the Raw Input Video of a Football

Play with the Players’ Roles and Actions. 
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during tracking. This approach is described in
detail by Hess and Fern (2009), where it is shown
significantly to outperform other state-of-the-art
tracking systems on the football tracking problem.
An example output of our tracker is shown in the
fourth box of figure 3, where the trajectory of each
of the 11 offensive players is projected onto the
football field model. 

Labeling Player Tracks 
with Durative Actions 
Given the availability of player tracks, we now must
annotate those tracks with the durative (nonin-
stantaneous) actions that occur along those tracks.
For this, we first defined a set of role-dependent,
parameterized actions that correspond to the basic
player activities used by coaches to describe foot-
ball plays. For example, wide receivers will typical-
ly get associated with actions that describe passing
patterns such as the cross pattern shown in figure 3,
in which the player runs forward and then turns
across the field. While not shown in the figure,
each such action is parameterized by distance and
directional information. For example, the cross pat-
tern is parameterized by the number of yards that
the player runs forward before turning, along with
the direction of the cross (in or out). 

Given this action vocabulary, the system must
segment the tracks of each player according to dis-
tinct actions and label each segment by the action.
Most players typically perform a single action per
play, but it is not unusual for certain players (for
example, quarterbacks and running backs) to per-
form a sequence of two or three actions. For this,
our system uses an instance-based learning algo-
rithm to segment and label the player tracks simul-
taneously. The algorithm receives a representative
training set of labeled trajectories, which serve as
prototypes. Given this data set and a new track to
label, the system performs the following steps: (1)
find the “most similar” track in the labeled dataset,
(2) find the segmentation that best corresponds to
the segmentation of the most similar track, and (3)
return the query track with the segments comput-
ed in the previous step labeled by the activities in
the most similar track. 

The key challenge is to define a notion of simi-
larity of player tracks and the related problem of
finding the most similar segmentation between
two tracks. For this purpose, we note that a track is
simply a time series of two-dimensional points, or
a vector-valued signal. By treating our tracks as sig-
nals we can draw on prior work on measuring the
similarity between signals. Specifically, we apply
dynamic time warping, or DTW (Sakoe and Chiba
1978), a well-known algorithm for matching tem-
porally warped signals. Given a distance measure
between any two points in a signal, DTW produces
a correspondence between points in the two sig-

nals that minimizes the cumulative distances
between corresponding points. Such a correspon-
dence can also be viewed as giving a segmentation
of one signal relative to the other. 

It remains to describe our distance measure used
between two points on player tracks. We first
defined a set of features that describe each two-
dimensional point in a trajectory in terms of the
direction, speed, and distance covered by the play-
er in a small window of time around a point. We
then define the distance between two points to be
a weighted Euclidean distance between the feature
vectors of those points, where the weights were
hand-selected parameters. 

Given a query track, we can now use DTW to
find the track in the data set that returns the lowest
cost. Since this nearest track in the labeled data set
has its durative actions labeled, we simply use the
DTW alignment to give each point on the query
trajectory the same label as the corresponding
point on the nearest trajectory. Thus DTW can be
used to perform both labeling and segmentation
efficiently. Figure 4 shows the output of the DTW
algorithm for a query track (in red) and its nearest
match (in green). Each track corresponds to a
receiver running a cross-pass pattern. The grid rep-
resents the field, and the points shown are the actu-
al field coordinates contained in each track. Notice
how DTW correctly aligns the trajectories at the
point where the player suddenly changes direction.
This is important since it allows us to correctly
compute the parameters of the query pattern. 

The method performs perfectly for linemen due
to the uniformity of their activity, but performance
varies for receivers and running backs. The seg-
mentation boundaries are generally accurate,
though they rarely match the training data exact-
ly. However, certain pairs of segment labels are fre-
quently confused due to qualitative similarity. For
example, passing patterns such as “slant” and
“cross” can often look quite similar and can be
difficult even for human labelers to agree upon.
Most errors were of this near-miss variety, with
fewer errors being more serious, for example, clas-
sifying a passing pattern as a pass-blocking activi-
ty. The resulting system constitutes the first end-
to-end system for labeling football plays from
video and was sufficiently accurate to serve as good
source data for the overall transfer task. 

The Mapping Task: 
Learning Executable Procedures

from the Annotated Video 
After completing the source learning task, we now
have available a low-level, symbolic description of
the videos that includes information such as the
identity, location, and action of each player on the
field for each video frame, along with some more
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durative action labels, such as receiver running
patterns. The next step is to convert this play-
recognition knowledge into a form suitable for
control. One possible approach is to convert the
action labels directly into a script, based on the
low-level actions available in the simulator. This
would certainly provide the control needed to exe-
cute the observed plays in Rush, but in the absense
of the recognition information acquired in the
source, such scripts could not adapt to any changes
in the environment. 

Toward this end, our approach uses the Icarus
cognitive architecture (Langley and Choi 2006) to
represent and apply both forms of knowledge in
the simulator. In the following, we review cogni-
tive architectures in general, and Icarus in particu-
lar. The remainder of this section then describes
how Icarus uses and converts the recognition
knowledge acquired in the source task, along with
other background knowledge, into the procedures
or skills needed for play execution in Rush. 

Background on the Icarus Architecture 
A cognitive architecture (Newell 1990), serves as a
template for intelligent agents by specifying the
processes, memories, and knowledge representa-

tion languages that remain constant across
domains. The specific mechanisms used by a given
architecture reflect its objectives. Icarus aims to
capture many facets of human cognitive ability by
modeling qualitatively results from psychology
and cognitive science. More importantly, Icarus
takes a unified view of cognition (Newell 1990),
which means that the architecture focuses on
modeling the many important interactions among
cognitive processes such as inference, execution,
problem solving, and learning. We provide a brief
introduction to Icarus here; see Langley and Choi
(2006) for a more detailed overview of the archi-
tecture, its assumptions, and its mechanisms. 

Icarus bears a close relationship to other well-
known cognitive architectures, such as Soar (Laird,
Newell, and Rosenbloom 1987) ACT-R (Anderson
1993). Like these, Icarus assumes a distinction
between long-term and short-term memories and
that both contain modular elements that can be
composed dynamically during performance and
learning. These architectures also share the notion
that cognitive behaviors occur in cycles that
retrieve and instantiate long-term structures and
then use selected elements to drive action. One key
distinction that is relevant to our work on transfer
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Figure 4. Cost and Alignment Returned by the DTW Algorithm for 
Two “Cross” Patterns with Different Parameters. 
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is that Icarus places conceptual and skill knowl-
edge into separate stores and indexes skills by the
goals that they achieve. These long-term memories
are organized hierarchically, such that complex
structures are defined in terms of simpler ones. As
we will see, this structure plays a key role in creat-
ing skills for the annotated video clips. 

Figure 5 shows the basic Icarus performance sys-
tem. A cycle begins when perceptual information
that describes objects in the environment gets
deposited into a short-term perceptual buffer. This
then triggers the inference process, which match-
es the contents of the perceptual buffer against
long-term conceptual memory to produce beliefs.
Each concept describes a class of environmental
situations in a relational language similar to PRO-
LOG. Beliefs are therefore specific instances of rela-
tions that hold among objects in the environment.
The inference process computes the deductive clo-
sure of the perceptual buffer with the conceptual
memory, and deposits the resulting beliefs into a
short-term belief memory. Next, the execution
process attempts to achieve the first unsatisfied
goal stored in goal memory by selecting an applica-
ble skill from long-term skill memory based on the

contents of belief memory. If a skill that can
achieve the current goal applies in the current
environment, the architecture selects it and exe-
cutes the first applicable action. This in turn alters
the environment, which produces a new set of per-
cepts, and initiates the next cycle. 

In the remainder of this section, we discuss the
steps taken to apply Icarus to the problem of trans-
ferring knowledge acquired by observation of foot-
ball plays into knowledge suitable for executing
plays in a simulator. We provide examples and
demonstrations of the processes outlined above as
needed, and highlight the learning method that
underpins that mapping from observed to exe-
cutable knowledge. We then focus on execution
and refinement of the learned skills in the simula-
tor in the following section. 

A Symbolic Representation of the Video 
The first step in using Icarus to convert source
recognition knowledge to target control knowl-
edge is to define the set of percepts that the system
will observe from the preprocessed video and the
simulator. Strictly speaking, the percepts from the
video stream and the simulator need not be iden-
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Figure 5. The Icarus Performance System. 
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tical. One could reasonably expect the transfer sys-
tem to map between the source and target repre-
sentations, as demonstrated by Hinrichs and For-
bus (2007) and Könik et al. (2009), for example. In
this case, the extra mapping step adds unnecessary
complication, as the source output and target
input representations align well. 

Recall that the source preprocessing step pro-
duced four outputs for each of the offensive play-
ers on the field: (1) an identifier and role, (2) a loca-
tion, (3) a direction of motion, and (4) a long-term
action, such as block or 5-yard cross pattern. The first
three of these correspond exactly to the percepts
produced by Rush 2008, and the fourth shows only
minor differences in terminology and form.
Although a simple, direct mapping would be suffi-
cient to let the system control the simulator based
on experience gained by observing the videos, we
take a slightly different approach here to provide
the system with more control over performance in
the target. 

The high-level labels used in the source task play
an important role in keeping the source-learning
task tractable and accurately describe the action
that takes place on the field. They could also be
used to provide high-level control in Rush as done
in earlier versions of this work. However, they do
not lend themselves to the sort of reactive control
model of which Icarus is capable and on which
successful execution in a simulator that follows dif-
ferent defensive strategies depends. To improve
this, we mapped the high-level action labels into a
sequence of low-level, short-duration labels. For
example, a 5-yard cross pattern would get mapped
into a sequence of directional move labels, which
when combined with the directional labels, is suffi-
cient to reproduce the original pattern in an incre-
mental manner. 

Table 1 shows a sample subset of percepts that
Icarus receives from a single frame in the video.
Along with the identity, location, direction, and
actions of offensive players, Icarus perceives the
identity of the ball carrier and is aware of the pas-
sage of time (denoted by the time percept). Notice
that the system perceives the defenders as well as
the offensive players, but that the action associat-
ed with the defense is always defend. This is because
Icarus controls the offense only and cannot know
the plans or actions taken by the defense except by
observation of position and direction. Time steps
in the simulator are encoded similarly. 

Play Interpretation 
The second step in learning executable skills from
the video-based perceptual stream is to interpret
the observed players and actions into higher-level
beliefs about events on the field. The resulting
beliefs describe events at various levels of abstrac-
tion and over varying periods of time. Reasoning

such as this is one of the principle tasks that any
intelligent agent must perform as a part of inter-
acting with its environment. Icarus does this
through an inference process that matches percep-
tual information against concept definitions stored
in long-term memory. In the context of learning
skills from observed behavior, reasoning serves as
an important part of explaining which actions
were taken in a given context and why. More gen-
erally, reasoning helps to determine which actions
to take in order to achieve a given goal. 

Icarus beliefs are instances of generalized con-
cepts and represent specific relations among enti-
ties in the environment. Each belief has two time
stamps indicating the first and last times during
which the belief held continuously. Icarus retains
all beliefs inferred during the current episode
(here, one football play). This allows the agent to
reason about events over time. As noted earlier, the
inference process in Icarus simply computes the
deductive closure of the perceptual buffer with the
concepts stored in long-term memory. Although
the use of deductive closure cannot scale to very
complex domains, it is sufficient to handle inter-
pretation of the events related to the 11 offensive
players in a regulation football play. Stracuzzi et al.
(2009) provide additional details on temporal
inference in Icarus. 

The concepts used in interpreting the plays were
manually constructed, as Icarus does not yet
include a mechanism for inducing concept hierar-
chies from observed sequences. The hierarchy used
here included 67 concepts over six layers of
abstraction and interprets the complete suite of 20
different passing plays used in training and testing
the source learning mechanisms. Importantly, the
hierarchy includes a significant amount of shared
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Table 1. A Selection of Percepts Describing a Single Frame in the Video. 

(time 143)

(ball BALL1 carriedby OFF05)

(agent OFF00 role RWR x 18.7 y -23.3
direction N team OFFENSE action MOVE)

(agent OFF01 role RB x 6 y -28.6
direction N team OFFENSE action MOVE)

(agent OFF05 role QB x 6.6 y -24.1
direction S team OFFENSE action MOVE)

(agent OFF08 role C x 6.3 y -22.9
direction S team OFFENSE action BLOCK)

(agent DEF11 role DB x 18.2 y -21.1
direction SE team DEFENSE action DEFEND)

(agent DEF12 role DB x 13.1 y -11.9
direction NE team DEFENSE action DEFEND)



substructure among the various concepts. As we
discuss below, the shared substructure provides
generality and scalability to our transfer system. 

Table 2 shows sample football concepts. Each
concept has a head, which consists of a predicate
with arguments, and a body, which defines the sit-
uations under which the concept holds true. The
relations field specifies the subconcepts upon

which the concept depends along with their asso-
ciated time stamps, which correspond to the time
stamps on beliefs. The constraints field then
describes the temporal relations among the sub-
concepts by referring to these time stamps. 

The hierarchical relationship among concepts is
a key property of the sample concepts shown in
table 2. For example, the first two explicitly test the
agent’s percepts, checking for ball possession and
player movement, respectively. Caught-ball tests
for the event that some player caught a thrown
ball by checking whether the ball was in the AIR in
one time step and then in the possession of a play-
er in the next. Moved-until-ball-caught tests for the
event that an eligible receiver ran continuously in
a specific direction (not necessarily starting from
the beginning of the play) until the some player
caught the thrown ball. Note the use of NOW,
which only matches if the belief holds in the cur-
rent time step. Finally, slant-pattern-completed iden-
tifies situations in which a receiver runs downfield
for a specified number of yards, then turns 45
degrees, and continues running until the ball is
caught (possibly by another player). Strictly speak-
ing, the dependence on catching the ball implies
that Icarus cannot recognize receiver patterns if the
ball is not caught (a failed pass attempt). While
true, this has no impact on performance, since a
failed pass typically ends the play and obviates the
need for continued recognition and control. 

Icarus updates belief memory after receiving
updated percepts at the start of each cycle by
matching the concept definitions to percepts and
existing beliefs in a bottom-up manner. Table 3
shows some of the beliefs derived from the play
shown in figure 1. Note the cumulative nature of
some of the beliefs. For example, the three posses-
sion beliefs indicate the history of ball possession
for the entire play (340 cognitive cycles). Other
beliefs, such as slant-pattern-completed or slant-
reception-completed indicate the event that a dura-
tive procedure has completed (the latter indicates
that the player has run his slant pattern then
caught the ball and ran with it until being tackled
by the defense). This temporal understanding of
events plays a critical role in letting Icarus interpret
and control complex procedures such as those
used in football. 

Notice also that the high-level beliefs inferred by
Icarus may not correspond exactly to the high-lev-
el labels originally assigned by the source labeling
system. For example, a slant pattern (receiver runs
straight downfield, then turns and continues
downfield at a 45 degree angle) may look similar to
a streak (receiver runs straight downfield only) if
the slant angle is substantially less than 45 or if the
streak angles off to one side. These differences are
a matter of interpretation, and have negligible
impact on performance in the target. Figure 6
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Table 2. A Selection of Concepts from the Football Domain. 

For the purposes of illustration, these concept definitions have been simplified
slightly. 

; Who moved in which direction and when
((moved ?agent ?dir)
:percepts ((agent ?agent direction ?dir team OFFENSE action MOVE)))

; Who has possession of the ball and when
((possession ?agent ?ball)
:percepts ((ball ?ball carriedby ?agent)))

; Who caught the ball and when
((caught-ball ?agent ?ball)
:relations (((possession AIR ?ball) ?air-start ?air-end)

((possession ?agent ?ball) ?pos-start ?pos-end))
:constraints (( =?air-end (- ?pos-end 1))))

; Indicates that ?agent moved in ?dir consistently until someone caught the ball
((moved-until-ball-caught ?agent ?gen-dir)
:relations (((eligible-receiver ?agent ?role) ?elig-start NOW)

((moved ?agent ?dir) ?move-start NOW)
((caught-ball ?receiver ?ball) ?catch-start NOW))

:constraints ((< ?move-start ?catch-start)))

; Indicates that ?agent completed a slant pattern: ran downfield ?dist
; yards, then turned toward ?dir and ran until someone caught the ball
((slant-pattern-completed ?agent ?dist ?gen-dir)
:relations (((moved-distance-in-direction ?agent ?dist N) ?north-start ?north-end)

((moved-until-ball-caught ?agent ?gen-dir) ?dir-start NOW)
(slant-pattern-direction ?gen-dir))

:constraints (≤ ?north-end ?dir-start))

Table 3. Sample Beliefs Inferred for the Football Domain.

(CAUGHT-BALL RWR BALL1) 259 259
(DROPPED-BACK QB 5) 187 191
...
(MOVED-DISTANCE QB 5 S) 187 191
(MOVED-DISTANCE RWR 10 N) 208 212
(MOVED-DISTANCE RWR 14 NW) 237 253
...
(PASS-COMPLETED QB RWR) 259 259
(POSSESSION QB BALL1) 140 236
(POSSESSION AIR BALL1) 237 258
(POSSESSION RWR BALL1) 259 NOW
...
(SLANT-PATTERN RWR 10 NW) 259 259
(SLANT-RECEPTION RWR 10 NW) 340 NOW
...
(SNAP QB BALL1) 140 140
(THREW-BALL QB BALL1) 237 237



shows the play diagram as recognized by Icarus for
the play shown in figure 1, including pattern labels
for the receivers, the running backs, and the quar-
terback as recognized by Icarus. Note the minor
differences in pattern labels with respect to the
bottom panel of figure 3. 

Explaining What Happened 
and Learning New Skills 
Having interpreted the low-level perceptual stream
into higher-level beliefs about events on the field,
the next step is now to construct explanations for
the goals achieved by each player. These explana-
tions, along with the structure of the concepts,
determine the structure of the skills learned by
Icarus. The input to the explanation process con-
sists of a specific goal achieved by a player, the con-
cepts and beliefs computed in the previous step,
the observed perceptual sequence, and the low-lev-
el actions available to the players. Previously
acquired skills, such as those derived by processing

other offensive players on the field, may also be
available to the system. 

The explanation process in Icarus is based on the
architecture’s means-ends analysis problem solver
(Li et al. 2009). Icarus typically problem-solves in
the physical world by interleaving problem-solv-
ing steps with execution steps. However, in the
context of observing video, the agent has no con-
trol over the physical world, so the architecture
resorts to mental planning. The objective here is to
explain, in terms of actions and skills, how various
events come to pass. In particular, the architecture
attempts to explain the events that have been
identified as the top-level goals for each offensive
player on the field. 

For the work reported here, the system trivially
identifies the player goals as the highest level
(most abstract) beliefs inferred for each player. In
general, this is not a robust approach to the prob-
lem, and goal identification is an open area of
research that we have not studied extensively with
Icarus. Consider for example the play shown in
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Figure 6. A Graphical Depiction of Icarus’s Symbolic Play Interpretation. 
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figure 1. Icarus receives inputs such as those shown
in table 1 and applies concepts such as those in
table 2 to produce beliefs like the ones in table 3.
The goals correspond to the beliefs inferred from
top-level concepts (those upon which no other
concept depends) for each player. Examples
include (DROP-SCRAMBLE-ONE-SECOND-PASS-
COMPLETED QB RWR 5), which states that the
quarterback should drop back five yards, wait for
one second, and then complete a pass to the right
wide receiver. For the right wide receiver, the sys-
tem assigns the goal (SLANT-RECEPTION-COM-
PLETED RWR 10 NW), which states that he should
run a 10-yard, northwest slant pattern (run 10
yards forward, then run diagonally to the north-
west) before catching and running downfield with
the ball until tackled. 

Icarus explains these goals using a combination
of conceptual and skill knowledge. Ideally, the sys-
tem would find existing skills that explain how the
goals were achieved from the initial state. This
would mean that the architecture already had the
skills necessary to control the player stored in long-
term memory. When this is not the case, Icarus
falls back on using the conceptual hierarchy to
explain how the goal belief was derived. This
process continues recursively down through the
hierarchy, with subconcepts becoming subgoals to
explain, until the system reaches a point at which
some known skill or action explains the achieve-
ment of the current subgoal. The resulting expla-
nation hierarchy then provides the framework for
a hierarchy of new skills that achieve the decom-
posed goals and subgoals. 

To create new skills from the explanation, Icarus
performs additional analysis on the explanation to

determine important characteristics such as which
achieved events should serve as subgoals and start
conditions in skills, and in some cases which
events can be ignored. The details for the learning
and explanation processes appear in Li et al.
(2009). 

Table 4 shows examples of the primitive skills
given to Icarus before skill learning (top) and of the
new skills acquired by observation of the play
video (bottom). Primitive skills in Icarus depend
exclusively on actions executable in the environ-
ment. Once activated, primitive skills continue to
execute the listed actions until the goal specified
by the head is satisfied or the architecture decides
to execute a different skill. In this case, moved-dis-
tance-in-direction executes until ?agent has moved
?dist yards in ?dir. Moved-until-ball-caught is similar,
except that ?agent runs until some player catches
the ball as indicated by an instance (belief) of the
concept in table 2. 

The learned skills on the bottom of table 4 build
upon the primitives in the same way that the con-
cept definitions build upon each other. The main
difference is that Icarus must determine addition-
al control information not present in the concept
hierarchy, such as which subconcepts serve as start
conditions for the new skills and which serve as
subgoals. For example, when unpacked, the start
condition for slant-pattern-completed tests whether
?agent is an eligible receiver and whether ?dir is a
legal direction for a slant pattern. The latter pre-
condition is mentioned by the concept definition,
while the former is mentioned in the concept defi-
nition of the moved-until-ball-caught subgoal. 

The Target Task: Executing and
Adapting the Learned Procedures

in the Simulator 
The final task in transferring knowledge gained by
observation of football videos into control knowl-
edge is to apply and adapt the learned skills to the
new environment. In the mapping task, the system
converted declarative knowledge suitable for state
and event recognition into procedural knowledge
suitable for controlling players. However, the iden-
tified goals and learned skills remain biased by the
conditions observed in the source domain. For per-
formance in the target, the system must appropri-
ately adapt the goals and skills into the simulated
environment. 

Like most research on transfer of learning, this
work is concerned not only with applying the
transferred knowledge in the target domain, but
also with leveraging that knowledge into improved
target performance. Ideally we would evaluate this
improvement by showing that our system gains
more yards per play with the transferred knowl-
edge than without. However, the knowledge
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Table 4. Sample Skills for the Football Domain.

The upper panel shows two low-level (primitive) skills provided to the sys-
tem, while the lower panel shows two high-level skills learned by Icarus. 

; Causes ?agent to run in ?dir for a distance of ?dist
((moved-distance-in-direction ?agent ?dist ?dir)
:start ((agent-team ?agent OFFENSE))
:actions ((*run ?agent ?dir)))

; Causes ?agent to move in direction ?dir until he catches the ball
((moved-until-ball-caught ?agent ?dir)
:start ((eligible-receiver ?agent ?role))
:actions ((*run ?agent ?dir)))

((slant-pattern-completed ?agent ?dist ?dir)
:start ((SCslant-pattern-completed ?agent ?dir))
:subgoals ((moved-distance-in-direction ?agent ?dist N)

(moved-until-ball-caught ?agent ?dir)))

((slant-reception-completed ?agent ?dist ?dir)
:subgoals ((slant-pattern-completed ?agent ?dist ?dir)

(ran-with-ball-until-tackled ?agent ?ball)))



acquired in the source substantially constrains the
problem of improving performance in the target.
With a search space size of approximately 1030,
learning to control a simulated football team with-
out any prior knowledge is intractable, making a
direct comparison uninformative. In response, we
compare the performance of our system to a naïve
baseline system along with several other points of
reference, in an effort to establish a relative under-
standing of performance. Our results show that
Icarus can use the skills learned from the source
videos to bootstrap its way to good target perform-
ance on an otherwise intractable task. 

Initial Performance of 
the Transferred Procedures 
To execute the observed plays in Rush, we first
assign each offensive player a goal from those iden-
tified during play interpretation. Although Icarus
can use the individual player goals to control play
in the simulator, there are many possible play com-
binations, given that the observed video includes
11 players while the simulator uses only 8. The first
step in applying the learned skills in the simulator
is therefore to remove 3 of the player goals
observed in the video. In general the system could
do this by experimenting with various player
configurations to determine which performs best
in the simulator. In practice, a simple heuristic
works quite well in this situation. 

In regulation college football, five players (the
offensive linemen) start on the line of scrimmage
adjacent to the ball and typically block oncoming
defenders from reaching the quarterback. A typical
Rush play uses only three linemen, so the system
simply drops the two outer players, LT and RT in
figure 1b. In selecting the third player to drop, the
system first rules out any player that touches the

ball during play. This typically includes the quar-
terback and either a receiver (LWRs and RWR) or a
running back (RBs). In plays such as the one illus-
trated throughout this article, one of the running
backs often remains behind the line of scrimmage
throughout the entire play to act as an extra block-
er for the quarterback. If such a running back is
present in a play, the system drops that player; oth-
erwise, the system drops the player that ends up
farthest from the ball. Finally, the system extracts
the initial positions of the selected players from
the source video and scales them to fit the wider
Rush field (53-1/3 versus 60 yards). Again, the sys-
tem could determine these initial positions auto-
matically, but this simple scaling works well in
practice. 

To establish an initial performance level for the
transferred skills, we used Icarus to execute the test
play five times in Rush with no additional learn-
ing. We then compared the resulting performance
to that of a naïve play, to a manually constructed
play, and to the outcome of the original video play.
The naïve play simply sent all five receivers and
running backs straight down the field to receive a
pass while the quarterback threw the ball immedi-
ately upon receiving the ball. The manually con-
structed play was created by a Rush expert to re-
create the source play as closely as possible using a
play design language built into the simulator. The
language includes high-level constructs for con-
trolling the offensive players, similar to the
instructions that a coach might give, in addition
to the low-level commands that Icarus uses. Our
performance metric was simply the mean yardage
gained by the play over five attempts (though we
have only one instance of the play in the source
video for comparison). 

Figure 7 shows a typical instance of the test play

Articles

SUMMER 2011   119

Figure 7. A Trace of the Test Play Executed by Icarus in the Simulator Prior to Adaptation. 
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as executed by Icarus in Rush. Notice the structural
similarity to the player tracks from the video,
shown in figure 1b. The simulated play is essential-
ly an idealized version of the video play, as the sim-
ulated players run in straight lines and make crisp
45 and 90 degree turns instead of noisy lines and
rough arcs. This follows from the simplified physics
used by the Rush simulator. The other noteworthy
difference between the simulated and real plays
relates to performance after the catch. In the video,
the receiver gains an additional five yards after
catching the ball by avoiding potential tacklers. By
contrast, the simulated player runs straight
downfield and is tackled almost immediately. This
is partly a limitation of the simulator, but also fol-
lows from our use of a simplified player model. An
important point of future work in this project is to
expand the conceptual hierarchy to support a more
detailed interpretation of player action. This in turn
would support learning of a more reactive skill set
by providing additional recognition and therefore
additional response capacity. 

Initial results for executing the play without
additional adaptation were generally good. Icarus
averaged 14.2 yards per attempt, which was better
than both the naïve play at 1.3 yards and the
hand-constructed at 10.4 yards per attempt. This
demonstrates a strong transfer effect and that the
transfer system was clearly able to recognize the
expert source play, then transfer, and exploit that
knowledge for play improvement. However, the
system did not perform as well as the 17.1 yards
gained by the OSU football team (a single play).
That Icarus should underperform the video before
adaptation is no surprise. The offensive players in
Rush do not possess the same attributes, such as
speed or agility, as the OSU players. This necessar-
ily causes the timing and synchronization of the
play to be off. Likewise, the Rush defense need not
make the same choices as those of their video
counterparts. Moreover, the extra field width and
smaller number of players changes the dynamics
of the game substantially, much like the difference
between arena and collegiate football. As a result,
we expect the adaptation of the learned skills to
the new environment to have substantial impact
on the outcome of the play. 

Adapting Player Goals for Rush 
The final step in our transfer system is then to
make the goals given to individual players more
suitable to the new environment. More specifical-
ly, we adapt the goal parameters, such as the dis-
tance run by a receiver before turning, or the direc-
tion of the turn. We do not adapt the structure of
the induced skills in this work, for example by
switching the order of the down-field and cross-
field components of a receiver’s pattern. On the
contrary, we assume that the observed structure is

correct and that only the parameters require adap-
tation to the new environment. 

Our approach to goal adaptation operates out-
side of the Icarus framework, which does not yet
support goal evaluation or revision. The adapta-
tion process operates only over the distance and
direction parameters associated with the top-level
goals assigned to each offensive player. For exam-
ple, in (slant-reception-completed RWR 10 NW) only
the second and third parameters get adjusted. The
system does not adjust the player named in the
first parameter. The current concept hierarchy does
not capture the many rules that govern player roles
and locations, so the system cannot determine
whether a revised formation is legal. Thus, we view
the player designations as part of the play structure
(who does what) as opposed to part of the parame-
terization (how far, or in which direction). 

The system optimizes the selected parameters
using a form of hill-climbing search. Initially, all of
the parameters take on their observed values from
the video. The system then randomly chooses one
parameter to change, and evaluates the perform-
ance of the resulting play as above. The best
parameter set then gets selected for the final play.
Könik et al. (2009) provide additional detail on the
search algorithm. 

Figure 8 shows the play as executed by Icarus
after training. The most salient feature of the
adapted play is the substantial increase in distances
covered by the quarterback and the wide receivers.
The leftmost wide receiver gets assigned a 34-yard
slant pattern (which he does not complete, as evi-
denced by the lack of a 45-degree turn to the left),
while his nearest teammate gets assigned an 11-
yard cross pattern. These are much longer than the
initial 11- and 2-yard patterns respectively
assigned based on the observed source video. The
right wide receiver similarly gets assigned a 20-yard
slant pattern, as opposed to the initial 10-yard pat-
tern. These deep receiver patterns make reasonable
sense, given the relatively sparse distribution of
defenders in Rush. 

Also noteworthy is the 18-yard drop (backward
motion) assigned to the quarterback. Though
unusual in collegiate or professional play, this
makes sense given that Icarus does not support
temporal parameters to skills. The system uses the
quarterback’s drop distance as a timing mechanism
for passing. The behaviors of the running back and
three linemen remain unchanged qualitatively.
This particular execution produced a gain of 20.1
yards, though other attempts with the same
parameter set produce more or fewer for an average
of 18.2. 

Figure 9 shows the results of target learning. The
horizontal lines show, from top to bottom, the per-
formance of the video play as a point of reference,
our system using the initial transferred parameters,
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the manually encoded version of the play, and the
naïve play. The performance of the final version of
the naïve play followed from 1620 iterations of a
hill-climbing procedure similar to the one
described above and averaging 4.0 yards per
attempt. The upper curve on the graph shows the
change in performance of the transfer system over
30 rounds of search, while the lower curve shows
the same except that the initial parameter values
were set randomly instead of based on the
observed video values. 

These results suggest two main conclusions.
First, the limited performance of the naïve play in
comparison to the transfer system illustrates the
impact of the source knowledge on the target task.
Not only did the transfer system gain many more
yards per attempt than the naïve play, but the
process of adapting the play to the simulated envi-
ronment required many fewer search iterations. To
a large exent the observed transfer effect was deter-
mined by our choice of a naïve play. A play com-
posed of random legal motions would have exhib-
ited less potential, while a play composed by a
football fan would probably have generated a
smaller transfer effect. Nevertheless, the naïve play
provides a point of comparison that, in conjunc-
tion with the other reference points illustrates the
power of transfer in this domain. 

The results also suggest that both the structure
and the observed parameters play an important

role in achieving good performance. The trans-
ferred structure substantially constrains the space
of action combinations that the system must con-
sider by aggregating sequences of low-level actions
into a small number of long-term, higher-level pat-
terns. The observed parameters then provide a rea-
sonable starting point for the search. Thus, an oth-
erwise intractable problem of learning to control
an entire football team becomes manageable. 

Discussion 
Like any system aimed at performing a complex
task, understanding the capabilities of a transfer
system is critical to determining the appropriate-
ness of that system to a given problem. In the
artificial intelligence community, the effort to
characterize key properties of transfer systems has
only recently begun. However, psychological
researchers have studied transfer in humans for
over a century, producing a variety of dimensions
for comparison. Three of these apply particularly
well to the problem of characterizing artificially
intelligent transfer systems. We do not argue that
these dimensions provide a complete characteriza-
tion of transfer capabilities; they merely serve as a
starting point for an important and open problem. 

First, Robertson (2001) describes the reproductive
versus productive dimension, in which reproductive
refers to the direct application of existing knowl-
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Figure 8. A Trace of the Test Play Executed by Icarus in the Simulator after Adaptation. 
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edge to a new task while productive refers to
knowledge that gets adapted for use in the target.
Our system is therefore an instance of a productive
transfer system, as it modifies the parameters of the
plays to better suit the target environment. The
initial performance of the play in Rush, prior to
executing the parameter search, provides an exam-
ple of the reproductive performance of the system.
As demonstrated in our example play, adaptation
of the source knowledge may have a substantial
impact on performance. 

A second dimension concerns knowledge transfer
versus problem-solving transfer (Mayer and Wittrock
1996). Here, knowledge transfer refers to the case
in which knowledge (declarative, procedural, or
otherwise) relevant to one task supports perform-
ance of a second task. In contrast, problem-solving
transfer implies that the experience of solving one
problem improves the system’s ability to solve a
subsequent problem. From an artificial intelligence
perspective, the two tasks may share little or no
domain-specific knowledge, but the search strate-
gies or biases are similar. Our system currently sup-
ports only knowledge transfer. However, one can
imagine a variant of our system that also performs
problem-solving transfer. For example, the system
could extract heuristic properties of “good” plays

from the source videos and then used those heiris-
tics to guide the search for play improvements in
the target. 

A third dimension relates to the amount of pro-
cessing done to knowledge (or problem-solving
biases) in order to convert the information to a
suitable representation for the target task (Salomon
and Perkins 1989; Mayer and Wittrock 1996). High-
road transfer requires the system to actively
retrieve, map, or otherwise infer relationships and
similarities among knowledge components in the
two tasks. Low-road transfer is automatic in the
sense that the system need not apply any compu-
tational effort to apply the transferred knowledge
in the target. Our system has elements of both. In
the context of converting the observed actions
into structured skills, our system takes a high-road
approach. However, with respect to the assump-
tion that the action and entity names are the same
in both the source and target, our system is decid-
edly low-road. 

Future Work 
As noted throughout the article, the full set of
source domain video covers 20 different passing
plays. Although our presentation focuses on the
details of single play, we have, to varying degrees,
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Figure 9. Learning Curves for Adjusting the Parameters Associated with Player Goals. 
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tested the components of transfer system on larg-
er subsets of the videos. For example, we have test-
ed successfully both the source recognition subsys-
tem and the Icarus play interpretation
(recognition) module on the full set of 20 plays.
Conversely, we have applied the explanation,
learning, and execution components of Icarus to 3
plays, while the adaptation algorithm has been
tested on only 2. The results of these tests were
analogous to the results shown above, suggesting
that our approach has the potential to generalize
and scale across the broader domain of football.
The following discussion of future work highlights
some of the steps needed to generalize and scale
the system to the full football domain and beyond. 

One of the major challenges in transfer comes in
trying to transfer knowledge among weakly related
domains. Consider the extent of mapping and
analogy required to transfer knowledge gained by
observation and playing of rugby or soccer into
football. Though many concepts and skills of
teamwork and motion may apply in the abstract,
the specific rules of play share almost nothing. This
requires a much deeper form of transfer than we
have managed here, and of which the community
at large has only started to consider. The next big
step for the work presented in this article is there-
fore to incorporate methods for recognizing and
applying more abstract relationships among
domains. Initial efforts based on analogy (see Hin-
richs and Forbus [2011]) and Markov logic (Kok
and Domingos 2007) appear promising and are the
most relevant to this work. Nevertheless, research
along these lines has only just begun, and oppor-
tunities for advancing the field abound. 

A second challenge relates to the extent to
which transferred knowledge gets reused. Our sys-
tem presently attempts to re-create the observed
source play in the simulator, making minor adjust-
ments to tailor performance to the new environ-
ment. However, with improvements to the sys-
tem’s ability to consider alterations to the plays,
the system could easily mix and match the con-
tents of several observed plays into a broad variety
of original plays. This is important because it
implies the ability to leverage a small amount of
carefully selected training into a wide array of skills
and behaviors. 

On a smaller scale, two other improvements will
play an important role in making our transfer sys-
tem more robust. The first concerns symbol map-
ping. Currently our system assumes that the source
and target description languages are equivalent,
which is not typically true. Könik et al. (2009)
describe an approach to this problem that would
produce a substantially more robust transfer sys-
tem. The second line deals with handling coordi-
nation among players explicitly. Currently each
player receives an individual goal at the beginning

of each play with successful achievement ensuring
the needed synchronization among players. A bet-
ter solution would be for the system to encode all
of the individual player goals and player coordina-
tion information into a single, top-level team goal.
This would allow players who initially fail to
achieve their goals (for example due to a collision
with a defenseman) to recover and try to complete
the play anyway. 

Related Work 
Research on procedural knowledge transfer is rela-
tively rare as compared to work on transfer in clas-
sification settings. One popular framework for
work on procedural transfer is reinforcement learn-
ing, where the object of transfer is often a value
function (Taylor and Stone 2005). This often
requires auxiliary mappings between domain
states and actions, and the technology for acquir-
ing those mappings can become quite involved as
the gap between source and target environments
grows. For example, Liu and Stone (2006) employ
a structure mapping engine to find analogies
among qualitative dynamic Bayes nets expressing
soccer keep-away tasks, while Torrey et al. (2006)
transfer situation-action rules obtained by induc-
tive logic techniques, but employ them to provide
advice for constructing a value function. See Taylor
and Stone (this issue) for a more detailed introduc-
tion to transfer in reinforcement learning. 

Transfer in the context of cognitive architectures
tends to communicate more structured skills. For
example, Gorski and Laird (2006) port executable
SOAR rules representing topological knowledge
(maps, locations, and routes) among path finding
tasks. As in the reinforcement context, this form of
transfer requires sophisticated machinery to bridge
distinct source and target domains. For example,
Hinrichs and Forbus (2007) use analogical map-
ping to transfer case-based decision rules among
Freeciv tasks, while Könik et al. (2010) develop a
goal-directed analogical reasoning algorithm to
transfer skills between grid-based games that lack
shared symbols and subgoal structure. 

Our work on reusing recognition knowledge for
play design continues a trend towards bridging
increasingly distant source and target tasks. How-
ever, in contrast with some of the examples
described the above, we bridge distinct purposes
versus representations. This shifts emphasis from
the mapping technologies that enable transfer
onto the power of the skill representation itself.
Choi et al. (2007) argue that the generalization
inherent in Icarus skills naturally supports per-
formance in similar tasks. 

One important and practical benefit of our
transfer system is its ability to load complex,
domain-specific knowledge into agents. Such
agents may be used to populate auxiliary charac-
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ters in games or training simulators, or may serve
as adversaries to human players or trainees. At
present, constructing game agents is an important,
but expensive task. Most recent efforts at building
game agents focus on finite state machines
designed prior to play. However, the complexity of
the automaton, hierarchical or otherwise, increas-
es dramatically with the complexity of the game
(Orkin 2006). Likewise, scripts for controlling
agent behavior are both popular and difficult to
compose for complex games and situations. 

Other artificial intelligence-based approaches to
loading knowledge into agents include that of Kel-
ley, Botea, and Koenig (2008), who use offline
planning with hierarchical task networks to gener-
ate scripts automatically. This approach requires
expert knowledge to build the hierarchical task
networks, while our system acquires similar knowl-
edge automatically. An alternate approach uses
reinforcement learning algorithms (Bradley and
Hayes 2005; Nason and Laird 2005) to allow an
agent to learn through experience. While our
approach shares a number of ideas with these, it
differs in its use of analytical learning, which tends
to require many fewer observations or experiences
than reinforcement learning. 

Concluding Remarks 
Research in transfer of learning has great potential
to impact the ways in which we build and train
autonomous agents. In this article, we focused on
training agents to perform complex tasks in com-
plex environments based on observation of human
performance, which is one application of transfer
to agent construction. More specifically, our work
provides a clear proof-of-concept demonstration
for three key capabilities: action recognition in a
complex environment, transfer of action recogni-
tion into procedural knowledge, and adaptation of
the constructed procedures to a new environment. 

Our work also suggests that cognitive architec-
tures provide an appropriate vehicle for perform-
ing such tasks. Although we augmented the Icarus
architecture substantially to perform the tasks dis-
cussed in this article, we can imagine an extended
version of the architecture that integrates many of
the same capabilities. Expanding the presented
transfer system into one that performs robustly
across a variety of tasks and domains will require
substantial innovation along several fronts. Never-
theless, our work suggests the potential for the
approach to generalize and scale to a broad class of
problems. 
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