
In the Los Angeles (LA) Metro Rail system and other proof-of-
payment transit systems worldwide, passengers are legally
required to buy tickets before boarding, but there are no

gates or turnstiles. There are, quite literally, no barriers to entry,
as illustrated in figure 1. Instead, security personnel are dynam-
ically deployed throughout the transit system, randomly
inspecting passenger tickets. This proof-of-payment fare collec-
tion method is typically chosen as a more cost-effective alter-
native to direct fare collection, that is, when the revenue lost to
fare evasion is believed to be less than what it would cost to
make fare evasion impossible.

For the LA Metro, with approximately 300,000 riders daily,
this revenue loss can be significant; the annual cost has been
estimated at $5.6 million.1 The Los Angeles Sheriff’s Department
(LASD) deploys uniformed patrols onboard trains and at sta-
tions for fare checking (and for other purposes such as crime
prevention), in order to discourage fare evasion. With limited
resources to devote to patrols, it is impossible to cover all loca-
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n In proof-of-payment transit systems, passen-
gers are legally required to purchase tickets
before entering but are not physically forced to
do so. Instead, patrol units move about the
transit system, inspecting the tickets of passen-
gers, who face fines if caught fare evading. The
deterrence of fare evasion depends on the unpre-
dictability and effectiveness of the patrols. In
this article, we present TRUSTS, an application
for scheduling randomized patrols for fare
inspection in transit systems. TRUSTS models
the problem of computing patrol strategies as a
leader-follower Stackelberg game where the
objective is to deter fare evasion and hence max-
imize revenue. This problem differs from previ-
ously studied Stackelberg settings in that the
leader strategies must satisfy massive temporal
and spatial constraints; moreover, unlike in
these counterterrorism-motivated Stackelberg
applications, a large fraction of the ridership
might realistically consider fare evasion, and so
the number of followers is potentially huge. A
third key novelty in our work is deliberate sim-
plification of leader strategies to make patrols
easier to execute. We present an efficient algo-
rithm for computing such patrol strategies and
present experimental results using real-world
ridership data from the Los Angeles Metro Rail
system. The Los Angeles County Sheriff’s
Department is currently carrying out trials of
TRUSTS.



tions at all times. The LASD thus requires some
mechanism for choosing times and locations for
inspections. Any predictable patterns in such a
patrol schedule are likely to be observed and
exploited by potential fare evaders. The LASD’s
current approach relies on humans for scheduling
the patrols. However, human schedulers are poor
at generating unpredictable schedules (Wagenaar
1972, Tambe 2011); furthermore such scheduling
for LASD is a tremendous cognitive burden on the
human schedulers who must take into account all
of the scheduling complexities (for example, train
timings, switching time between trains, and sched-
ule lengths). Indeed, the sheer difficulty of even
enumerating the trillions of potential patrols
makes any simple automated approach — such as
a simple dice roll — inapplicable.

The result of our investigation is a novel appli-
cation called TRUSTS (tactical randomization for
urban security in transit systems) for fare-evasion
deterrence in urban transit systems, carried out in
collaboration with the LASD. We take a game-the-
oretic approach, which studies systems with mul-
tiple self-interested parties and aims to predict the
likely outcomes of the system under rational
behavior of the players. In particular, we model
this problem as a Stackelberg game with one leader
(the LASD) and many followers, in which each
metro rider (a follower) takes a fixed route at a
fixed time. The leader precommits to a mixed

patrol strategy (a probability distribution over all
pure strategies), and riders observe this mixed strat-
egy before deciding whether to buy the ticket or
not (the decision to ride having already been
made) in order to minimize their expected total
cost, following for simplicity the classic economic
analysis of rational crime (Becker and Landes
1974). Both ticket sales and fines issued for fare
evasion translate into revenue to the government.
Therefore the optimization objective we choose for
the leader is to maximize total revenue (total tick-
et sales plus penalties).

There are exponentially many possible pure
patrol strategies, each subject to both the spatial
and temporal constraints of travel within the tran-
sit network. Explicitly representing a mixed strate-
gy would be impractical. To remedy this difficulty,
TRUSTS uses the transition graph, which captures
the spatial as well as temporal structure of the
domain, and solves for the optimal (fractional)
flow through this graph, using linear programming
(LP). Such a flow can be interpreted as a marginal
coverage vector. Additionally, we show that a
straightforward approach to extracting patrol
strategies from the marginals faces important chal-
lenges: it can create infeasible patrols that violate
the constraint on patrol length, and it can gener-
ate patrols that switch too frequently between
trains, which can be difficult for patrol personnel
to carry out. Thus, we present a novel technique to
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Figure 1. Entrance of an LA Metro Rail Station.



overcome these difficulties using an extended for-
mulation on a history-duplicate transition graph
that (1) forbids patrols that are too long and (2)
penalizes patrols with too many switches.

Finally, we perform simulations based on actual
ridership data provided by the LASD for four LA
Metro train lines (Blue, Gold, Green, and Red). Our
results suggest the possibility of significant fare-
evasion deterrence and hence prevention of rev-
enue loss with very few resources. The LASD is cur-
rently testing TRUSTS in the LA Metro system by
deploying patrols according to our schedules and
measuring the revenue recovered.

Related Work
There has been research on a wide range of prob-
lems related to game-theoretic patrolling on
graphs. One line of work considers games in which
one player, the patroller, patrols the graph to
detect and catch the other player, the evader, who
tries to minimize the detection probability. This
includes work on hider-seeker games (Halvorson,
Conitzer, and Parr 2009) for the case of mobile
evaders, and search games (Gal 1979) for the case
of immobile evaders.

Another line of research considers games in
which the patroller deploys resources (static or
mobile) on the graph to prevent the other player,
the attacker, from reaching certain target vertices.
There are a few variations depending on the set of
possible sources and targets of the attacker. Infil-
tration games (Alpern 1992) considered one source
and target. Asset protection problems (Dickerson
et al. 2010) consider multiple sources and multiple
equally weighted targets. Networked security
games (Tsai et al. 2010) consider targets with dif-
ferent weights.

The leader-follower Stackelberg game model has
been the topic of much recent research (Tambe
2011) and has been applied to a number of real-
world security domains, including the Los Angeles
International Airport (Jain et al. 2010), the Federal
Air Marshals Service (Jain et al. 2010), and the
Transportation Security Administration (Pita et al.
2011).

Urban transit systems, however, present unique
computational challenges. First, unlike in existing
work on graph patrolling games, and unlike in pre-
vious deployed applications on counterterrorism,
here the followers we seek to influence are poten-
tially very many: large numbers of train riders
might plausibly consider fare evasion. Booz Allen
Hamilton (see note 1) estimates that 6 percent of
riders are ticketless in the metro system overall;
anecdotal reports suggest that on some lines this
percentage could be far greater, even a majority.
Second, the leader has exponentially many possi-
ble patrol strategies, corresponding to all the feasi-

ble trips within the transit network subject to cer-
tain restrictions and preferences. Similar to FAMS
(Jain et al. 2010), we represent patrol strategies
compactly as a marginal coverage vector. But
unlike the FAMS problem in which a patrol con-
sists of a very limited number of flights (often a
pair of flights), TRUSTS allows much more com-
plex patrols and thus uses a novel compact repre-
sentation based on history-duplicate transition
graphs.

Game Theory Background
We begin with a brief overview of the game-theo-
retic concepts that we use in this article. At a high
level, game theory studies games, which are math-
ematical models of interactions among multiple
players, each trying to advance their self-interest
by choosing among a set of strategies. Formally, a
game has a set N of players; each player i  N has a
set Si of pure strategies; the outcome of the game is
determined by the strategy profile s  S, where S is
the Cartesian product of the player’s sets of pure
strategies. Each player i’s preference over the out-
comes of the game is specified by her utility func-
tion ui : S  �, and her objective is to maximize
her expected utility. Each player can choose a pure
strategy, or a mixed strategy that is a probability
distribution over pure strategies. Player i’s best
response strategy, given strategies of the other
players, is a strategy of i that maximizes i’s expect-
ed utility. It is always possible to pick a best
response that is a pure strategy.

In a Stackelberg game between a leader and a fol-
lower, the leader commits to a mixed strategy, and
the follower observes the leader’s mixed strategy
and plays a best response (Conitzer and Sandholm
2006). This setting has been applied to security
domains where the defender’s daily patrol strate-
gies are observed by attackers. The optimal mixed
strategy for the leader to commit to, together with
the follower’s best response, forms a Stackelberg
equilibrium of the game.

Problem Setting
TRUSTS addresses the challenge of generating ran-
domized schedules for LASD patrols for four LA
Metro lines (Blue, Gold, Green, and Red). For sim-
plicity, TRUSTS treats the LA Metro system’s multi-
ple lines as independent. Indeed, currently, the LA
Metro lines have just a few transfer points. Dealing
with the impact of transfers will be a topic for
future work. We model the patrol scheduling prob-
lem on each line as a leader-follower Stackelberg
game with one leader (the LASD) and multiple fol-
lowers (riders). In this game, a pure leader strategy
is a patrol, that is, a sequence of patrol actions
(defined below), of constant bounded duration.
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The two possible pure follower strategies are buy-
ing and not buying. There are many types of fol-
lowers, one for each source, destination, and
departure time triple (corresponding to the set of
all riders who take such a trip).

Train System
The train system consists of a single line (for
example, the Gold line as shown in figure 2a on
which trains travel back and forth, in general with
multiple trains traveling simultaneously. The sys-
tem operates according to a fixed daily schedule (a
snippet is shown in figure 2b), with trains arriving
at stations at (finitely many) designated times
throughout the day. Therefore we can model time
as discrete, focusing only on the time steps at
which some train arrival/departure event occurs.
We use the (directed) transition graph G = ⟨V, E⟩ to
encode the daily timetable of the metro line,
where a vertex v = ⟨s, t⟩ corresponds to some pair
of station s and time point t. An edge in G repre-
sents a possible (minimal) action. In particular,
there is an edge from (s, t⟩ to ⟨s, t⟩ if: s is either
the predecessor or successor of s in the station
sequence and ⟨s, t⟩ and ⟨s, t⟩ are two consecutive
stops for some train in the train schedule (travel-
ing action), or s = s, t < t, and there is no vertex⟨s, t⟩ with t < t < t (staying action). We refer to
the entire path that a given train takes through G,
from the start station to the terminal station, as a
train path.

Patrols
There are a fixed number  of deployable patrol
units, each of which may be scheduled on a patrol
of duration at most  hours (with, for example,  =
7). There are two sorts of patrol actions, which a
given patrol unit can alternate between on its shift:
on-train inspections (in which patrollers ride the
train, inspecting passengers), and in-station
inspections (in which they inspect passengers as
they exit the station). A pure patrol strategy is rep-
resented mathematically as a path in G for each
patrol unit, in which an edge e represents an atom-
ic patrol action, that is, inspecting in-station from
the time of one train event at that station to the
next (at that station) or inspecting on-train as it
travels from one station to the next. Each edge e
has a length le equal to the corresponding patrol
action duration and an effectiveness value fe,
which represents the percentage of the relevant
ridership inspected by this action. For both in-sta-
tion and on-train inspections, fe depends on the
ridership volume at that location, the time of day,
and the duration. A valid pure patrol strategy is a
set of paths P1 , ..., P, each of size at most .

Example
A simple scenario with three stations (A, B, C) and
four discrete time points (6pm, 7pm, 8pm, 9pm) is
given in figure 3. The dashed lines represent stay-
ing actions; the solid lines represent traveling
actions. There are four trains in the system; all edge
durations are 1 hour. A sample train path here is
(A, 6pm)  (B, 7pm)  (C, 8pm). In this example,
if  = 2 and  = 1, then the valid pure leader strate-
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gies (pure patrol strategies) consist of all paths of
length 2.

Riders
The riders are assumed to be daily commuters who
take a fixed route at a fixed time. Horizon Research
Corporation2 estimates that more than 82 percent
of riders use the system at least three days a week.
The ticket price (for any trip within the transit sys-
tem) is a nominal fee , with the fine for fare eva-
sion  much greater. As the riders follow the same
route every day, they could estimate the likelihood
of being inspected, based on which they make a
decision as to whether to buy a ticket. We assume
the riders know the inspection probability perfect-
ly and are rational, risk-neutral economic actors
(Becker and Landes 1974) who make this choice in
order to minimize expected cost.

A rider’s type  is defined by the path he or she
takes in the graph. Because there is a single train
line, riders never linger in stations, that is, do not
follow any ‘‘stay’’ edges (staying at a station) mid-
journey; the last edge of every follower type is a
(short) stay edge, representing the action of ‘‘exit-
ing’’ the destination station, during which the rid-
er may be subject to in-station inspection. There-
fore the space  of rider types corresponds to the
set of all subpaths of train paths. (When G is drawn
as in figure 3, all rider paths are ‘‘diagonal’’ except
for the last edge.) A metro line with N stops and M
scheduled trains will have O(M N2) rider types.

Given a pure patrol strategy of the  units, (P1,
…, P), the inspection probability for a rider of type
   is:

(1)

and therefore his or her expected utility is the neg-
ative of the expected amount he or she pays: − if
she or he buys the ticket and − multiplied by the
expression in equation (1) otherwise. The inspec-
tion probability for a mixed strategy is then the
expectation of equation (1), taken over the distri-
bution of pure strategies.

We justify the inspection probability in equation
(1) as follows. First, consider on-train inspections.
The fraction of the train that is inspected in a giv-
en inspection action is determined by fe (which
depends on ridership volume). The key is that in
the next inspection action, a patrol will not rein-
spect the fraction of the train that is already
inspected in a previous inspection action. There-
fore, unlike in settings where patrollers may
repeatedly draw a random sample from the same
set of train passengers to inspect, in our setting, the
probabilities fe are added rather than multiplied.
Now also consider in-station inspections. Since a
rider taking a journey only exits a single station, a
rider will encounter at most one in-station inspec-
tion. Finally, when multiple patrol units cover the
same edge e, the inspection probability given by

min{1, fe
e!Pi"#
$

i=1

%

$ },
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(1) is the sum of the contributions from each patrol
unit, capped at 1. This is a reasonable assumption
when the number of patrol units on each edge e is
small, as multiple patrol units on the same train
could check different cars or different portions of
the same car, and multiple patrol units inspecting
at the same station could check different exits.

Objective
The leader’s utility, equal to total expected rev-
enue, can be decomposed into utilities from bilat-
eral interactions with each individual follower; fur-
thermore the followers do not directly affect each
other’s utilities. As a result, the game can be equiv-
alently formulated as a two-player Bayesian Stack-
elberg game, in which there is just one follower
taking on the role of one of the passengers. The
type of this passenger is known to the follower but
not to the leader and is drawn from a probability
distribution such that the probability p of a fol-
lower type    is proportional to its ridership vol-
ume.

Furthermore, although in general solving
Bayesian Stackelberg games is NP-complete
(Conitzer and Sandholm 2006), the utility func-
tions of this game satisfy the zero-sum property,
that is, the utility gained by the leader always
equals the utility lost by the follower. For such
zero-sum Bayesian games, the Stackelberg equilib-
rium is equivalent to the maximin solution, and
the games are solvable by the linear programming
formulations of Ponssard and Sorin (1980) or
Koller, Megiddo, and von Stengel (1994). However,
these LP formulations explicitly enumerate the
pure strategies of the leader; since our game of
interest has an exponential number of leader pure
strategies, even storing these formulations would
require exponential space.

Linear Program Formulation
In this section, we introduce our linear-program-
ming-based approach for finding a maximum-rev-
enue (mixed) patrol strategy. As noted above, the
leader’s space of pure strategies is exponentially
large, even with a single patrol unit. We avoid this
difficulty by compactly representing mixed patrol
strategies by marginal coverage on edges of the
transition graph, that is, by the expected numbers
of inspections that will occur on these edges. Sub-
sequently, we construct a mixed strategy (that is, a
probability distribution over pure strategies) con-
sistent with the marginal coverage.

For expository purposes, we first present a basic
formulation of our approach of compactly repre-
senting the problem using marginal coverage. This
basic formulation also illustrates the key issues that
make it difficult for the end user to deploy the
patrol strategies computed. We then introduce an

extended formulation to address these issues. We
will focus on the high-level ideas and refer inter-
ested readers to our technical paper (Yin et al.
2012) for further details.

Basic Formulation
For algorithmic convenience, we add to the transi-
tion graph a source v+ with edges to all possible
starting vertices in the transition graph and a sink
v− with edges from all possible ending vertices. We
assign these additional dummy edges zero dura-
tion and zero effectiveness.

Let xe be the expected number of inspections
that will occur on edge e of this transition graph.
We call the vector x of marginal coverage on all
edges the marginal strategy. Since the number of
edges in the graph is exponentially fewer than the
number of paths, the marginal strategies are a
much more compact representation of mixed
strategies. A valid vector x must satisfy the follow-
ing constraints, which are the constraints defining
a fractional flow on the graph when we interpret xe
to be the amount of flow on edge e: the total flows
entering and exiting the system are bounded by ,
the number of total patrol units allowed; the total
flow entering each intermediate node equals the
total flow out of that node. Furthermore, the
expected total number of time units spent by the
patrols must be bounded by  · .

Recall that our objective is to maximize the
leader’s expected revenue, which equals the riders’
expected total payment. Since the riders are ration-
al players who minimize their expected costs, the
expected payment of each rider is the minimum of
the ticket price, and his or her expected payment
if he or she decides to evade, which equals the fine
times the probability of the rider being captured. It
turns out that we could upper-bound the probabil-
ity of capture using a linear expression in terms of
x, leading to a linear program that provides an
upper bound on the optimal revenue. Fortunately,
once we generate the patrols from the marginals
we are able to compute the actual best-response
expected utilities of the riders. Our experiments
show that the differences between the actual
expected utilities and the upper-bounds given by
the LP formulation are small. Meanwhile the size
of this LP grows only polynomially in the size of
the transition graph. Once we solve the LP to find
the optimal marginal strategy x, we can efficiently
construct a -unit mixed strategy whose marginals
match x.

Issues with the Basic Formulation
There are two fundamental issues with the basic
formulation. First, the mixed strategy constructed
can fail to satisfy the patrol length limit of ,
notwithstanding the constraint on the sum of the
lengths of all patrols, and hence be infeasible. In
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fact, the marginal strategy computed in the basic
formulation may not correspond to any feasible
mixed strategy in which all patrols have length at
most . Consider the counterexample in figure 4.
Edges v1  v2 and v2  v3 represent two real atom-
ic actions, each with duration 1. Patrols must start
from either v1 or v3, but can terminate at any of v1,
v2, and v3. This is specified using v+ and v−, the
dummy source and sink, respectively. We assume 
= 1 and  = 1. It can be verified that the marginal
strategy shown in figure 4 satisfies the constraints
of our basic LP. However, the only corresponding
mixed strategy is to take v+  v3  v− with 50 per-
cent probability and v+  v1  v2  v3  v− with
50 percent probability. (To see this, observe that we
cannot put any probability mass on the path v+ 

v1  v2  v− because the edge v2  v− has zero flow;
the path v+  v1  v− is excluded by a similar argu-
ment.) This mixed strategy is infeasible since its
second patrol has duration greater than 1. This
patrol length violation arises because the basic for-
mulation only constrains the average patrol
length, and therefore allows the use of overlong
patrols as long as some short patrols are also used.

Second, the paths selected according to the con-
structed mixed strategy may switch between trains
or between in-station and on-train inspection an
impractically large number of times, making the
patrol path difficult to implement and error prone.
This is an important issue as we want real LASD
officers to be able to carry out these strategies. The
more switches there are in a patrol strategy, the
more instructions the patrol unit has to remember,
and the more likely the unit will miss a switch due
to imperfections in the train schedule and/or the
unit’s misexecution of the instructions. For exam-
ple, in the example, ⟨A, 6pm⟩  ⟨B, 7pm⟩  ⟨A,

8pm⟩ and ⟨C, 6pm⟩ ⟨B, 7pm⟩ ⟨C, 8pm⟩ each do
one switch while ⟨A, 6pm⟩  ⟨B, 7pm⟩  ⟨C, 8pm⟩
and ⟨C, 6pm⟩ ⟨B, 7pm⟩ ⟨A, 8pm⟩ each do none.
Both path pairs cover the same set of edges, mak-
ing the second preferable because it is easier to
implement.

Extended Formulation
Now we present a more sophisticated formulation
design to address the two aforementioned issues.
The difficulty involved in imposing constraints on
the patrol paths (that is, penalizing or forbidding
certain paths) in the marginal representation is
that paths themselves are not represented, instead
being encoded only as marginal coverage.

Hence the key idea is to preserve sufficient path
history information within vertices to be able to
evaluate our constraints, while avoiding the expo-
nential blowup creating a node for every path
would cause. We construct a new graph, called the
history-duplicate transition (HTD) graph, by creat-
ing multiple copies of the original vertices, each
corresponding to different values of history infor-
mation.

We first explain how to construct the HDT graph
from a transition graph G in order to forbid patrol
paths longer than . The HDT graph is composed
of multiple restricted copies of G (that is, sub-
graphs of G), corresponding to different possible
starting time points. For the copy corresponding to
starting time point t*, we only keep the subgraph
on vertices v = ⟨s, t⟩  V where t*  ≤ t ≤ t* + . Thus,
in each restricted copy of G, the length of any path
is guaranteed to be less than or equal to . Since
there are a finite number of distinct possible start-
ing time points (that is, all distinct discrete time
points in V+ ), the new graph is a linear expansion
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of G. An approximation can be obtained by taking
one starting time point every  time units. In this
case, an original vertex (edge) will be kept in at
most / copies, implying the new graph is at
most / times larger than G.

Figure 5a shows the HDT graph (the shaded por-
tion further explained below) of the example with
 = 2 and two starting time points, 6pm and 7pm.
The HDT graph is thus composed of two restricted
copies of the original transition graph. In each ver-
tex, the time shown in parenthesis indicates the
starting time point. For example, the original ver-
tex ⟨A, 7pm⟩ now has two copies ⟨A, 7pm, (6pm)⟩
and ⟨A, 7pm, (7pm)⟩ in the HDT graph. For the
starting time point of 6pm, the patrol must end at
or before 8pm, hence we do not need to keep ver-
tices whose discrete time point is 9pm. For the
starting time point of 7pm, the patrol must start at
or after 7pm, hence we do not need to keep vertices
whose discrete time point is 6pm. The two restrict-
ed copies are not two separate graphs but a single
graph that will be tied together by the dummy
source and sink.

Next, we explain how to further extend the HDT
graph to penalize complex patrol paths. The idea is
to have each vertex encode the last action occur-
ring prior to it. Specifically, we create multiple
copies of a vertex v, each corresponding to a differ-
ent edge that leads to it. If v is a possible starting
vertex, we create an additional copy representing
no prior action. If there is an edge from v to v, we
connect all copies of v to the specific copy of v
whose last action was (v, v). A new edge is called a
switching edge if the recorded last actions of its
two vertices are of different types (for example,
inspecting different trains), unless one of the two
vertices is a ‘‘no prior action’’ vertex. As can be ver-
ified, the number of switches of a patrol path in
the new graph is the number of switching edges it
has. To favor simple patrol paths, we impose a cost
for using switching edges.

In figure 5b, we show how to apply this exten-
sion using the subgraph shown in the shaded box
of figure 5a. Since there is only one edge leading to⟨A, 7pm, (6pm)⟩, we create one copy of it repre-
senting the action of staying at A. There are three
edges leading to ⟨B, 7pm, (6pm)⟩, so we create three
copies of it representing the actions of taking train
from A, staying at B, and taking train from C. The
original edges are also duplicated. For example, ⟨B,
7pm, (6pm)⟩  ⟨B, 8pm, (6pm)⟩ has three copies
connecting the three copies of ⟨B, 7pm, (6pm)⟩ to
the copy of ⟨B, 8pm, (6pm)⟩ representing the stay-
ing at B action. Among the three copies, only the
‘‘Stay’’ to ‘‘Stay’’ edge is not a switching edge.

Given the final HDT graph G = ⟨V, E⟩, we pro-
vide an extended linear program formulation, with
variables ye representing the marginal coverage of
an HDT graph edge e  E being selected. To penal-

ize switches, we add to the objective function a
penalty  for each unit of marginal coverage used
by switching edges. Varying the value of  lets us
trade off between solution quality (greater rev-
enue) and patrol preference (lower average num-
ber of switches). A path in the HDT graph G triv-
ially corresponds to a path in the transition graph
G, since any edge in G is a duplicate of some edge
in G. Because the length of any patrol path in the
HDT graph is bounded by , the mixed strategy
must be feasible.

Real-World Evaluation
We present our evaluation based on real metro
schedules and rider traffic data provided by the
LASD. We solved the LP in the extended formula-
tion using CPLEX 12.2 on a standard 2.8 GHz
machine with 4 GB memory. We first describe the
data sets we used, followed by our experimental
results.

Data Sets
We created four data sets, each based on a different
Los Angeles Metro Rail line: Red (including Pur-
ple), Blue, Gold, and Green. For each line, we cre-
ated its transition graph using the corresponding
timetable from www.metro.net. Implementing the
LP requires a distribution of types of potential fare
evaders (recall that a rider type corresponds to a 4-
tuple of boarding station / time and disembarking
station / time). We have access to hourly boarding
and alighting counts provided by the Los Angeles
Sheriff’s Department, and from this can estimate
the distribution of population on the train system
at each hour; but we do not know what percentage
of the population are potential fare evaders. In our
experiments, we assumed that potential fare
evaders were evenly distributed among the gener-
al population. Specifically, suppose the percentage
of riders boarding in hour i is di

+ and the percent-
age of riders alighting in hour i is di

−.  Denote the
set of rider types that board in hour i by i

+ and
those that alight in hour i by i

−. Then we would
like to compute a fine-grained ridership distribu-
tion p to match the hourly boarding and alighting
percentages, that is, to find a point within the fol-
lowng convex region ,

We estimate the fare-evader distribution by finding
the analytic center of , which is efficiently com-
putable.

The inspection effectiveness fe of an edge is
assigned based on the assumption that 10 passen-
gers can be inspected per minute. The inspection
effectiveness fe is capped at 0.5 to capture the fact
that the inspector cannot switch between cars

!= {p | p!  0" p#
#$%i

+
& = di

+ " p#
#$%i

'
& = di

',(i}.
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while the train is moving. (Trains contain at least
two cars.) The ticket fare was set to $1.50 (the actu-
al current value) while the fine was set to $100.00
(Fare evaders in Los Angeles can be fined $200.00,
but they also may be issued warnings.) If we could
increase the fine dramatically the riders would
have much less incentive for fare evasion, and we
could achieve better revenue. However a larger fine
is infeasible legally. Table 1 summarizes the
detailed statistics for the LA Metro lines.

Experimental Results
Throughout our experiments, we fixed  to 1. In
our first set of experiments, we fixed the penalty 
for using patrol paths with more switches to 0, and
varied the maximum number of hours that an
inspector can patrol from 4 to 7 hours. To create

the HDT graph, we took one starting time point
every hour.

Figure 6a shows the expected revenue per rider
of the mixed patrol strategy we generated, which is
the total revenue divided by the number of daily
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Figure 5. HDT Graph of Example 1.

(a) Two starting time points. (b) Extension storing the last action occurring.

Line Stops Trains Daily Riders Types 

Red 16 433 149991.5 26033 

Blue 22 287 76906.2 46630 

Gold 19 280 30940.0 41910 

Green 14 217 38442.6 19559 

Table 1. Statistics of Los Angeles Metro Lines.
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riders. Since the LP only returns an upper bound
of the attainable revenue, the true expected rev-
enue of the mixed patrol strategy was computed by
evaluating the riders’ best responses for all rider
types. A rider can always pay the ticket price of
$1.50 and will only evade the ticket when the
expected fine is lower. Hence the theoretical max-
imum achievable value is $1.50, which is achieved
when every rider purchases a ticket. As we can see,
the per rider revenue increases as the number of
patrol hours increases, almost converging to the
theoretical upper bound of $1.50 for the Gold and
Green line. Specifically, a 4-hour patrol strategy
already provides reasonably good expected value:
1.31 for the Blue line (87.4 percent of the maxi-
mum), 1.45 for the Gold line (97.0 percent), 1.48
for the Green line (98.8 percent), and 1.22 for the
Red line (81.3 percent). Among the four lines, the
Red line has the lowest revenue per rider. This is
because the effectiveness of fare inspection
decreases as the volume of daily riders increases,
and the Red line has a significantly higher number
of daily riders than the other lines.

We depict in figure 6b the percentage of the true
expected revenue versus the theoretical upper
bound returned by the LP. Strategies generated by
our method are near optimal; for example, our 4-
hour strategies for the Blue, Gold, Green, and Red
lines provided expected revenues of 96.5 percent,
98.5 percent, 99.5 percent, and 97.0 percent of the
upper bound (and thus at least as much of the opti-
mum), respectively.

To study riders’ responses to the computed strat-
egy, we partitioned the entire population of riders
into three groups depending on their expected fine
if fare evading: riders who prefer purchasing tickets
(expected fine is greater than 1.7 — 13.3 percent
above the ticket price), riders who prefer fare eva-
sion (expected fine is less than 1.3 — 13.3 percent
below the ticket price), and indifferent riders
(expected fine is between 1.3 and 1.7). In figure 6c,
we show the distribution of the three groups
against the strategies computed for the Red line.
The three dashed lines inside the region of indif-
ferent riders represent, from top to bottom, the
percentages of riders whose expected fine is less
than 1.6, 1.5, and 1.4, respectively. As the number
of patrol hours increases from 4 to 7, the percent-
age of riders who prefer fare evasion decreases from
38 percent to 7 percent, the percentage of riders
who prefer purchasing tickets increases from 17
percent to 43 percent, and the percentage of indif-
ferent riders remains stable between 45 percent
and 50 percent.

Zooming in on the fare evasion, figure 6d shows
the percentage of riders who preferred fare evasion
against the patrol strategies computed. As we can
see, this percentage decreased almost linearly in
the number of additional patrol hours beyond 4.

Our 7-hour patrol strategy lowered this percentage
to 4.2 percent for the Blue line, 0.01 percent for the
Gold line, 0.01 percent for the Green line, and 6.8
percent for the Red line. Again, due to having the
highest daily volume, the Red line had the highest
percentage of riders who preferred fare evasion.

Finally, figure 6e shows the run time required by
CPLEX to solve the LPs we created. As we can see,
the run time increased as the number of patrol
hours increased for all the metro lines. This is
because the size of the HDT graph constructed is
roughly proportional to the maximum length of
the patrols, and a larger HDT graph requires an LP
with more variables and constraints. Among the
four lines, the Red and the Green lines have sig-
nificantly fewer types, and are thus easier to solve
than the other two lines.

In our second experiment, we varied the interval
 of taking starting time points, trading off solu-
tion quality for efficiency. We fixed the patrol
length  to 4 hours and penalty parameter  to 0.
For each line, we tested six interval () settings
ranging from 0.5 hour to 4 hours. In figure 6f, the
x-axis is the run time (in log-scale) and the y-axis is
the normalized revenue against the expected rev-
enue of  = 0.5 within each line. For each line, a
data point from left to right corresponds to  = 4,
3, 2, 1.5, 1, and 0.5 respectively. Increasing the run
time (by decreasing ) always led to a better solu-
tion; however, the quality gain diminished. For
example, for the Blue line, it took 20 seconds of
additional run time to increase the solution quali-
ty from 87.9 percent ( = 4 hours) to 92.9 percent
( = 3 hours), whereas it took 1456 seconds of addi-
tional run time to increase the solution quality
from 99.1 percent
( = 1 hour) to 100 percent ( = 0.5 hour).

In the final experiment, we varied the penalty 
for using more switches, trading off between the
solution quality and the average number of switch-
es. We fixed the patrol length  to 4 hours and
starting time interval  to one hour. For each line,
we tested seven penalty settings from  = 0 to  =
0.01. Figure 6g plots the average number of switch-
es against the normalized revenue against the
expected revenue of  = 0 within each line. For all
lines, higher  values led to both lower solution
quality and fewer number of switches. For exam-
ple, the average number of switches in the solution
of the highest revenue ( = 0) ranged from 18.6
(Gold line) to 26.7 (Red line). However, by allow-
ing 3 percent quality loss, this number could be
lowered to less than 10 for all the four lines.

To further understand the patrol paths returned
in these solutions, we show, in figure 6h, the
cumulative probability distributions of the number
of switches for the Red line given three settings of
: 0, 0.001, and 0.01. Choosing a lower  tended to
lead to more complex patrol paths. For example,
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the solution of  = 0 used patrol paths whose num-
ber of switches is greater than 20 with 68.9 percent
probability; the solution of  = 0.001 (99.7 percent
of the optimum) only used such paths with 31.2
percent probability. And the solution of  = 0.01
(97.0 percent of the optimum) never used patrol
paths that had more than 20 switches.

LASD Evaluation of TRUSTS
Since January 2012, LASD has been testing our
generated patrol strategies on the Red Line. For
example, in initial test runs on Thursday, January
4, and Friday, January 5, 2012, one patrol unit con-
ducted a 4-hour fare-inspection patrol on each day.
A total of 851 fare checks were made, with 41 fare
evaders cited and felons felons arrested. The
patrols implemented in the two days had four and
five switches, respectively, and the officers were
able to make the switches we requested. The LASD
officers have given us valuable feedback and we
have incorporated their suggestions, including
inserting breaks in the middle of patrol shifts.
Dozens of test patrol runs have been carried out so
far, and more tests are scheduled in the future to
provide a more thorough evaluation of the effec-
tiveness of our strategies. Figure 7 shows two offi-

cers doing fare checks at a station exit during one
of the test patrols.

Summary
In this paper we presented TRUSTS, a novel appli-
cation for fare-evasion deterrence in urban transit
systems. Our development of TRUSTS opens the
door to applying game-theoretical randomization
beyond previous applications of counterterrorism,
to a much broader setting in which common indi-
viduals and daily routines are involved. We mod-
eled the domain as a Stackelberg game, providing
a novel compact representation of the leader’s
mixed strategies as flows in the history-duplicate
transition graph. We found in our simulations that
our method computed close-to-optimal strategies,
which effectively deterred fare evasion and
ensured high levels of revenue with few patrol
hours. We are currently evaluating TRUSTS within
the LA Metro Rail system in collaboration with
LASD.

We briefly mention a couple of future directions.
One of the observations from the test runs is that
LASD officers often need to deviate from the patrol
schedule due to making felony arrests or being
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Figure 7. Fare Check at a Station Exit.



called to deal with emergencies at other parts of
the train system. After dealing with the emergency,
which could take a significant amount of time, it is
often difficult to catch up to the original patrol
schedule. We are currently investigating more effi-
cient ways of utilizing resources in case of such
emergencies. Another future direction is to inves-
tigate bounded rational models of the passengers,
since they are human decision makers and thus
might not be perfect optimizers. Incorporating
such behavior models of the adversary in security
games (Pita et al. 2010; Yang et al. 2011) may
potentially increase the robustness of our solu-
tions. And we ultimately want to combine fare
checking with LASD’s other tasks of crime preven-
tion and counterterrorism. We plan to make use of
multiobjective optimization techniques to intelli-
gently allocate resources that makes trade-offs
among these different objectives.
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Notes
1. See the Booz Allen Hamilton 2007 report, Faregating
Analysis commissioned by LA Metro
(boardarchives.metro.net/Items/2007/11˙Novem-
ber/20071115EMACItem2%7.pdf)

2. See the 2002 Horizon Research Corporation Metropol-
itan Transit Authority Fare Evasion Study. (librar-
yarchives.metro.net/DPGTL/studies/2002˙horizon˙fare˙ev
asio%n˙study.pdf)
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AAAI to Colocate with Cognitive Science Society in 2014!
AAAI is pleased to announce that it will colocate with the 2014 Cognitive Science Society Conference in pictur-
esque Québec City, Québec, July 27-31, 2014. The conference will be held at the beautiful Centre des congrès de
Québec, and attendees can stay at the adjacent Hilton Québec. More details will be available at the AAAI web-
site soon!


