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Turn taking, or use of reciprocal interactions of engage-
ment, is the foundation of human communication. From
the first months of life, infants learn to influence the tim-

ing, onset, and duration of turns in face-to-face interactions
with caregivers through the use of cues such as eye gaze and
vocalizations, and they express significant anxiety when devia-
tions from the expected turn-taking pattern take place (Kaye
1977). Linguistics research with adults suggests turn taking is a
dynamic and fluid process, whereby interactive partners alter-
nately engage in the various phases of seizing, holding, and
yielding the floor through turns and backchannels (Duncan
1974, Orestrom 1983). In order for socially situated, embodied
machines to interact with humans properly, it seems logical that
they should follow the same deeply rooted turn-taking princi-
ples that govern human social behavior. 

Current interactions with robots are often rigid, ambiguous,
and confusing. Humans issuing commands to robots often need
to repeat themselves or wait for extended periods of time. Typ-
ically robots are unresponsive, opaque machines, and thus frus-
trating to deal with. The research goal in human-robot interac-
tion (HRI) of unstructured dialogic interaction would allow
communication with robots that is as natural as communica-
tion with other humans. While the field of HRI tends to focus
on speech, gesture, and the content of interaction, our work
additionally aims to understand how robots can get the under-
lying timing of social interaction right. 

Our overall research agenda is to devise a turn-taking frame-
work for HRI that, like the human skill, represents something
fundamental about interaction, generic to context or domain.
In this paper we first present our model of floor passing for a
human-robot dyad and an experiment with human subjects to
derive some of the parameters of this model. A primary conclu-
sion of our data analysis is that human turn-taking behavior is
dictated by information flow, and much of the robot’s awkward
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turn-taking behavior resulted from poor floor
relinquishing. We present our follow-up imple-
mentation of autonomous floor relinquishing and
its resulting behavior. Finally, we discuss our
insights on turn taking for HRI. 

Related Work 
Turn taking is a common framework of interaction
for social robots or robots designed to communi-
cate with people. A seminal example is the Kismet
robot that engages in childlike social interactions
with a human (Breazeal 2002). Examples of
human-robot turn taking are also seen in learning
by demonstration/imitation interactions (Billard
2002, Nicolescu and Mataríc 2003, Breazeal et al.
2004), as well as recent works in human-robot
music interactions that have either an implicit or
explicit turn-taking component (Weinberg and
Driscoll 2007; Michalowski, Sabanovic, and Kozi-
ma 2007; Kose-Bagci, Dautenhan, and Nehaniv
2008). 

Often, examples of turn taking in social robotics
take advantage of people’s propensity to engage in
turn taking, but there are some fundamental
aspects of the ability still missing from the robot’s
perspective. The robot often takes its turn without
recognizing that a person did or did not respond
before continuing its behavior. The exchange does
not influence the progression of the interaction
(for example, engaging more with people or
aspects of the environment that respond contin-
gently). In general, turn taking is often specific to
the domain behavior designed by the programmer,
rather than an underlying part of the robot’s
behavior. 

There are several examples of implementations
of various turn-taking components. Prior works
have done in-depth analysis of specific communi-
cation channels, such as gaze usage to designate
speaker or listener roles (Mutlu et al. 2009) or
speech strategies in spoken dialogue systems (Raux
and Eskenazi 2009). Closely related is the problem
of contingency or engagement detection, which
requires implementing robot perception for aware-
ness of the human’s cue usage (Movellan 2005,
Rich et al. 2010, Lee et al. 2011). Turn taking has
also been demonstrated in situated agents (Cassell
and Thorisson 1999), including management of
multiparty conversation (Bohus and Horvitz
2010). Eventually, it will be necessary to integrate
the piecewise work into an architecture for physi-
cally embodied robots. 

Approach 
Human-human communication is fraught with
errors and uncertainty. Even with excellent per-
ceptual capabilities, people still fall victim to unin-

tended interruptions, speaking over each other,
and awkward silences (Schegloff 2000). When
moving to human-robot communication, the
problems are intensified with noisy and limited
sensor data. Thus the foundation of our computa-
tional approach to turn taking is the notion that
the state of the world is only partially observable
for the robot, and that there is much uncertainty
in the problem of estimating which partner in the
dyad has the floor to speak or act. 

We describe turn dynamics as the first-order
Markov process shown in figure 1. At each time
step t, both the robot (Rt) and the human (Ht) can
be in one of four floor states: seizing, passing, hold-
ing, listening. The structure of this model is
inferred from prior knowledge about human turn
taking (Duncan 1974, Orestrom 1983). Passing and
seizing are the two transitory states where the floor
is transitioning from one person to the other,
while holding and listening are the two floor states
of the dyad during a turn. Theoretically, Rt and Ht
should always be in a seizing / passing or holding
/ listening configuration. But in reality many of the
other “error” configurations will also have a
nonzero probability. For example, at a pause in the
dialogue it is common to see both parties try to
seize the floor, and then one decides to relinquish
to the other. Or the listening party may try to seize
the floor before the holding party makes any pass-
ing cues, commonly called a barge-in. The research
challenge is to learn the parameters of this model
from data and involves two primary research ques-
tions: the timing model and the observation mod-
el. 

The timing model represents how and when the
human and the robot transition from state to state,
that is, the human transition function P(Ht | Ht–1,
Rt–1), and the robot transition function P(Rt | Rt–1,
Ht–1). 

The robot states are fully observable to the
robot, but the robot has to infer the human’s hid-
den floor state through sensory observations.  The
observation model, P(Ot | Ht) models how the sen-
sor data reflects the human floor state Ht.

Similar to Rich et al. (2010) and Bohus and
Horvitz (2010), our approach is to analyze interac-
tion data in order to find general assumptions and
learn the parameters for this model. By tracking
the status of the interaction, the robot can make
better decisions about when to take turns in a sep-
arate action module (described later). To learn the
model parameters, we conducted an experiment to
collect a diverse set of turn-taking episodes, pur-
posely including both good and bad examples,
through a combination of teleoperated robot
behavior and randomly generated timing varia-
tions. We then manually coded this data to learn
about human-robot turn-taking behavior to
inform our implementation of an autonomous
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robot controller. In the remainder of this article we
describe the data-collection experiment, present
some results of our data analysis, and describe how
this informs aspects of these model parameters and
was used in a subsequent implementation to
autonomously control the robot in the same sce-
nario as our experiment. 

Robot Platform 
The robot used in this research is a Meka Robotics
upper-torso humanoid robot we call Simon, seen
in figure 2. It has two series-elastic 7-DOF arms
with 4-DOF hands, and a socially expressive head
and neck. The sensors used in this work are one of
Simon’s eye cameras, an external camera mounted
on a tripod, a structured-light depth sensor (MS
Kinect) mounted on a tripod, and a microphone
worn around the human partner’s neck. 

Experiment 
We ran a teleoperated data collection experiment
(also known as Wizard of Oz) in which our robot
played an imitation game based on the traditional
children’s game “Simon Says” with a human part-
ner. We collected data from a total of 27 people. 

For 4 participants there was a problem that
caused data loss with at least one logging compo-
nent, so our analysis includes data from 23 partic-
ipants. We collected approximately 4 minutes of
data from each participant.1

This domain has several desirable qualities for
our investigation. It is multimodal, there is inter-
active symmetry between the human and robot, it
is relatively simple, and it is isolated from such
complexities as object-based joint attention. Figure
2 shows the face-to-face setup. The game has a
leader and a follower role; the leader is called

Figure 1. A Participant with the Simon Robot. 
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Simon. In our experiment, the human and the
robot play both roles, dividing the interaction into
a series of game and negotiation phases. 

Game Phase. In the game phase, the leader can
say, “Simon says, [perform an action].” The avail-
able actions are depicted in figure 3. The follower
should then imitate that action. The leader can
also say, “[Perform an action],” after which the fol-
lower should do nothing, or else he loses the game.
The leader concludes the set after observing an
incorrect response by declaring, “You lose!” or “I
win!” 

Negotiation Phase. In the negotiation phase, the
follower can ask, “Can I play Simon?” or say, “I
want to play Simon.” The leader can then transfer
the leadership role or reject the request. The leader
also has the option of asking the follower, “Do you
want to play Simon?” or saying to him, “You can
play Simon now.” The leader and follower can do
this negotiation to exchange roles at any time dur-
ing the game. 

The robot’s behavior in the game was imple-
mented as a 15-state finite state machine (FSM)
(Chao et al. 2011). For example, the Hello State
starts the interaction and says something like “Hel-
lo, let’s play Simon says,” the Simon Says State
selects an action command starting with “Simon
says,” and the Bow State performs the “bow” action

as a follower. Each state includes a combination of
actions from each of three channels: body motion
(one of the actions shown in figure 3), eye gaze
direction (either at the person or away), and
speech (an utterance randomly selected from a
group of 1–3 valid sentences for each state). 

During the experiment one of the authors tele-
operated the robot using a keyboard interface to
signal which state the robot should be in. Our goal
with this experiment was to collect a varied data
set of both good and bad turn-taking episodes. We
hypothesized that the exact timing and coordina-
tion between the three action channels would play
a role in good/bad floor passing behavior on the
part of the robot. It is hard for a teleoperator to
generate random behavior. Thus, in order to col-
lect wide distribution of examples, we inserted ran-
dom delays before and after actions of the teleop-
erator, to vary the ways that these three channels
lined up. 

We logged data from a Kinect, an external cam-
era, a camera in one of the robot’s eyes, and a
microphone as our observations of the human. We
also logged the FSM states of the robot. 

Data Analysis 
Our analysis for this article focuses on human
responses to the robot’s different signals. The spe-
cific data we examine is the human response delay,
which is the time between a referent event in the
robot’s behavior and the start of the human’s
response. This requires that we manually code the
human response point for all the data. We separate
the data collected from this experiment into game
phase data and negotiation phase data, in order to
analyze these two different types of turn-taking
interactions. All events that needed to be coded
(that is, were not part of the logged behavior) were
coded independently by two people, and for each
event that was agreed upon, the coded time was
averaged. The coded events were the game phase
response, negotiation phase response, and mini-
mum necessary information.

Game Phase Response 
In the game phase data, the robot plays the leader
and communicates using a mixture of speech,
motion, and gaze. The human plays the follower
and responds primarily with a motion, which is
sometimes also accompanied with a speech
backchannel. For a more controlled data set, the
game phase data includes only correct human
responses to the robot’s “Simon says” turns. The
coder agreement was 100 percent for game phase
response events, and the average difference in cod-
ed time was 123 milliseconds. 

Ht–1 Ht Ht+1

Ot–1

R t–1

Ot Ot+1

R t R t+1

Figure 2. Our Model for Human-Robot Turn Dynamics
Is a First-Order Markov Process.

At each time step both the robot (Rt) and the human (Ht) can be in one of
four floor states: seizing, passing, holding, listening. 
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Negotiation Phase Response 
In the negotiation phase, the exchanges are short-
er, and the robot uses speech but not any body ani-
mations to communicate. Most robot utterances
are also too short for the robot to have time to gaze
away and back to the human, so the robot prima-
rily gazes at the human. The human’s response is
primarily in the speech channel. The coder agree-
ment was 94.2 percent for negotiation phase
response events, and the average difference in cod-
ed time was 368 milliseconds. 

Minimum Necessary Information (MNI) 
This is a robot event describing an interval during
which the robot conveys the minimum amount of
information needed for the human to respond in a
semantically appropriate way. Figure 4 shows
examples of MNI coding. In the game phase, the
human needs to know whether or not to respond
as well as the motion with which to respond, so
the MNI is the earliest point at which both of these
are conveyed. For example, if the robot says
“Simon says, play air guitar,” the person only
needs to hear “Simon says, play” to respond appro-
priately. But if the robot first starts playing air gui-
tar, then the person only needs to know whether
or not to do it, which is communicated in the first
syllable of the speech event. In the negotiation
phase, the information is usually marked by a pro-
noun. The listener only needs to know whether
the speaker wants to be the leader or not. The
coder agreement was 99.8 percent for robot MNI
events, and the average difference in coded time
was 202 milliseconds. 

Quantitative Results 
We are interested in the timing of human turn
delays, which need to be with respect to something

— a referent event. As potential referent events we
consider the MNI point, as well as channel-based
referent events: the end of robot motion, the end
of robot speech, or the moment when the robot
gazes at the human after looking away. 

Histograms of response delays with respect to
these referent events are shown in figure 5, which
separately depicts the delays for the game and
negotiation phases. We see that not all of these ref-
erent event signals are good predictors of human
response time. A good referent event should yield
distributions that have three properties: nonnega-
tivity, low variance, and generality. Nonnegativity:
If the response delay is negative, then this referent
event could not have caused the response. Low
Variance: The distribution should have low vari-
ability to allow for more accurate prediction. Gen-
erality: The distribution should be consistent across
different types of interactions (that is, we would
like to see the same response delay distribution
across both the game and negotiation phases). 

In figure 5a we see that responses to the motion
event and the gaze event both violate nonnegativ-
ity. Gaze has been demonstrated to be an excellent
indicator in multiparty conversation domains
(Mutlu et al. 2009, Bohus and Horvitz 2010), but it
is less predictive in this particular dyadic interac-
tion. We suspect that gaze will be a stronger pre-
dictor in a dyadic interaction where object manip-
ulation or focusing attention on the workspace is a
more prominent part of the task. The best channel-
based referent event is speech, but 41 percent of
human responses still occur before the robot fin-
ishes speech in the game phase. People tended to
wait until the end of speech in the negotiation
phase since their responses are speech-based, and
there is a “lock” on the speech channel. But in the
game phase they can respond in the motion chan-
nel before speech is finished. 

The best referent event is the end of the MNI sig-

a b c d e

Figure 3. Actions in the “Simon Says” Game.

a. Wave. b. Bow. c. Shrug. d. Fly like a bird. e. Play air guitar.
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nal. The response delay distributions to MNI end-
ings are shown with the other distributions in fig-
ure 5 and also fit to curves in figure 5b. MNI satis-
fies nonnegativity for both interaction phases and
is relatively general. The means in figure 5b are also
within half a second from that of the distribution
in (Movellan 2005). We think this could be attrib-
uted to the higher processing requirement for the
multimodal information content of this game.
Thus, we conclude that the timing of floor passing
in a dyadic interaction like our game scenario is
best predicted by information flow. We believe this
will prove to be general across many interaction
domains, but this generalization of results is left to
future work. 

Qualitative Examples 
In addition to the quantitative results of response
delay timing, we have several qualitative observa-
tions that illustrate how the MNI point and infor-
mation flow dictate floor passing in a dyadic inter-
action. Given that people respond to the robot
using the MNI point, we would expect awkward
floor passing to result when the robot does not
make use of this signal in its own floor passing

behavior. This happened several times in our
experiment in both the game phase and the nego-
tiation phase. 

In the game phase, this typically happened
when the robot was the leader and continued to
perform its gesture (such as playing air guitar) for
too long after the human partner had already
interpreted the gesture and completed the appro-
priate response turn. In many cases, subjects had to
wait for the robot to finish once they were done
with their response gestures. This also happened in
cases where the human lost the game. We see
examples where they notice the gesture the robot
is doing, start doing the same gesture in response,
then visibly/audibly notice they were instead sup-
posed to remain still. But the robot still takes the
time to finish its gesture before declaring the per-
son lost. These examples illustrate the inefficien-
cies that the robot introduces when it does not
have an appropriate floor-relinquishing behavior. 

In the negotiation phase, the robot’s awkward
floor-relinquishing behavior results in dominance
over the human partner rather than just ineffi-
ciency. As mentioned previously, in this phase the
turns are primarily speech-based. Thus, simultane-
ous speech is a common occurrence. For example,
after a pause both the robot and the human might

“Can I play Simon now?”

“Simon says, play air guitar!”
Motion
Speech

MNI

Motion
Speech

MNI

Speech
MNI

———— (playing air guitar)

“Simon says, play air guitar!”

———— (playing air guitar) ————

a

b

c

Figure 4. Examples of Coding Robot MNI in the Game Phase. 

a. All informative speech occurs before the animation starts. b. The action is conveyed through motion before the human knows whether
or not to execute it. c. MNI in the negotiation phase was often the pronoun.
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Figure 5. Human Response Delays.

(a) Histograms of human response delays with respect to all potential robot referent signals. Negative delays indicate that subjects respond-
ed before the robot completed its turn-taking action within that channel. (b) The delays of human responses with respect to robot MNI
endings in the negotiation and game phases. The curves represent maximum likelihood fits to Student’s t probability density functions. 
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start asking “Can I play Simon now?” This state of
both parties trying to seize the floor is typical in
human communication and results in one of the
parties relinquishing to the other (such as “Go
ahead” or “Sorry, you were saying?”). However, in
our experiment the robot’s autonomous behavior
was to keep going to the end of its turn, resulting
in the human always being the party to back off.
The few good examples of robot floor relinquish-
ing were a result of the teleoperator acting fast
enough to interrupt the robot’s behavior and let
the human have the floor. 

Autonomous Floor Relinquishing 
As illustrated with the above examples, the ability
for the robot to interrupt its current action and

appropriately relinquish the floor is important for
achieving fluency in the interaction. In this section
we describe a modification to the robot’s FSM
implementation that enables relinquishing. We
demonstrate the results with both a gesture-based
and speech-based example. 

Our implementation of autonomous floor relin-
quishing is achieved by allowing transitions to
interrupt states in the FSM. Figure 6 depicts the dif-
ference between the former state machine and the
new implementation. Previously, a state had to run
to completion before the transitions out of that
state started being evaluated. We achieve floor
relinquishing by allowing some state transitions to
start being evaluated, and optionally interrupt the
state, prior to the state’s completion. If the transi-
tion does not fire early, however, the behavior is
the same as a normal state machine. The interac-
tion designer specifies whether or not any given
state can be interrupted or any given transition can
fire early. 

The interruption of a state signals that the cur-
rent state should terminate as soon as possible so
that the next state can activate. This means that
any active text-to-speech process is destroyed, and
the current robot joint positions are quickly inter-
polated to the starting positions of the next state.
The timing of an interruption should potentially
also affect the robot’s behavior. A robot may want
to treat an interruption that occurs after the MNI
point of the state as a normal part of information
exchange and proceed with the domain-specific
activity, whereas an interruption that occurs prior
to the MNI point could indicate a simultaneous
start from which the robot should back off or
attempt to recover. 

This FSM modification allows us to set up a
“Simon Says” FSM very similar to the one we used
in the experiment described earlier, but with the
new feature that the robot can now have the
expectation that after the MNI point in a particu-
lar speech or gesture being executed, there is the
possibility that a transition to the next state will
happen prior to action completion. 

Figure 7 compares the timing of the FSMs with
and without interrupts side by side to show how
interrupts at the MNI point increase interaction
efficiency. When the robot plays the leader in the
“Simon Says” domain, the robot autonomously
recognizes the human’s game actions using the
Kinect sensor and transitions as soon an action is
recognizable (that is, before the human finishes
her action by putting down her arms). Compared
to the original behavior, where the robot’s actions
run to completion, the overall interaction becomes
more efficient and timing becomes dictated more
by the human responses with less human wait
time. 

Another useful application of interruptions is

State 1

State 3

State 2

State 1

State 3

State 2

MNI point

a

b

Figure 6. A Slice of an FSM. 

The bars at the bottom of each state indicate the progress toward the com-
pletion of that state’s actions. (a) on the left represents a typical FSM, where a
state finishes executing and then evaluates to decide on a transition. (b) on
the right represents our interruptible FSM implementation, to achieve floor
relinquishing. A state transition has the option of evaluating prior to the com-
pletion of the previous state, and based on this can interrupt the current
action to proceed to the next state without completing the first. 
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resolving simultaneous starts. The robot senses the
general volume level on the microphone in order
to do incremental recognition of the human’s
speech act (that is, prior to recognizing the full sen-
tence from the grammar, the robot can recognize
from the mic level that the human is in the process
of speaking). If the human asks the robot, “Can I
be Simon now?” at the same time that the robot
says something, the autonomous controller inter-
rupts the robot’s current speech to gain a clearer
signal of the human’s speech for speech recogni-
tion. Compared to the original behavior, the robot
is now able to allow the human to barge in rather
than always requiring that the human back off
during simultaneous speech.2

Insights on Turn Taking for HRI 
Our goal is to create a transferable domain-inde-
pendent turn-taking module. Our initial work has
taught us that a primary component of this mod-
ule is the definition of how it should interact with
elements of the specific context or domain. Thus,
while we believe there are generic elements to an

HRI turn-taking behavior, they are tightly coupled
to the domain or context in which they are instan-
tiated. Figure 8 shows our current concept of an
architecture for turn taking. 

This architecture focuses on the specific chan-
nels of gaze, speech, and motion, which are inde-
pendently well studied in HRI. Actions in these
channels are parametrized, such that specific
parameters can be decided by either the domain-
specific Instrumental Module or the generic Turn-
Taking Module in order to generate the final
behavior. The separation between the Instrumental
Module and Turn-Taking Module highlights the
principle dichotomy between domain-specific
robot capabilities and context-free interaction
behavior. In reality, the boundary between the two
is not so pronounced. The turn-taking model
needs to give floor state estimation, which drives
the domain-specific FSM, but that FSM also needs
to tell the turn-taking model about the flow of
information in each context, which will usually be
highly semantic-based information. Then collec-
tively they contribute parameters for robot actions. 

Going forward we are considering turn taking as

R1

H1 H2

R2

R3

H3

R1

H1 H2

R2

R3

H3

a

b

Figure 7. Turn Taking With and Without State Interruptions. 

R indicates a robot turn, and H indicates a human turn. The dashed lines show robot turn MNI points and dotted lines show human turn
MNI points. (a) shows a state machine without interruptions; even when the human MNI point passes, the robot continues to complete
the state’s actions. (b) shows how transitions that interrupt the current state can make the interaction more efficient. 
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a template that needs to be instantiated in specific
domains. In the future, we intend to turn our
attention to generality of this template, analyzing
channel usage across other domains such as teach-
ing-learning interactions or collaborations involv-
ing object manipulations. Perhaps the most impor-
tant aspect of our model of turn taking for HRI is
its multimodal nature. As was evident in our
“Simon Says” example, turn taking is often more
than just speech acts and dialogue. Gestures and
nonverbal behavior are an essential part of passing
the floor back and forth between two interacting
partners. We expect that the role that speech ver-
sus gesture versus eye gaze plays in turn taking will
vary considerably across the range of interaction
domains in HRI. Some domains may be more like
the negotiation phase of the “Simon Says” game,
dominated by speech. In such a domain, overlap-
ping of turns is less desirable because simultaneous
speech interferes with the processing of speech

content (in both humans and robots). Other
domains may be more like the game phase (for
example, a dyad collaborating on an object-based
assembly task, or other colocated physical tasks).
In these cases, gesture and nonverbal actions play
a large role, and some turns may not even have a
speech component at all. This can lead to more
overlapping of turns and requires our floor state
models for HRI to consider the timing of these
nonverbal channels when tracking the state of the
interaction. 

Thus far, we have focused on the specific “Simon
Says” domain and presented analyses that lead us
closer to this goal of a general approach to turn
taking for HRI. In particular, the domain drew
important insights about information flow and the
timing of floor state transitions. The minimum
necessary information point is the earliest point at
which the robot can assume that the human may
want to take the floor and end the robot’s turn. In

Ht–1 Ht Ht+1

Ot–1

Rt–1

Ot Ot+1

Rt Rt+1

State 1

State 3

State 2

MNI point

Sensor
Inputs Floor StatesInformation Flow

Speech

Gaze

Gesture

Manipulation
Params

Params

Turn-Taking Model

Domain-Specific FSM

Parametrized Actions 

Figure 8. A Framework for Turn Taking In HRI. 

The turn-taking model tracks floor state estimation, which drives the domain-specific FSM. The FSM provides the turn-taking model feed-
back about the flow of information in the domain. They collectively contribute parameters for robot actions. 
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addition to this (which we have not
modeled here), in a more complicated
dialogue or interaction, the robot may
need to have expectations about other
kinds of barge-ins, such as clarifications
or general back-channel comments.
Unlike our “Simon Says” domain, with
its relatively simple and short turns,
these will be more relevant in dialogue-
intensive interactions, or domains
where the length of each partner’s turn
is longer. 

Conclusions 
Our goal is to devise a turn-taking
framework for HRI that, like the
human skill, represents something fun-
damental about interaction, generic to
context or domain. The “Simon Says”
experiment generated data about
human-robot turn-taking dyads, and
allows us to draw the conclusion that
minimum necessary information is a sig-
nificant factor in the human partner’s
response delay. Moreover, the robot’s
poor floor relinquishing behavior was
often characterized by a lack of atten-
tion to the MNI point. Our
autonomous floor relinquishing imple-
mentation centers on this and results
in a more fluent “Simon Says” interac-
tion. Finally, we have presented a
framework for turn taking in HRI,
highlighting its multimodal nature
and the tightly coupled interplay
between generic interaction principles
and specific domain semantics. 
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Notes
1. See Chao et al. (2011) for additional
details and analysis on the “Simon Says”
experiment that are not presented here.

2. Video demonstrations of both of these
examples can be found at www.cc.gate-
ch.edu/social-machines/video/interrupt-
gesture.mov and www.cc.gatech.edu/social-
machines/video/interrupt-speech.mov.
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