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B Diabetes management is a difficult task for
patients, who must monitor and control their
blood glucose levels in order to avoid serious
diabetic complications. It is a difficult task for
physicians, who must manually interpret large
volumes of blood glucose data to tailor therapy
to the needs of each patient. This paper
describes three emerging applications that
employ Al to ease this task: (1) case-based deci-
sion support for diabetes management; (2)
machine-learning classification of blood glu-
cose plots; and (3) support vector regression for
blood glucose prediction. The first application
provides decision support by detecting blood
glucose control problems and recommending
therapeutic adjustments to correct them. The
second provides an automated screen for exces-
sive glycemic variability. The third aims to
build a hypoglycemia predictor that could alert
patients to dangerously low blood glucose levels
in time to take preventive action. All are prod-
ucts of the 4 Diabetes Support System project,
which uses Al to promote the health and well-
being of people with type 1 diabetes. These
emerging applications could potentially benefit
20 million patients who are at risk for devas-
tating complications, thereby improving quali-
ty of life and reducing health-care cost expendi-
tures.
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Managing diabetes is challenging for the physician and
even more challenging for the patient. Very few diseases
provide so much access to facts, yet remain so inexact.
There are so many things that can affect blood glucose con-
trol.

— Dr. Jay Shubrook

the pancreas fails to produce insulin, an essential hor-

mone needed to convert food into energy. It is more
severe and less common than type 2 diabetes, but still affects
approximately 20 million people worldwide. T1D is a chronic
disease, which cannot be cured, but which must be treated and
managed over time. At our diabetes center, more than 600 T1D
patients are treated with insulin pump therapy. A mechanical
pump infuses the patient with insulin, attempting to mimic and
replace normal pancreatic function. The management goal is for
the person with diabetes to achieve and maintain blood glucose
(BG) levels close to those of a person without diabetes. It has
been experimentally determined that good BG control can help
delay or prevent serious long-term diabetic complications,
including blindness, amputations, kidney failure, strokes, and
heart attacks (Diabetes Control and Complications Trial
Research Group 1993). Avoiding complications improves quali-
ty of life for patients, while reducing the financial burden of
health-care cost expenditures.

Diabetes management is a challenging task for patients, who
must monitor their BG levels and daily activities, and for physi-
cians, who recommend therapeutic adjustments based on the
monitoring data. (1) Task complexity stems from a wide vari-
ability among individual patients in terms of sensitivity to
insulin, response to lifestyle factors, propensity for complica-
tions, adherence to physician recommendations, and response
to treatment; and (2) voluminous BG data, which is automati-

Type 1 diabetes (T1D) is an autoimmune disease in which
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Patients are routinely seen only three to four times a year
by a diabetes specialist. Adjustments in insulin pump ther-
apy occur infrequently between appointments for most
T1D patients. In fact, there is data to suggest that they
often do not get therapeutic advice at their appointments,
either! Clinical inertia can result when there is too much
information for a busy clinician to cognitively handle. An
Al system that can analyze large volumes of data, make
skilled clinical observations about the data, demonstrate
information graphically for physician confirmation, and
then suggest therapeutic solutions to identified problems
could help.”

— Dr. Frank Schwartz

cally collected through sensors, but which must be
manually analyzed and interpreted.

The state of the art in commercially available
software for T1D management is exemplified by
the CareLink system.! Patients can upload the BG
and insulin data stored in their pumps to a central
site, where they and their physicians can review it.
Data is displayed in logs and various graphical
forms. No attempt is made to automatically inter-
pret the data or to provide therapeutic advice. Al
researchers have prototyped more proactive soft-
ware tools (see, for example, Montani et al. [2003];
Duke et al. [2008]). Montani and colleagues’ proj-
ect combined decision support with telemedicine;
it ended without a commercialization phase. Duke
and colleagues present a promising machine-learn-
ing and telemedicine approach, which could yet
have commercial potential.

Al Solutions to Diabetes Manage-
ment Problems: Work in Progress

Since 2004, we have been conducting clinical
research studies with T1D patients in order to
develop and evaluate software tools for intelligent
diabetes management. In the Al in medicine tradi-
tion, real-world medical problems have provided
fertile ground for Al research, driving research
directions in search of practical solutions. Three
applications with potential clinical impact are
emerging from our work: case-based decision sup-
port for diabetes management; machine-learning
classification of BG plots; and support vector
regression for BG prediction.

Case-based decision support was our initial
focus. Clinicians faced with data overload sought
ways to interpret BG data automatically. Rather
than wading through pages of numbers and plots,
they wanted to know (1) when patients had prob-
lems necessitating adjustments to therapy; and (2)
which therapeutic adjustments would help indi-
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viduals achieve and maintain good BG control.
The case-based approach allowed us to capitalize
on clinical experience in managing more than 600
T1D patients. Over the course of our work, new
challenges arose that called for the integration of
additional AI approaches and techniques. One
such challenge was automatically detecting exces-
sive glycemic variability. There is no standard way
to characterize this potentially dangerous problem,
and yet physicians know it when they see it in BG
plots. Trying to capture this physician perception
led to machine-learning classification of BG plots.
Next, we aimed to anticipate problems that could
be circumvented through immediate intervention.
This led to work on support vector regression for
BG prediction.

While these applications are still emerging,
there are significant benefits to eventual deploy-
ment. Controlling diabetes helps individuals avoid
devastating complications that reduce quality and
length of life. These avoidable complications have
a high financial cost, as well. In the United States
alone, annual diabetes health-care expenditures
total 174 billion dollars, and 32 percent of the
entire Medicare budget is diabetes related (Juvenile
Diabetes Research Foundation 2011). This work
contributes insight into how Al technology can
help through prototyping and evaluating promis-
ing solutions and clarifying issues standing in the
way of deployment.

Case-Based Decision Support

The 4 Diabetes Support System (4DSS) aims to (1)
automatically detect problems in BG control; (2)
propose solutions to detected problems; and (3)
remember which solutions are effective or ineffec-
tive for individual patients. It can assist busy clini-
cians managing multiple T1D patients, and it
could be embedded in insulin pumps or smart-
phones to provide low-risk advice to patients in
real time. We selected case-based reasoning (CBR)
as the initial approach because (1) it provides sup-
port for tailored solutions based on similarity to
known cases; (2) diabetes management guidelines
are general in nature, requiring personalization; (3)
a wide range of both physical and lifestyle factors
influence BG levels; and (4) CBR has been success-
fully applied to managing other chronic medical
conditions (Bichindaritz 2008).

The first step in developing 4DSS was to build a
case base as a central knowledge repository.
Although abundant BG data was initially available,
usable cases were not. This is because the life
events coinciding with BG levels, used by physi-
cians to determine appropriate therapy, were not
routinely recorded. To acquire contextualized cas-
es for the system, we conducted a clinical research
study involving 20 T1D patients. Each patient par-
ticipated for six weeks, manually entering daily
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Problem: Nocturnal hypoglycemia. BG levels are dangerously low

all night. The patient reports feeling “totally out of it” when she wakes
up. She does not eat anything to correct the hypoglycemia until noon.
She had not eaten a bedtime snack the night before.

Solution: The patient should always have a mixed-nutrient snack before
bed. She should lower her overnight basal rate. The combination of
more food and less insulin will prevent overnight lows.

Outcome: The patient reports eating mixed nuts and crackers before bed.
She sets the basal rate in her pump as advised. BG data for subsequent
weeks shows that the problem is resolved.

Figure 1. A Sample Case.

BG, insulin, and life-event data into an experi-
mental database through a web-based interface.
Physicians reviewed the data, detecting BG control
problems and recommending therapeutic adjust-
ments. Patients implemented the recommended
adjustments (or not), and physicians reviewed sub-
sequent data to evaluate the clinical outcomes, in
an iterative cycle.

Problems, solutions, and outcomes were struc-
tured into cases and stored in the case base. We
were able to acquire 50 cases over the course of the
clinical research study. Figure 1 shows the high-lev-
el textual description of a sample case from 4DSS.
Internally, a case is represented as an object of a
hierarchical Java class containing approximately
150 data fields. Figure 2 shows part of the internal
representation of the sample case displayed in fig-
ure 1. A more detailed description of the case rep-
resentation is presented in Marling, Shubrook, and
Schwartz (2009).

The sample case records an actual problem of
nocturnal hypoglycemia. Hypoglycemia, or low
BG, leads to weakness, confusion, dizziness, sweat-
ing, shaking, and, if not treated in time, seizures,
coma, or death. Hyperglycemia, or high BG, con-
tributes to long-term diabetic complications.
Extremely high BG levels can cause diabetic
ketoacidosis, a serious condition leading to severe
illness or death. It is important to note that
patients do not know when problems are impend-
ing and are frequently unaware of problems even
once they occur. Problems that occur when
patients are asleep, as in the sample case, are espe-
cially dangerous.

Typically in CBR systems, reasoning begins with

Problem

Description Patient has nocturnal lows
Problem Type Hypoglycemia
Detected As Prewaking hypoglycemia
Evidence BG data, sleep data
Event Details

BG Value 50

BG Low Target 70

Symptoms Totally out of it
Related to Time Yes

Time Period Bedtime to awakening

Figure 2. Partial Internal Representation of the Sample Case.

a known problem that can be readily described and
elaborated. Solving a given problem entails finding
and adapting the most similar, or most useful, case
in the case base. In this domain, problems are not
usually given, or known a priori, but must be
detected in continuous patient data. Our approach
was to model automated problem-detection rou-
tines on physician problem-detection strategies.
We implemented rule-based routines to detect 12
common BG control problems identified by physi-
cians. We built a 4DSS prototype to (1) detect BG
control problems in patient data; (2) display
detected problems to the physician, who would
select those of interest; (3) retrieve, for each select-
ed problem, the most applicable case in the case
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Al could potentially provide the physician (and patient)
with real-time decision support. It has the potential to
become an electronic “coach,” letting people have timely
feedback that could potentially increase safety and effi-
cacy of treatment.

— Dr. Jay Shubrook

base; and (4) display the retrieved case to the
physician as decision support in determining
appropriate therapy to correct the problem.

Evaluation and feedback were obtained through
a patient exit survey and two structured sessions in
which diabetes practitioners evaluated system
capabilities. Patients indicated on the survey that
they would willingly accept automated decision
support, but noted that the time required for data
entry was a deterrent. Panels of clinicians were
shown random samples of identified problems and
retrieved cases. They agreed 90 percent of the time
that the problem detections would be useful to
physicians, 80 percent of the time that the cases
retrieved were similar to the cases of interest, and
70 percent of the time that the solutions retrieved
would benefit the current patients. Physicians also
noted that the integration of BG, insulin, and life-
event data helped them to identify BG trends more
readily and adjust therapy more effectively. Con-
clusions were (1) the prototype provides proof of
concept that intelligent decision support can assist
in diabetes management; (2) additional prob-
lem/solution/outcome cases are needed to provide
solutions for more BG control problems; and (3)
data entry time demands on the patient must be
reduced. Results of this study were reported in
Schwartz, Shubrook, and Marling (2008) and Mar-
ling, Shubrook, and Schwartz (2008, 2009).

We conducted a second clinical research study,
involving 26 T1D patients, to (1) reduce patient
time demands and (2) reevaluate the 4DSS proto-
type. BG and insulin data stored in the patient’s
pump was uploaded to the experimental database
rather than entered by the patient. Patients were
asked for their typical daily schedules, and these
were used to approximate actual life events.
Patients were not required to supply continuous
glucose monitoring (CGM) data, but it was
uploaded for patients who normally used it as part
of routine care. Data that could not be automati-
cally transferred or approximated was omitted
from consideration. During evaluation, approxi-
mately half as many problems were detected per
patient per week as were detected in the first clini-
cal study. This finding was statistically significant
(p =.017), although there were no statistically sig-
nificant differences between the two patient popu-
lations and no reason to suspect that patients were
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actually experiencing fewer problems. As detailed
in (Schwartz et al. 2010), we attribute this impaired
performance to the lack of requisite data.

An adverse event that occurred during this study
highlights the potential for 4DSS to affect health
and well-being. A participating patient experi-
enced a problem in which his pump failed and
stopped delivering insulin. He was aware that his
BG was high, and he instructed the pump to deliv-
er more insulin. However, he did not know that
the pump was not functioning, and his BG con-
tinued to climb. He went into diabetic ketoacido-
sis (DKA) and was admitted to the hospital, where
he experienced a (nonfatal) heart attack. When his
data was scanned retroactively, the system auto-
matically detected the pump problem eight hours
before the patient was hospitalized. Had the sys-
tem been running in real time, the patient might
have been alerted to make a simple adjustment
before experiencing DKA.

Conclusions from this study were (1) lack of life-
event and CGM data impairs the ability to detect
clinical problems; and (2) extending system capa-
bilities to predict and prevent problems presents
new research challenges and new opportunities to
improve health outcomes. Results of this study
were published in Schwartz et al. (2010).

Next, we conducted a third study with the goals
of scaling up the system prototype and enhancing
it to adapt past solutions to the needs of current
patients. Twelve T1D patients completed a 3-
month protocol in which they (1) uploaded
insulin pump and CGM data weekly; and (2) sup-
plied otherwise unavailable life-event data through
a Web browser on a daily basis. During this study
(1) six new problem-detection routines were devel-
oped; (2) 30 new cases were added to the case base;
and (3) a case adaptation module was implement-
ed. The new problem-detection routines expand
the kinds of BG control problems that can be iden-
tified. The new cases codify additional knowledge,
allowing more or better solutions to be found for
identified problems. The case adaptation module
customizes retrieved solutions for individual
patients. For example, a past solution could be to
lower the rate at which the pump continuously
infuses insulin from 1.0 to 0.9 units per hour. If the
current patient’s rate is 0.5 units, the adaptation
module recommends lowering it to 0.45 units,
rather than simply displaying the old case and
leaving adaptation to the user. While all system
developments during this study were reviewed by
participating physicians, formal evaluation awaits
a future study. The current structure of the 4DSS is
shown in figure 3.

Machine-Learning
Classification of BG Plots

During 4DSS development, we encountered a type



of BG problem that we could not readily detect by
encoding physician problem-detection strategies
in rules. This was excessive glycemic variability, a
bouncing back and forth between hypo- and
hyperglycemia. Excessive glycemic variability is
illustrated by figure 4a, while figure 4b illustrates
acceptable glycemic variability. Glycemic variabil-
ity is an active area of current diabetes research
(Ceriello and Ihnat 2010; Kilpatrick, Rigby, and
Atkins 2010). Excessive glycemic variability has
been linked to hypoglycemia unawareness, an
acutely dangerous condition, and to oxidative
stress, which contributes to long-term diabetic
complications (Monnier et al. 2006). Its successful
detection would enable routine screening for the
20 million individuals with T1D, a valuable clini-
cal application in and of itself.

There is no definitive metric for glycemic vari-
ability; nor is there any available tool to detect
excessive glycemic variability (Rodbard 2009). Yet,
diabetes specialists readily recognize excessive
glycemic variability when they see it in blood glu-
cose plots, like the one shown in figure 4a. This sit-
uation motivated the use of machine-learning
(ML) classification to capture physician perception
in an automated screen for excessive glycemic vari-
ability. Figure 5 shows the basic architecture of our
approach to glycemic variability classification.

Two physicians (JS and FS) reviewed 400 BG
plots and characterized each one as excessively
variable or not, based on their gestalt perceptions.
They were in agreement on 262 of the plots, 187
positive examples and 75 negative. A development
set of 52 randomly chosen examples was set aside
for feature selection and parameter tuning for
three ML algorithms. The remaining data was used
in a 10-fold cross validation setting to train and
evaluate the ML algorithms for the task of detect-
ing excessive glycemic variability.

The three learning algorithms that we investi-
gated are naive Bayes (NB), support vector
machines (SVMs), and multilayer perceptrons
(MPs). A naive Bayes model implements a simple
probabilistic Bayesian network in which the
observed features of an example are considered to
be independent given the example’s class label.
Support vector machines (Scholkopf and Smola
2002; Vapnik 1995) are dual learning algorithms
that process examples only through computing
their dot-products. These dot-products between
feature vectors can be efficiently computed
through a kernel function, without iterating over
all the corresponding features. Given the kernel
function, the SVM learner tries to find a hyper-
plane that separates positive from negative exam-
ples and at the same time maximizes the separa-
tion (margin) between them. A multilayer
perceptron (Bishop 1995) is a feedforward neural
network composed of multiple layers of nodes, in

Situation Assessment Module

Glycemic Blood
Variability Glucose
Classification Prediction

Case Base of
Blood Glucose
Control Problems

Blood Glucose, Case Retrieval
Insulin and Life Module
Event Database
Adaptation
Module

ZEECN
[\
' v ‘ Recommended Therapeutic Adjustment ' v ‘
Patient Physician

Figure 3. Overview of the 4 Diabetes Support System.

which every internal node implements a logistic
activation function that produces an output value
by combining weighted inputs from the nodes on
the previous layer. The weights of the connections
between nodes on consecutive layers constitute
the model’s parameters and are learned efficiently
using the technique of error back propagation.

Noise Elimination

Since the CGM sensors do not record data with 100
percent accuracy, physicians implicitly smooth the
original sequence of values recorded by the CGM
sensor. Figure 6 shows an example plot of CGM
data on which a physician has explicitly marked
the actual graph used for making diagnostic deci-
sions. We investigated a number of smoothing
techniques such as simple moving averages, expo-
nential moving averages, polynomial regression
with L2 regularization, low pass discrete Fourier
transform filter, and cubic spline smoothing
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Figure 5. Glycemic Variability Classification Pipeline.

(Wiley et al. 2011). A modified version of regular-
ized cubic spline smoothing that passes close to
points of significant local optima was identified by
the physicians to best correspond with their
implicit smoothing process. Figure 7 shows the
result of running this version of cubic spline
smoothing on the same CGM graph marked by the
physician in figure 6.
Excessive Glycemic Variability Detection Features
For the purpose of automatic classification, each
CGM plot is represented as a vector of domain-
dependent and domain-independent features that
are automatically extracted from the correspon-
ding sequence of BG levels. The domain-specific
features, described in brief below and more fully in
(Marling et al. 2011), are Mean Amplitude of
Glycemic Excursion, Distance Traveled, and Excur-
sion Frequency. We included domain-independent
pattern-recognition features with the aim of mod-
eling aspects of blood glucose variability not cap-
tured by the domain-dependent metrics (Wiley et
al. 2011). The domain-independent features we
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investigated were standard deviation, area under
the curve, roundness ratio, bending energy, eccen-
tricity, direction codes, central image moments,
and amplitudes of discrete Fourier transform fre-
quencies. The features that were automatically
selected by running feature selection algorithms
on the development data set are summarized
below.

Mean Amplitude of Glycemic Excursion (MAGE):
This was the first glycemic variability metric (Ser-
vice et al. 1970), and it remains the most respected
(Rodbard 2009). MAGE calculates the mean dis-
tance between the local minima and maxima of a
blood glucose plot. Only distances exceeding the
standard deviation of the blood glucose values are
included in the aggregate.

Distance Traveled (DT): Distance traveled is the
sum of the distances between each pair of consec-
utive data points; it captures overall fluctuation.

Excursion Frequency (EF): This feature counts the
number of blood glucose excursions between the
local minima and maxima. Only distances greater
than 75 mg/dl are included in the count.



Standard Deviation (o): The sample standard devi-
ation is computed over the set of BG levels in a
CGM graph. The intuition is that an excessively
variable day will have a higher standard deviation
than an acceptable day.

Area under the Curve (AUC): This feature is com-
puted as the total area between the CGM graph
and a horizontal line corresponding to the mini-
mum blood glucose level measured for that day.
The intuition is that a larger area correlates with
increased glycemic variability.

Roundness Ratio (RR): This feature is proportion-
al to the ratio between the square of the perimeter
of the CGM graph and its area. In the general case
of two-dimensional objects, this feature will take
the value of 1 for a perfect circle, and larger values
as the objects deviate more from a circular shape.
The intuition is that an excessively variable day,
with its more jagged perimeter, will have a larger
roundness ratio than an acceptable day.

Direction Codes (DC,): A direction code is the
absolute difference between the values of two con-
secutive blood glucose readings. Consequently, a
CGM plot with n blood glucose measurements has
n — 1 direction codes. Direction code bins record
the percentage of direction codes having values
within set ranges. The bins used to define the DC
features for this application are b, = [0, 3), b, = [3,
6), and b, = [6, 9). We may expect more blood glu-
cose spikes in the third bin to reflect greater vari-
ability.

Experimental Results

We performed automatic feature selection on the
development data set for both raw and smoothed
CGM data using two methods: filtering with
Welch'’s t-test (Filter) and greedy backward elimi-
nation (Greedy). We trained and evaluated three
learning algorithms: naive Bayes, support vector
machines, and multilayer perceptrons. The naive
Bayes model assumes that the features are inde-
pendent of each other given the class label. One
advantage of this assumption is that it leads to a
reduced number of parameters that can be com-
puted very efficiently. Since all the glycemic vari-
ablility features are continuous, their conditional
probabilities are represented as Gaussian distribu-
tions, with the mean and standard deviation esti-
mated using maximum likelihood. The disadvan-
tage of the conditional independence assumption
is that it is often violated in practice, which may
lead to suboptimal performance. The features EF
and DT, for example, are not independent given
the label, since each excursion greater than 75
mg/dl represents a large distance traveled. Multi-
layer perceptrons and support vector machines, on
the other hand, can accommodate many overlap-
ping features. MPs that are implemented as a back-
propagation network with enough hidden nodes
can approximate any decision surface (Hornik,
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Figure 7. CGM Plot with Regularized Cubic Spline Smoothing.

Stinchcombe, and White 1989). Similarly, an SVM
with a Gaussian kernel is a very flexible learning
model, as it can approximate highly nonlinear
decision boundaries. SVMs are known to be
resilient to overfitting and to have good general-
ization performance, due to the max-margin crite-
rion used during optimization. Furthermore, while
the MP solution may be only a local optimum, the
SVM is guaranteed to converge to a global opti-
mum due to the corresponding convex optimiza-
tion formulation.

All three algorithms obtained the best perform-
ance when run on the smoothed CGM graphs. The
best performing configuration of features for each
ML algorithm together with the corresponding
performance results are shown in tables 1 and 2. In
terms of accuracy, the best results are obtained by
a multilayer perceptron trained on smoothed CGM
plots with an ordered set of features automatically
selected using greedy backward elimination. These
results provide proof of concept, but refinement is
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Model

Selection Features

NB Filter DC,, DT, AUC, DCs, EF, 6
SVM Filter DC,, DT, AUC, DC;s, EF,
MP Greedy DT, RR, DCs, MAGE, ¢

Table 1. Best Configuration Features for Each ML Algorithm.

Model

NB
SVM
MP

Accuracy Sensitivity Specificity

91.9 percent 91.6 percent 92.0 percent

92.8 percent 85.0 percent 96.0 percent

93.8 percent 86.6 percent 96.6 percent

Table 2. Best Configuration Results for Each ML Algorithm.

needed to build a clinically viable tool. In particu-
lar, we must minimize the number of false posi-
tives so that clinicians can use the tool with confi-
dence. We are currently working to improve the
results by acquiring additional training examples
from multiple clinicians and running a new set of
experiments.

Support Vector Regression
for BG Prediction

Detecting BG problems, as in 4DSS and the screen
for excessive glycemic variability, allows corrective
action to be taken. The ability to predict impend-
ing BG problems before they occur would enable
preemptive intervention. This would not only
improve overall BG control, but could greatly
affect patient safety. For example, the sleeping
patient in the sample case (figure 1) could be awak-
ened and advised to eat before becoming hypo-
glycemic. Then she would not lie in a dangerous
state all night long. In fact, the most clinicially sig-
nificant application for this technology is a hypo-
glycemia predictor that would reside in a patient’s
pump and sound an alarm before hypoglycemia
would otherwise occur. Such a predictor would aid
not only patients, but their families as well. Parents
of young children with T1D frequently get up in
the night to check for low BG levels. A reliable
hypoglycemia alarm would allow families to rest
more comfortably.

A significant part of our current research effort is
directed toward designing ML models that can be
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trained on patient data to predict BG levels. Figure
8 shows the basic architecture of our approach to
BG level prediction. Since BG measurements have
a natural temporal ordering, we approach the task
of predicting BG levels as a time-series forecasting
problem. In time-series prediction, the task is to
estimate the future value of a target function based
on current and past data samples. Numerous pre-
diction problems in a wide array of domains rang-
ing from finance (for example, stock market [Kim
2003]), to medicine (for example, sleep apnea
[Aguirre, Barros, and Souza 1999]), environment
(for example, air quality [Perez and Reyes 2001]),
or power systems (for example, electric utility load
[Chen, Chang, and Lin 2004]) have been
approached in the past as time-series forecasting
problems.

We have conducted a preliminary experimental
evaluation in which a support vector regression
(SVR) model (Smola and Schoélkopf 1998) was
trained to predict the BG levels of a T1D patient.
An arbitrary pivot date was selected about one
month into the experimental data. Then 7 days
before the pivot date were used to create training
data, while test data was created from the 3 days
following (and including) the pivot date. Since BG
measurements are recorded by CGM systems every
5 minutes, one day may contribute up to 288 train-
ing or testing examples. We trained and tested two
separate SVR models to predict the BG levels for 30
and 60 minutes into the future. These intervals
would allow enough time to intervene to prevent
predicted problems.

We represented training and testing examples as
feature vectors using the following set of features:

The BG level (BG,) of patient x at present time ¢,

A simple moving average (MA) over four past points
from, and including, .

An exponentially smoothed rate of change (RC) in
BG level over fours past points from, and including,
t,

Bolus dosage totals starting 30 minutes before pre-
diction time, computed for durations of 30 minutes
and 10 minutes, respectively. The bolus dosage
refers to insulin that is injected before meals and/or
to correct for hyperglycemia.

Basal rate averages starting right before prediction
time, over 5 or 15 minute time intervals. This is the
rate at which insulin is slowly and continuously
infused into the patient by the pump. The basal rate
changes throughout the day to accommodate
changing insulin needs.

Meal carbohydrate amounts starting 30 minutes
before prediction time, for durations of 30 minutes
and 15 minutes, respectively.

Exercise intensity averages starting right before pre-
diction time, over 5-, 30-, or 60-minute time inter-
vals. Exercise tends to amplify the effect of insulin.
This effect influences BG levels during and after
exercise; the length of the effect depends on the
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length and the intensity of the exercise.

All data used to build the feature vectors was
extracted from the 4DSS database. The BG data
came from CGM sensors, which supply a data
point every 5 minutes. The bolus and basal insulin
data was recorded by the patient’s insulin pump.
Meal and exercise data was entered by the patient.

The influence that each type of event exerts on
the BG level is known to vary with time. This spe-
cific time-dependent variability was taken into
account through the offset and the length of the
various time intervals that were used to define the
features above. For example, the effects of exercise
are strongest while the patient is exercising, but
they may persist for several hours, especially if
exercise is intense. This is why exercise features are
computed in shorter 5-minute intervals close to
the time of exercise, with intervals lengthening to
30 and 60 minutes as exercise recedes into the past.
The SVR models were trained with a linear kernel,
using a capacity parameter C = 100, and a default
tube width € = 1.0. We used the LIBSVM imple-
mentation of SVMs for regression.?

In table 3, we compare the performance of the
SVR models trained to predict BG level for 30 and
60 minutes into the future with the simple base-
line BGL(x, t,) that uses the present BG level to pre-
dict any future BG level value. We use this simple
baseline for comparison only because it was found
to outperform more complex moving average and
rate of change baselines.

We report the root mean square error Ey,,, the
coefficient of determination R?, and the percentage
of predictions falling in the five areas from A to E
in the Clarke Error Grid Analysis (CEGA)
(Kovatchev et al. 2004). CEGA is a standard for
evaluating the accuracy of BG measurement that is
normally used to assess the quality of blood glu-
cose sensors. As can be seen in figures 9 and 10, the
Clarke Error Grid breaks a scatter plot into five
regions:

(A) Points within 20 percent of the actual BG
value; (B) Points that are more than 20 percent off
but that would not lead to inappropriate treat-

30-Minute Predictions

Method Enis  R? A B C p £E
SVR 180 092 930 70 00 00 ©
BGL(x, to) 251 084 878 118 00 04 O
Method Enys R A B C p E
SVR 309 076 810 181 04 05 O
BGL(x, to) 432 052 745 215 22 18 O

Table 3. SVR and Baseline BGL(x, t,) Results.

ment; (C) Points leading to unnecessary, but not
harmful, treatment; (D) Points that obscure hypo-
glycemia or hyperglycemia, leading to a lack of
necessary treatment; and (E) points misclassifying
hypoglycemia as hyperglycemia, or vice versa,
leading to harmful treatment.

The SVR models are promising, as they outper-
form the baselines on all performance measures.
The two CEGA plots in figures 9 and 10 show the
performance of the BGL(x, f,) baseline and SVR,
respectively, for the 60-minute prediction time.
The plots clearly show that, overall, the learned
SVR model makes predictions that are closer to the
ideal diagonal line. We believe that features based
on more sophisticated time-series analysis models
such as autoregressive moving averages (Box, Jenk-
ins, and Reinsel 2008) have the potential to further
improve the performance, and as such they are an
important part of our current research efforts.

To account for individual patient differences, a
predictive model is trained for each patient. We
also plan to explore transfer learning approaches
that effectively exploit data coming from multiple
patients in order to improve the model predic-
tions, which will be especially useful for patients
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Figure 10. Performance of SVR for 60-Minute Prediction.

with limited historical data. Trained prediction
models will be stored in a new case base of models,
so that we may further consider the possibilities of
adapting past models to bootstrap predictions for
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new patients. Since the patient data is often inac-
curate or incomplete, we are investigating learning
methods that are robust in the presence of missing
or uncertain data and that can also identify data
anomalies automatically.

Technology
Deployment Challenges

In this section, we share observations on three
nontechnical issues we encountered in making the
transition from intelligent diabetes management
tools in the university setting to the real world. We
(CM and FS) do this from the perspective of facul-
ty members intent upon keeping our “day jobs” of
conducting academic research, educating students,
and treating patients (FS). We recognize that issues
differ for Al researchers working for companies or
starting up their own companies, and that issues
may be more easily raised than resolved.

University Technology Transfer

The goal of the university technology transfer
office (TTO) is to facilitate commercialization of
intellectual property (IP) and to ensure that the
university benefits financially from the ideas of its
faculty. Working with the TTO on technology tran-
sition, however, presents challenges for academics.
Economic goals do not always harmonize with the
faculty-held tenet of broad dissemination of
knowledge. Faculty members have to “publish or
perish,” writing articles like this one to share their
findings with the greater research community. Pro-
tecting IP, on the other hand, means not sharing
findings until appropriate legal steps have been
taken. One of us (FS) had a paper withheld from
publication for three years while IP was being
secured, effectively rendering the findings obso-
lete. Our approach has been to communicate reg-
ularly with the TTO, aiming to leverage its expert-
ise while minimizing its impact on our academic
productivity.

Patents

The TTO filed a patent application on our behalf.
Should software be patented? This is a current con-
troversy, with debaters arguing both sides of the
question (Computer History Museum 2011). Issues
range from the moral (for example, “Shouldn’t
users be entitled to free software?”) to the method-
ological (for example, “Wouldn’t copyright be a
better mechanism for protecting software?”) to the
utilitarian (for example, “Do patents actually pro-
mote or discourage innovation in practice?”). In
our case, the TTO offered two compelling argu-
ments that led to the patent filing: (1) companies
would not invest in unpatented technologies; and
(2) freeware is not suitable for safety-critical med-
ical applications.
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Safety

When AI technology is to be used directly by
patients in the United States, it must first be
approved by the U.S. Food and Drug Administra-
tion (FDA). While critical for ensuring patient safe-
ty, the FDA approval process entails extensive
investments of time and money, making it infeasi-
ble for academics. Consequently, we have focused
primarily on tools that help physicians manage
patients, rather than tools used directly by

Beyond detecting problems and suggesting solutions is
the potential to intervene and prevent problems. A
machine learning model could reside in the patient’s
pump/sensor device, assess glucose recordings continu-
ously, and predict hypoglycemia 30 minutes prior to
its occurrence, thereby preventing it. I imagine that a
similar system, monitoring cardiac heart rhythm trac-
ings, could learn to predict dangerous arrhythmias
before they occur, since there are usually prodromal

patients. This ensures patient safety by keeping
health-care professionals in the loop, removing
FDA concerns but limiting the avenues of applica-
tion. One way to feasibly navigate the FDA review
process would be to partner with a medical device
company, and we have held exploratory conversa-
tions with several.

Forging Ahead

We are tackling these challenges and forging ahead
with plans to make intelligent diabetes manage-
ment a reality for patients and physicians. We have
a waiting list of patients who have volunteered to
participate in clinical research studies. They are
counting on us to translate the research into prac-
tical tools they can use. We envision a number of
potential avenues of commercialization and use.
The software could be marketed directly to physi-
cians for office use; it could be included in elec-
tronic health record (EHR) systems; it could be
embedded in insulin pumps and smartphones for
patient use; it could be incorporated in continuous
glucose monitoring (CGM) systems, so that all BG
plots would come with associated analyses; and BG
control centers could be established, where data
could be uploaded, analyzed, and monitored by
advanced practice nurses, who would forward
appropriate findings to physicians and patients. In
summary, diabetes management is more than a
challenging domain for Al research. It is an oppor-
tunity for Al applications to positively impace the
health and well-being of people with diabetes.
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changes in tracings prior to adverse events.

— Dr. Frank Schwartz

Note

1. See the Carelink Personal Software page at the
Medtronic website, www.medtronicdiabetes.net/prod-
ucts/carelinkpersonalsoftware.

2. See C.-C. Chang and C.-J. Lin’s LIBSVM: A Library for
Support Vector Machines. Software available at
www.csie.ntu.edu.tw/~cjlin/libsvm.
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