
Anomaly detection is a growing area with more and more
practical applications every day. It has been used for fraud
detection and intrusion detection for a long time, but in

later years the usage has exploded to all kind of domains, like
surveillance, industrial system monitoring, epidemiology, and
so on. For an overview of different anomaly-detection methods
and applications, see, for example, Chandola, Banerjee, and
Kumar (2009).

The approach taken in statistical anomaly detection is to use
data from (predominantly normal) previous situations to build
a statistical model of what is normal. New situations are com-
pared against that model and are considered anomalous if they
are too improbable to occur in that model. Various statistical
anomaly-detection methods have previously been applied to a
wide variety of problems including intrusion detection (García-
Teodoro et al. 2009; Cemerlic, Yang, and Kizza 2008; Chebrolu,
Abraham, and Thomas 2005; Puttini, Marrakchi, and Mé 2003),
fault detection and diagnosis (Lerner et al. 2000), spam filtering
(Su and Xu 2009), environmental anomaly detection (Hill,
Minsker, and Amir 2009), and energy expenditure estimation
(Shahabdeen, Baxi, and Nachman 2010).

The Swedish Institute of Computer Science (SICS) has for sev-
eral years developed methods for statistical anomaly detection
based on a framework called Bayesian principal anomaly (Holst
and Ekman 2011). The framework has already been successful-
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n We have developed a method for statistical
anomaly detection that has been deployed in a
tool for condition monitoring of train fleets. The
tool is currently used by several railway opera-
tors across the world to inspect and visualize
the occurrence of “event messages” generated on
the trains. The anomaly detection component
helps the operators quickly to find significant
deviations from normal behavior and to detect
early indications for possible problems. The
method used is based on Bayesian principal
anomaly, which is a framework for parametric
anomaly detection using Bayesian statistics.
The savings in maintenance costs of using the
tool comes mainly from avoiding costly break-
downs and have been estimated to be several
million Euros per year for the tool. In the long
run, it is expected that maintenance costs can
be reduced by between 5 and 10 percent with
the help of the tool.



ly used and evaluated in several real application
domains, such as alarm filtering in telecommuni-
cation networks, intrusion detection (Dey 2009),
alarm call monitoring for crisis management, and
maritime domain awareness (Bjurling et al. 2010).
In this article we describe a novel application
domain for the anomaly-detection method: condi-
tion monitoring of trains (Holst, Ekman, and
Larsen 2006).

The method presented here is based on para-
metric statistical models. There are currently many
popular anomaly-detection methods based on
nonparametric models (see, for example, Ahmed,
Oreshkin, and Coates [2007]; Sotiris, Tse, and
Pecht [2010]; Tian, Yu, and Yin [2004]). A non-
parametric model is very general since the para-
metric forms of the distributions need not be
known. However, when a parametric form is
known, the correct parametric model will require
magnitudes less data before being useful and has a
much higher detection precision. Especially in the
case studied here, where the data are event based
and the number of events in an interval is approx-
imately Poisson distributed, a parametric model is
definitely best suited. Furthermore, a very large
class of data in the real world comes as events or
event counts, which makes the presented method
very widely applicable.

Addtrack is a tool for condition monitoring of
trains developed in collaboration between Bom-
bardier Transportation AB and Addiva AB.
Addtrack is currently used by Bombardier and sev-
eral railway operators to inspect and visualize the
occurrence of “event messages” generated on train
fleets. The data sets analyzed often consist of sev-
eral thousand data points, and a common com-
plaint from analysts was that it was, as a conse-
quence, difficult to observe relevant patterns in the
fleet of trains. Of particular interest was the ability
to point out more directly the most anomalous
cases hidden among all the normal ones, so that
further investigative actions could be taken.

The anomaly-detection methods developed at
SICS have been deployed as a component of the
Addtrack system and are in use helping analysts to
quickly find significant deviations from normal
behavior in several train fleets and to detect early
indications of possible problems.

The remainder of this article is organized as fol-
lows. First, the Addtrack tool is described together
with the original requirements for an anomaly-
detection module and an outline of how the appli-
cation is used. Next, the principal anomaly is pre-
sented as the basis for the module, followed by a
description of the Bayesian approach used to esti-
mate the normality model and the particular appli-
cation to event data anomaly detection. The
anomaly-detection module is then described, and
the development and deployment process follows.

The article ends with a brief evaluation and a dis-
cussion of the results and future development.

The Addtrack Tool
Addtrack is a tool developed originally by Bom-
bardier Transportation for general analysis, moni-
toring, and visualization of train conditions and
event data, which are periodically or continuously
uploaded from the train units. It is “intelligent” in
the sense that analysis modules, such as the one
described in this article, can be used to preprocess
and visualize data sets. Today, Addtrack is devel-
oped by the independent company Addiva Con-
sulting AB. Addtrack, including the anomaly-
detection module described in this article, is
currently deployed in Sweden, India, China, and
Germany and has approximately 300 active users
in total. Out of these, most use the anomaly-detec-
tion functionality. The main purpose of Addtrack
is both to let the maintenance personnel get an
overview of the condition of the fleet to catch
problems early and also to find out the circum-
stances and causes when a failure has occurred.

The primary user of Addtrack is Bombardier
Transportation, one of the world’s largest rail-
equipment manufacturing and servicing compa-
nies with more than 100,000 installed rail cars and
locomotives worldwide. Here, the main use of
Addtrack is to detect faulty units during the devel-
opment of new railway vehicles and the subse-
quent commissioning phase. Following this,
Addtrack is used during the warranty period to per-
form a simple form of root-cause analysis. Finally,
the tool is used during the maintenance phase for
acute fault localization. To a lesser extent, it is also
used for predictive maintenance, but this mode of
use is growing since it allows the operators to catch
faults early, thereby avoiding much more severe
stopping failures. Today, it is estimated that cus-
tomers using Addtrack prevent on average one or
two stopping faults annually for each train unit.
Each stopping fault might cost on the order of sev-
eral ten thousand Euros.

A key functionality of Addtrack is to visualize
the number of events of different types that have
occurred on a set of trains during some period. Fig-
ure 1 contains such a view, where the diagram
shows the number of events per event code (on the
x-axis) and train (on the z-axis) that have occurred
during the last month. Only event codes that have
occurred at all during the month are shown. In the
menu to the left it is possible to select which set of
trains to show. It is also possible to click a bar in
the diagram to see a time series of the days on
which those events occurred (not shown here).

As can be seen, there are rather many event
codes with a high number of events for most
trains, indicating that this is the normal state.
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There is also a high variability between trains in
the number of events of some event codes, but it is
not obvious from the diagram when a bar is (sta-
tistically) significantly higher than the others.
Before the integration of the anomaly-detection
module, analysts were analyzing the raw fault rates
exclusively by choosing a period and a subset of
trains and codes for events or condition data to
visualize. It is however time-consuming and
tedious work for an analyst to go through all high
bars to see whether they indicate something out of
the ordinary. There may even be quite low bars
that nevertheless are significantly higher than for
other trains but may go unnoticed among all the
normally high bars. Indeed, sometimes it may
even be remarkable with a too low number of
events, which is almost impossible to spot in the
diagram.

As an example of the size of the data set, for the
Swedish fleet of Regina trains operated by SJ,
which consists of 57 different train sets, there are
more than 1000 different event and condition
types. The data is typically collected weekly, and
for each such interval the analysts therefore have a
set of more than 57,000 data points to watch in
total. On the more modern train sets, more than
12,000 data points are collected per train set. The
main complaint of analysts was therefore that it
was very difficult to observe patterns in the huge
amounts of data that the analysts have to handle.

A particular problem was the analysis of rare
events, for which obvious patterns were hard to
detect even for experienced analysts.

In summary, there is a need for a tool to indicate
which bars are significantly different from expect-
ed and should thus be focused on. The following
two sections describe the anomaly-detection mod-
ule designed for this purpose.

Principal Anomaly Detection
The general idea in statistical anomaly detection is
to build a statistical model over normal cases and
then compare new samples with this model when
they arrive. Samples that would have a too small
probability of being generated by the statistical
model are considered anomalous, that is, they are
very unlikely to belong to the set of normal cases.

To be useful in practice, an anomaly detector
must fulfill several conditions: (1) it must be able
to handle a large number of input features; (2) it
must be able to handle several different normal sit-
uations; (3) it must allow for training data to
include realistic amounts of anomalous cases; ; (4)
it must be fast when dealing with large amounts of
data; (5) it must be robust in the light of very small
amounts of training data; and (6) it must have a
sufficiently small false alarm rate, while still being
maximally sensitive to real anomalies.

The Bayesian principal anomaly framework was
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Figure 1. Addtrack Visualization of Selected Event Occurrences for Five Units in the Chinese Fleet.



designed to fulfill these requirements. Robustness
is achieved by using Bayesian statistics when esti-
mating the parameters of the normality model. A
classical maximum likelihood point estimate of
the parameters can make the estimated distribu-
tion sensitive to random fluctuations in the data,
especially when there are quite few data samples,
which tends to result in too many false alarms.
Using a Bayesian approach, we can remedy this by
taking appropriate consideration to the uncertain-
ties in the actually observed data, and thereby
avoiding some of the false alarms.

Let us initially assume that the normal situation
samples are generated by a known probability den-
sity P(x|q) for a set of parameters q. To define what
is meant by an “anomalous” observation, we note
that, intuitively, the smaller the probability of gen-
erating a new observation z from the distribution,
the more anomalous is it. However, just looking at
the probability P(z|q) of generating the observation
z from the distribution will not work, since the
magnitude of P(z|q) depends on the variance of the
distribution (for continuous distributions). There-
fore, it is not possible to specify a fixed probability
threshold that is the same for all distributions, and
below which a sample should be considered anom-
alous. Instead, we should look at the same entity as
in hypothesis testing, that is, the probability of
generating an observation at least as unusual as z.
This also gives a natural way of controlling the rate

of false alarms, which may otherwise be high in
many anomaly-detection applications.

Thus, let us then define the principal anomaly
of a new observation z as the probability of gener-
ating a more common sample than z from the dis-
tribution:

(1)

This measure is illustrated in figure 2 and has a
number of desirable properties. First, A(z|q) increas-
es when the sample z gets more unusual, which is
intuitive. Second, it is directly comparable to the
principal anomalies of other features, either with
other parameters or completely different distribu-
tions. Third, it is directly connected to the rate of
false alarms. If we set a threshold on the principal
anomaly of 1 – e over which an observation is
judged anomalous, the probability that a normal
sample is wrongly detected as anomalous is then
simply e.

In the context of statistical anomaly detection,
we claim that all sound scores of anomaly should
be related to this principal anomaly, since it
defines how unusual a sample is. Conversely, any
score that is a monotonic function of the principal
anomaly will rank the samples identically with
respect to anomaly.

However, although suitable in the formal sense,

A(z ! !)= P
x"#$ (x ! !)

where "= {x : P(x ! !)> P(z ! !)}
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Figure 2. Illustration of the Principal Anomaly A(z|q).



the principal anomaly itself is not as suitable for
manual work and inspection, since its anomaly
values are most of the time very close to 1. Its com-
plement may therefore be more useful:

(2)

This is the probability of getting an equally or
less probable sample than z from the distribution,
that is, the probability of the tails beyond z (and
beyond other samples with the same probability as
z), and therefore equal to e. For anomalous samples
it will be very close to 0, and therefore easier to
compute with high precision than the principal
anomaly itself. Also useful, and more intuitive to
work with, is the negative logarithm of the com-
plementary principal anomaly:

(3)

It ranges from 0 to ∞, and increases with higher
anomaly, such that each constant step higher rep-
resents a factor lower probability. But as men-
tioned above, exactly which transform is used for
presentation purposes is irrelevant, as long as it is
strictly monotonically increasing in the principal
anomaly A.

Bayesian Estimation
Above it was assumed that the parameters q of the
statistical model are known. In practice we usually
do not know the parameter values of the model in
advance, but all we have is a number of observa-
tions that are assumed to be generated by the mod-
el.

Let us therefore now consider the case when the
parameters q are unknown, and we instead have to
estimate the distribution from a number of sam-
ples. To be useful, the anomaly detector should be
able to provide an anomaly score already after a
very small number of training samples. With max-
imum likelihood estimation of the parameters, the
estimates will be far too sensitive to chance occur-
rences, and the resulting detector will tend strong-
ly to underestimate the probability of new sam-
ples, resulting in too many false alarms. With a
Bayesian approach, all parameter values that may
have given rise to the observed samples are con-
sidered (appropriately weighted). The result is a
detector that is much more robust to random fluc-
tuations in the training data and doesn’t indicate
an anomaly unless it is sufficiently certain. The
side effect is that early on a Bayesian anomaly
detector will accept more samples as normal. How-
ever, as more training data are collected, the
parameter estimation will become more accurate,
which in turn will make the anomaly detector
more precise.

!(z ! ")=#log(A(z ! "))

A(z ! !)=1"A(z ! !)= P
x"#$ (x ! !)

where "= {x : P(x ! !)" P(z ! !)}

More formally, the Bayesian approach is thus to
find the posterior distribution over the parameters
q given the set of training samples X:

(4)

Here, P(q) is the prior distribution over the param-
eters. In this article we use a standard noninfor-
mative prior, which has proven adequate in prac-
tice. We can now obtain the principal anomaly by
integration over all possible parameter values:

(5)

We define this as the Bayesian principal anomaly.

Anomalies in Event Data
In the train condition monitoring application, the
data used to check for anomalies are the rates of
different event messages generated on the trains.
As on most technical systems, there is a large
amount of log messages generated when things
happen, representing events ranging from harm-
less to serious. The serious events are straightfor-
ward to handle, since they typically require service
more or less immediately. More interesting from
an anomaly-detection perspective are changes in
the rates of less serious or seemingly harmless
events. Such often subtle changes in the rates nev-
ertheless indicate that something has changed on
the train, which may merit action in the form of
an extra inspection of the corresponding subsys-
tem.

To model normal behavior, we assume that
when the train is in a normal state, each event type
has a certain normal rate with which it occurs.
Under this assumption, we can model the number
of events in an interval of length T with a Poisson
distribution:

(6)

where l is the rate of events per time unit. For each
event type xi, we get the Bayesian principal anom-
aly from equation (5) by inserting the above
expression with  = lT in equation 4. The resulting
expression requires numerical evaluation of an
indefinite sum, but this is not more complicated
than what can be computed rather fast on a nor-
mal computer.

It is now possible to test each train against the
others by counting the number of events of each
type for each train during a certain time period of
interest and computing the Bayesian principal
anomaly for the counts of each train, basing the
normality model on the other counts. This will
find trains that behave differently from the others
with respect to some event type. Alternatively it is
possible to find a train that has changed behavior

P(x !!T )= (!T )x e"!T / x!

A(z !X)= A
!" (z ! !)P(! !X)

P(! !X)! P(X ! !)P(!)

= P
i
" (xi ! !)P(!)
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recently by testing its counts from a recent time
period against those from a longer historical time
period.

Practical Considerations
If the model assumptions are correct for a para-
metric anomaly detector, the detector will be very
sensitive and able to detect even small deviations
from normal behavior. However, if the model
assumptions are not correct, the precision will be
much worse. There are a number of ways in which
the real-world data may violate the Poisson
assumption that is used here and that have to be
considered when using the anomaly detector in a
practical application.

First, it is not always obvious in what unit to
measure the length of the period during which
events are counted. It should be measured in effec-
tive time rather than real time. In the case of trains
it is easy to see that those that are utilized more are
likely to have more alarms, but whether effective
time is the time the train is in operation or instead
the number of traveled kilometers is not as clear.
The unit that is closest to being proportional to the
number of events should be used. (It may even be
that this differs between events, that is, some event
types are proportional to kilometers and others to
operation time.) In this application though it turns
out that the operation time works best to use as
effective time.

Then, events may not occur independently in
time. For example, events of some types may occur
in bursts or be repeated until handled, so that a
single external event gives rise to a sequence of
generated events. This multiplication of events will
inflate the significance of a random fluctuation
and may result in a false anomaly indication.
Therefore such runs of events must be removed
(and counted as just one event), for example by
using a small latency time after each event before
an event of the same type is counted again on the
same train.

Further, all trains, or cars in a train, may not be
exactly the same. For example, different cars in the
train may be differently equipped, and thus pro-
duce different types of events, or just different fre-
quencies of the same event types. Different statis-
tical models should therefore be used for different
categories of trains or cars.

Finally, real-world data are never clean. When
estimating the Poisson distribution, there will be
anomalous cases in the historical data. If they are
few and with varied parameters they will have only
marginal effect on the estimation, but if they con-
stitute a substantial part of the data or have
extremely different parameter values than the rest,
they may disturb the estimation such that other-
wise normal cases are considered anomalous. The
way to solve this is to use an iterative training

method, where after each training pass each train-
ing sample is tested for anomaly, and the most
anomalous samples are removed from training in
the next pass. This is continued until no anom-
alous samples remain in the training set. In this
way the anomaly detector filters its own training
data. (This will work of course only as long as the
normal samples are in a majority, but this is the
very definition of “normal” in all of anomaly
detection.)

The Anomaly-Detection Module
Figure 3 shows the anomaly-detection view in
Addtrack, which is powered by the anomaly-detec-
tion module described in this article. Here, the bars
indicate how much each event code deviates from
normal for each train during the last month, as
expressed by L. The high bars are much more
sparse in this view, and thus easier to go through,
compared to those in figure 1. Also, there are
indeed some high bars that correspond to rather
low bars in the count diagram, and that conse-
quentially might have been missed without the
anomaly detection. Using the module, analysis can
therefore be made much more efficiently by allow-
ing the analyst to focus on a particular subset of
trains, event codes, and time periods.

Savings from using the anomaly-detection mod-
ule in Addtrack comes mainly from being able to
faster diagnose and correct faults on train units in
all phases during their life cycle, which has a num-
ber of benefits including a higher ratio of trains
delivered on time. The annual savings from using
Addtrack are in the order of ten million Euros. Out
of these, the monetary savings from using the
anomaly-detection part are substantial but harder
to quantify. Bombardier estimates however that in
the long run, maintenance costs can be reduced by
between 5 and 10 percent by using Addtrack with
anomaly detection.

To simplify the application of anomaly detec-
tion for different kinds of log and alarm data in dif-
ferent domains, the anomaly-detection algorithm
for event data is placed in a separate program mod-
ule with a very simple API designed to be inde-
pendent of the specific domain. Since Addtrack
runs on the Windows platform, the module was
wrapped in a DLL compiled from the C source
code, which was then integrated in Addtrack. The
API has only four functions: CreateAnomalyDetec-
tor, which creates a new anomaly detector and
trains it with a set of provided event counts and
intervals; ApplyAnomalyDetector, which tests it
on some also provided event counts and intervals;
SetAnomalyThreshold to set a threshold used
when filtering out anomalous samples from the
training data; and DeleteAnomalyDetector to call
when the detector is no longer needed.
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This simple design with a minimum of free
parameters makes it easy to provide anomaly-
detection capacity to other programs. To use the
anomaly detector, the host program will have to
take care of any user interaction to, for example,
select a time period of interest and a set of entities
to check for anomalies (like trains in the case of
this article); look up from appropriate databases a
list of event counts for the different entities during
the selected interval; create and apply an anomaly
detector to get anomaly values for the entities; and
visualize the results in a suitable way to the user. If
the surrounding program is a commercial product
aimed at analysis of log or event data, it is likely to
have functionality for user interaction, database
access, and result visualization already, and it will
therefore be relatively simple to add anomaly-
detection functionality as well.

Development and 
Deployment Process

Addtrack has been continuously developed for
approximately 10 years by a small team of devel-
opers, first at Bombardier Transportation, and then
at Addiva. The need for anomaly detection was
first uncovered in a collaborative research project
that was initiated in 2003. At this time, Addtrack

was used internally at Bombardier under the name
of Edgar (the graphical user interface part) and T-
Rex (the database part). Early experiments with
much simpler anomaly detectors resulted in a high
number of false alarms, which is why a Bayesian
approach was chosen. The anomaly-detection
techniques had also been previously developed at
SICS since 2001 during several basic and applied
research projects. Isolation of the anomaly-detec-
tion functionality into its own module started in
2007, and it has since then required only a few per-
son months of work, spread out over time. The
addition of the anomaly-detection module to
Addtrack was, in comparison to the development
effort of the main program, quite small, and took
in the order of 3 to 4 person weeks of interface
design for SICS and approximately the same
amount of integration work for Addiva. The roll-
out of the module was done through an automat-
ic update of Addtrack over the Internet, and distri-
bution and deployment were therefore relatively
easy.

The anomaly-detection module was officially
released by Addiva at the Addtrack user group con-
ference in 2009, which was used as a marketing
channel. From there, the users have spread the
information further within their respective com-
panies. Manuals and other supporting material
have been developed by Addiva, and maintenance
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Figure 3: Addtrack Deviation Detection Mode for Selected Event Occurrences for Five Units in the Chinese Fleet.

Same units as in figure 1.



and further development of the module have been
done as part of two consecutive collaborative
research projects. In the end, Addiva has the
responsibility to integrate new versions of the
anomaly-detection module into Addtrack.

Evaluation
To illustrate how the Bayesian anomaly-detection
approach performs we have used event data from
Regina train sets, which are operated by SJ (the
largest passenger railway operator in Sweden) and
manufactured by Bombardier Transportation. A
Regina train set may consist of two or three cars:
either a type DMA car coupled with a type DMB
car, or a type DMA car followed by a type T0 car
and a type DMB car. These different car types have
somewhat different profiles in what events are gen-
erated. Therefore each car is compared only to oth-
er cars of the same type when looking for anom-
alies. The data were collected from 57 Regina train
sets running in the Mälar region in Sweden in the
period between October 1, 2003, and April 19,
2004. The number of different possible event codes
is 1013, of which 695 different codes were regis-
tered during the period. The number of events in
each sample was between 1 and 1849 with a medi-
an of 5 and interval lengths varied between 16,440
and 40,845 kilometers. The number of samples per
event type varied between 1 and 21, with a medi-
an of 6 samples per type.

For each of the occurring event codes, each Regi-
na car was compared to all other cars of the same
type, over the time period as a whole. The cars dis-
playing the largest anomalies are shown in table 1.
It is then possible to take a closer look at the anom-
alies of interest by comparing the data for a single
week at a time of a car and event code in question
against all other cars and weeks. This is shown for
the two first entries of table 1 in figures 4 and 5.

As can be seen from the figures, many of the
detected anomalies above lasted for a long time
before they were eventually eliminated. At the
same time it is clear that they are detectable
already from the first week or even first few days.
(Both examples in the figures are confirmed as cor-
responding to real problems that were subsequent-
ly fixed.) Using this kind of anomaly detection
therefore has the potential of giving important
information to the service organization, with the
possibility to rectify the problem earlier than
today, often requiring less extensive repairs, caus-
ing less wear on related components, and reducing
the time of operating with reduced functionality.

We have previously mentioned the importance
of using Bayesian statistics, rather than classical
point estimates of parameters, to limit the false
alarm rate. For comparison between the approach-
es, a simple anomaly detector was implemented
based on a point estimate l̂ of the Poisson rate per
time unit l together with the principal anomaly
defined in equation 1, using q =  l̂T for the interval
length T. The simple detector uses the maximum
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Figure 4. Anomaly per Week for the Event “HVAC Communication Failure.”

The detected car 3029 (upper curve), and the “normal” car 3030 for comparison (lower curve).



likelihood estimate for the Poisson rate, which is
equal to the total number of events divided by the
total interval length:

(7)

where Ti is the length of the interval for sample i.
An anomaly threshold of e = 10–6 was used in

both cases. When comparing the two anomaly
detectors, out of 2841 samples, 2483 were classified
as normal and 323 as anomalous by both. In addi-
tion, 35 samples were classified as anomalous by
the point estimate anomaly detector but not by the
Bayesian anomaly detector, while no samples were

!̂= xi
i=1

n

" / Ti
i=1

n

"

classified as anomalous by the Bayesian anomaly
detector but not by the point estimate anomaly
detector. This illustrates how the Bayesian anom-
aly detector is more conservative when there is not
sufficient statistical significance to assume an
anomaly. This makes the Bayesian anomaly detec-
tor more robust against false alarms than the non-
Bayesian approach.

Discussion
There are many challenges when trying to use
anomaly detection in a real-world application. The
Bayesian principal anomaly, however, has many
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Figure 5. Anomaly Per Week for the Event “Train Heating, Fuse Failure” for Car 9024.

Car Event type  Anomaly ( ) 
3029 HVAC communication failure 9316.7 
9024 Train heating, fuse failure 8900.6 
9004 Incorrect speed, axle 4 5605.0 
1002 Large speed difference, axle 3 3213.6 
9046 Low cooling water level in converter 3185.0 
3044 Incorrect speed, axle 3 3046.3 
9052 Large speed difference, axle 2 3024.3 
9049 Large speed difference, axle 1 2834.8 
1054 Carbon strip supervision disconnected 2371.1 
1053 Carbon strip supervision disconnected 2304.7 

Table 1. The Ten Most Abnormally Occurring Event Codes.
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suitable properties for this: the false
alarm rate, which is a major problem
for many anomaly-detection algo-
rithms when used in practice, can be
controlled directly by adjusting the
anomaly threshold; the Bayesian
approach makes the system work also
when there are limited amounts of
training data, as is often the case; and
the training data used may itself con-
tain anomalies, that is, it need not be
absolutely clean as for some other
anomaly-detection methods, since the
method will itself test each sample and
learn only those that are judged
nonanomalous.

Anomaly detection of event data is a
rather general task that is applicable in
a large number of situations. Many sys-
tems today generate log messages or
alarms, and typically in such volumes
that manual inspection is problematic.
The risk that an operator misses an
important alarm among the large
amounts of less important alarms is sig-
nificant. The chance of manually
noticing subtle changes in rates of dif-
ferent alarms is small. The anomaly-
detection method presented here is not
limited to the train domain, but will
function on log data from almost any
system.

The design of the anomaly-detection
module, with only a small number of
access routines and a minimal amount
of free parameters, makes it easy to
plug into existing analysis tools for var-
ious domains and application areas.
This allows the module to take advan-
tage of existing analysis products,
thereby avoiding the overhead of pro-
ducing, marketing, and supporting a
stand-alone anomaly-detection prod-
uct.

The anomaly-detection method
described here has been successfully
deployed in the case of condition mon-
itoring of trains. Deployment in furher
domains will certainly follow.
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