
Parallelism is the wave of the future …
and always will be.

This is a famous saying in the parallel computing commu-
nity. It conveys a general sentiment that the coming of
parallel architectures would forever be delayed. This was

indeed true at a time when clock-speed growth seemed always
possible, allowing sequential code seamlessly to become faster.
This remained true until the thermal wall1 stopped this free
lunch scenario. Chip makers had only one way to escape: pack-
ing multiple processing units on a single processor in order to
provide support for parallelism. The future was there, and that’s
when problems started for programmers.

Parallelizing code is not straightforward and beyond mere
conceptual difficulties; for example, which part should be par-
allelized?, it includes low-level technicalities like race condi-
tions, deadlocks, starvation, and nondeterminism, all of which
must be taken into consideration in parallel algorithm design
and implementation.

Historically, the parallel computing community quickly
adopted combinatorial search as a playground for applications.
Search algorithms have the advantage of being conceptually
simple (think of the most basic backtrack-style algorithm) and
computationally demanding due to the (usually) exponential
size of the search space. In contrast, the search community did
not really focus its research on parallelizing. The lack of proper

Articles

SUMMER 2013 99Copyright © 2013, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Seven Challenges in
Parallel SAT Solving

Youssef Hamadi and Christoph M. Wintersteiger

n This article provides a broad overview of the
state of the parallel SAT solving field. A set of
challenges to researchers is presented that, we
believe, must be met to ensure the practical
applicability of parallel SAT solvers in the
future. All these challenges are described infor-
mally but put into perspective with related
research results, and a (subjective) grading of
difficulty for each of them is provided.

infrastructure and, for many, the feeling that
sequential algorithms were still full of research
opportunities can go toward explaining that. In
that community, parallelism was often only put in
the perspectives of papers with no real perspec-
tives. This led to a situation where parallel search
algorithms were designed by people with only one
part of the required skills.

Most computational problems solved on a com-
puter have a deterministic nature. Sometimes,
these problems can be large, and divide-and-con-
quer parallelism is a suitable approach. In that con-
text, if the overhead of dividing is well controlled,
linear or close to linear speedups are possible.
When parallel computing researchers started to
address search, they reused their main concept and
tried the most efficient way to apply divide-and-
conquer techniques. Research was often about
crafting the best load-balancing strategies in order
to avoid the starvation problem, while minimizing
the overhead.

Search problems are intrinsically nondetermin-
istic, and this very particular nature was indeed
discovered by the aforementioned community.
They encountered this fact in the form of observ-
ing superlinear speed-ups, which was so unusual to
them that they called them speedup anomalies
(Pruul and Nemhauser 1988, Rao and Kumar
1993).

In divide-and-conquer parallel search, superlin-
ear speedups are indeed possible when the sequen-
tial algorithm is poorly driven by its heuristics and
when the division of the search space artificially
brings solutions to the beginning of a subspace.
This means that a sequential search algorithm does
not need to exhaust the search space to find a solu-
tion or often even when proving that a problem
has no solution, as is the case with conflict-driven
solvers (Moskewicz, Madigan et al. 2001).

By 2005, it was apparent that the thermal wall
had been hit and that processor speed would not
continue to increase as before. This gradually
prompted the interest of search researchers who
then started seriously to consider parallelism as a
path into the future.

Boolean satisfiability (SAT), that is, the problem
of determining whether a Boolean formula can
evaluate to true, benefits from very mature and
advanced algorithms with large practical impact.
Application and research domains like software
and hardware verification, automated planning,
computational biology, and many others benefit
from modern SAT solvers. These domains have
large and difficult instances that provide the SAT
community with meaningful benchmarks.

Most of the following challenges are general in
such a way that the questions they raise should
positively affect not only research in parallel SAT
but in parallel search in general. We first present
the current situation in sequential and parallel SAT
solving and then give a set of challenges. Each of
these challenges comes with an overly optimistic
estimate of its inherent difficulty represented as
black circles, where we would estimate that every
black circle represents, roughly, about two years of
research.

Context: Sequential SAT Solvers
State-of-the-art solvers extend the original Davis,
Putnam, Logemann, and Loveland (DPLL) proce-
dure (Davis, Logemann, and Loveland 1962) with
conflict analysis (Zhang et al. 2001). The general
architecture of such conflict-directed clause-learn-
ing solvers (CDCL) is presented in figure 1. These
procedures include an optional preprocessing step
0, which performs variable elimination and clause
subsumption checks in order to reduce the size of
the formula and improve the performance of the
search process (Eén and Biere 2005). The search
then repeatedly creates tree nodes by setting the
truth value of a literal (a Boolean variable or its
negation). This assignment is used to trigger an
inference step 1 that deduces and propagates some
forced unit literal assignments. This is recorded in
the implication graph, a central data structure,
which stores the partial assignment together with
its implications. This branching process is repeated
until it finds a model or reaches a conflict. In the
first case, the formula is answered to be satisfiable,
and the model is reported. In the second case, a
conflict clause is generated. This is performed by
the conflict analysis component through a bot-
tom-up traversal of the implication graph and res-
olution of clauses encountered during this travers-
al (step 2). It stops when a conflict clause
containing only one literal from the current deci-
sion level is generated. Such a conflict clause (or

Articles

100 AI MAGAZINE

SAT
SAT is the problem of determining whether the variables
of a given Boolean formula can be assigned in such a way
as to make the formula evaluate to true. If no such assign-
ment exists, the function expressed by the formula
always evaluates to false. In this latter case, the formula
is called unsatisfiable; otherwise it is called satisfiable.
SAT was the first known example of an NP-complete
problem (Garey and Johnson 1979). Briefly, this means
that there is no known algorithm that efficiently solves
all instances of SAT and it is generally believed (but not
proven; see P versus NP problem) that no such algorithm
can exist.

learnt clause) expresses that the last literal is
implied at a previous level (it is “asserting”). The
solver then jumps back to this decision level and
assigns the literal to true in step 3. When an emp-
ty conflict clause is generated, the literal is implied
at level 0, and the original formula can be report-
ed as unsatisfiable. In addition to this basic
scheme, modern solvers use additional compo-
nents such as literal selection heuristics and a
restart policy. For instance, the rank or activity of
each Boolean variable encountered during the pre-
vious resolution process is increased (step 4). The
variable with greatest activity is selected to be
assigned as the next decision. This corresponds to
the so called VSIDS variable branching heuristic
(Zhang et al. 2001). When branching, after a cer-
tain amount of conflicts, a cutoff limit is reached
and the search is restarted (step 5).

Context: Parallel SAT Solvers
There are two main approaches to parallel SAT
solving. The first one implements the historical

divide-and-conquer idea, which incrementally
divides the search space into subspaces, succes-
sively allocated to sequential CDCL workers. Work-
ers cooperate through some load-balancing strate-
gy, which performs the dynamic transfer of
subspaces to idle workers, and through the
exchange of conflict clauses.

The parallel portfolio approach was introduced
in 2008 (Hamadi, Jabbour, and Sais 2008; Winter-
steiger, Hamadi, and de Moura 2009; Guo et al.
2010). It exploits the complementarity of different
sequential DPLL strategies to let them compete and
cooperate on the same formula. Since each worker
addresses the whole formula, there is no need to
introduce load-balancing overheads, and coopera-
tion is only achieved through the exchange of con-
flict clauses. With this approach, the crafting of the
strategies is important, especially with only a few
workers. The objective is to cover the space of good
search strategies in the best possible way.

In general, the interleaving of computation can
lead to the previously mentioned problem of non-
determinism. This is true for solvers that use a

Articles

SUMMER 2013 101

(2) Implication graph

(3) Con�ict-clause

(3) Con�ict-clause

(1) Literal

(4) Activity

(5) Con�ict

Preprocessing

Boolean Unit
Propagation

Con�ict analysis
Decisions

Restarts

Backjumping

Backtrack friendly

(VSIDS)

(2-watch)

(0) var. elim.
clause subsum.

Figure 1. The General Architecture of a Sequential SAT Solver.

divide-and-conquer or a portfolio approach.
Hamadi, Jabbour, Piette, and Sais (2011) propose a
new technique to efficiently ensure the deter-
minization of any parallel portfolio algorithm.
Their method performs dynamic synchronization,
which minimizes waiting time at barriers. This
allows a parallel SAT portfolio always to return the
same solution (or proof of unsatisfiability) in about
the same run time, while preserving performance.

In figure 2 we present the CDCL architecture of
a typical worker. It extends the original architec-
ture presented in figure 1 with a knowledge-shar-
ing component that exports and imports conflict
clauses. Clauses are exported during step 3. If an
imported conflict clause (in step 6) contradicts the
current branch, the aforementioned conflict analy-
sis and backjumping steps are executed. Finally,
the knowledge-sharing unit can use the informa-
tion gained by the VSIDS heuristic to filter out
incoming information. This is figured through a
link between the decisions and knowledge sharing
components and will be detailed in Challenge 4.
For a broader overview of parallel SAT solving see
Martins, Manquinho, and Lynce (2012).

Context: Performance Evaluation
We suggest that performance evaluation of parallel
SAT solvers be conducted on practically relevant

benchmark sets as is currently done in the biannu-
al SAT competitions. We consider randomly gener-
ated benchmarks of mostly theoretical interest, but
not necessarily as an indicator of the performance
of a parallel SAT solver in practice. Especially non-
deterministic solvers may benefit from an evenly
distributed set of benchmarks, which may translate
into performance figures that are only achievable
in theory but not in practice.

Usually, the speedup of a parallel solver over a
sequential one is defined as

such that a parallel solver that runs in time Tp
exhibits a speedup S over a sequential solver that
runs in time Ts. In practice, there are two different
categories of applications for parallel SAT solvers
that have different objectives: efficiency or effec-
tiveness. The speedup by itself is not considered an
indicative measure of performance for either of
these categories. Instead, in the first category of
applications, the run-time efficiency

where r is the number of resources available to the
solver, is of the greatest interest. For example, in

S=
Ts

Tp

E=
S
r
=

Ts

r !Tp

Articles

102 AI MAGAZINE

(2) Implication graph

(2) Implication graph

(3) Con�ict-clause

(3) Con�ict-clause

(1) Literal

(4) Activity

(5) Con�ict

Preprocessing
Boolean Unit
Propagation

Con�ict analysis
Decisions

Restarts

Backjumping Knowledge
sharing

Backtrack friendly

(VSIDS)

(2-watch)

(0) var. elim.
clause subsum.

Con�ict-clause

Foreign-clause

(7) con�icting-foreign-clause

Figure 2. The General Architecture of a Parallel SAT Solver.

applications where energy consumption is an
issue, a solver that performs at lower efficiency
may be considered inferior to a solver that per-
forms efficiently, even if its speedup figure is small-
er. We expect this will be the case for many soft-
ware and hardware verification applications in the
near future, where limited size clusters are used to
verify designs overnight. In the second category of
applications, the absolute wall-clock time required
to solve a problem is of paramount importance; we
call this the run-time effectiveness of the solver,
which we consider a better measure of perform-
ance in applications where energy consumption is
of little or no importance. For example in crypto-
graphic applications, especially for code breaking,
we may assume that energy consumption and the
available size of the cluster are irrelevant.

In general, the trade-off between efficiency and
effectiveness highly depends on the application,
and it is ultimately a decision that the community
of SAT solver developers cannot make for the end
user. We therefore suggest providing both meas-
ures of efficiency and effectiveness in a perform-
ance evaluation of parallel SAT solvers.

We wish to remark upon the number in effi-
ciency computations. In many evaluations as well
as the theoretical analysis of algorithms, this num-
ber is simply taken to be the number of computing
elements available to the parallel solver. This is ful-
ly justified for theoretical purposes. In practice,
this is not realistic, especially for multicore
machines (compare with for example, Winter-
steiger, Hamadi, and de Moura, [2009]). It is some-
times assumed that an n-core machine is able to
perform n times the work of the corresponding sin-
gle-core machine, which is simply not true due to
memory and cache congestion issues, but also
because modern processors change their behavior
when multiple cores are under load, for example,
by reducing the clock speed to avoid overheating.
We therefore propose to compute the efficiency of
a parallel multicore SAT solver with respect to its
true capacity, which is to be measured in a prior
calibration experiment. For example, this may be
estimated by running copies of a sequential SAT
solver in parallel with an observed runtime of Tns,
which will be greater than Ts (Arbelaez and Hama-
di 2011). To compute the efficiency of a parallel n-
core solver we propose to use

which we consider more realistic. In what follows
we refer only to the general performance of a
solver. Depending on the intended application,
this is to be taken as either the efficiency or the
effectiveness of the solver.

r = n !
Ts

Tns

The Challenges
As presented in the introductory paragraphs, a
divide-and-conquer approach can be lucky. A run
can benefit from a good split, which brings a solu-
tion at the beginning of some subspace and allows
for an early stop. In contrast, a different division
can decrease performance. What is interesting here
is that adding resources can decrease the perform-
ance since it can produce more demanding sub-
spaces.

Even if portfolio-based approaches are less prone
to this problem, extending the size of a portfolio
can still be detrimental to its performance. In gen-
eral, this increases the overhead, due to more fre-
quent and broader clause sharing, and worsens
cache-congestion issues. A priori, the question of
deciding the most effective number of resources to
use against a given formula is a difficult one.

One possible direction of research is to extend
automatic tuning techniques. These approaches
use machine learning to craft a predictive function
that relates the features of an instance and the
parameters of a given solver to its expected run
time. This function can be learned and tested
offline against a large set of representative
instances and used at run time to configure a solver
and maximize its performance. This offline
approach assumes that a large and representative
set of instances is available beforehand (Xu et al.
2008). A more recent approach avoids this problem
by learning the function online (Arbelaez, Hamadi,
and Sebag 2010). We believe that the previous
offline and online approaches could be extended
to consider the number of resources as an addi-
tional parameter of the solver.

Challenge 1. Generalize automatic tuning tech-
niques to decide, among other solver parameters,
the best amount of computational resource.
●○○○○

Decomposition
In the area of parallel algorithms it is natural to
think of decomposition of the problem into a
number of smaller subproblems. Most parallel SAT
solvers are based on search algorithms, and we
identify two inherently different types of decom-
position for search algorithms: search-space
decompositions and instance decompositions.

In the first category, the search space of the
problem is decomposed; that is, the nodes or
processes explore different (potentially overlap-
ping) parts of the search space of the problem. In
the case of SAT, the simplest way of achieving this
is by duplication of the problem and assignment
of a variable to contradicting values in the two
branches. The set of assigned literals in any of the
leaves of such a decomposition tree is then called
a guiding path (Zhang, Bonacina, and Hsiang

Articles

SUMMER 2013 103

1996). As we have seen with the previous chal-
lenge, finding a good decomposition prior to solv-
ing the formula is a hard problem as it is hard to
predict the hardness of each of the subproblems.

In the second category of decompositions, the
instance itself is decomposed such that none of the
computing elements has knowledge of the whole
problem instance. This type of decomposition is
especially important when large formulas are con-
sidered2; for example, deep BMC unwindings in
hardware verification (Ganai et al. 2006). On the
one hand, finding an optimal decomposition that
balances the size of the subproblems is easy for SAT
problems, but the resulting subproblems are usual-
ly not balanced with respect to their hardness. On
the other hand, finding a good instance decompo-
sition that minimizes the number of shared vari-
ables is a hard problem in itself, and for this reason
approximations may result in better overall per-
formance. Recently, it has been shown that it is
possible to recover from very crude approxima-
tions quickly through the use of Craig interpola-
tion procedures, which are techniques to synthe-
size implied facts (called interpolants) from
unsatisfiable implications A B, such that A I
 B and I uses only variables common to A and B.
It has been demonstrated not only that the incor-
poration of such techniques into the SAT solver
presents a large number of opportunities for paral-
lel solvers, but also that dynamic instance decom-
positions may even improve the performance of a
sequential SAT solver when combined with well-
chosen interpolation methods (Hamadi, Marques-
Silva, and Wintersteiger 2011).

Clearly, for both types of decomposition, the
state of the art is unsatisfactory and further
research is needed to find good decompositions
and recover methods that perform well in practice,
both for large search spaces and for large problem
instances.

Challenge 2. Design for either of the two classes of
decomposition a dynamic decomposition tech-
nique that is efficiently computable and results in
decompositions that enable solvers to consistently
outperform currently known methods.
●●●○○

Preprocessing
In the recent past, preprocessing for SAT formulas
has received increased attention, and it has been
shown that some types of preprocessing have a
great effect on the performance of sequential SAT
solvers, for example, Eén and Biere (2005). We
believe that in the context of parallel SAT solving,
new preprocessing techniques are required. For
instance, it may not be necessary (or even benefi-
cial) aggressively to reduce the number of clauses
in a problem before it is split or distributed to the
computing elements.

Furthermore, preprocessing in the context of
parallel SAT should take into account the nature of
the parallelization approach, especially the type of
decomposition that is used, that is, search-space or
instance decomposition. Depending on the type of
decomposition, different preprocessing techniques
may have the best effect on the performance of the
solver. For example, in instance decompositions it
may be much more effective to minimize the set of
overlapping variables between subproblems than
to minimize the overall size of the formula.

For very large formulas, it may be infeasible to
preprocess a whole problem instance before solving
it. We therefore consider it worthwhile to investi-
gate parallel preprocessing algorithms as well.

Challenge 3. Devise new parallel preprocessing
techniques that, with knowledge of the type of
decomposition being used, simplify a problem
instance such that the overall performance of the
solver is increased. ●●●○○

Improved Knowledge Sharing
Modern SAT solvers generate conflict clauses to
prevent the reoccurrence of a conflict and to back-
jump effectively in the list of decisions. Recent par-
allel solvers have leveraged these clauses by sharing
them. Since search can generate a large (exponen-
tial) number of new clauses, strategies were defined
to limit the overhead of communication.

The most basic strategy limits the size of the
shared clauses up to some fixed limit. This has two
advantages. It restricts the overhead and focuses
the cooperation to powerful clauses.

However, the static-size strategy can miss situa-
tions where more cooperation would help, for
instance, when two strategies explore the same
subspace. Also, it might maintain useless
exchanges between strategies which focus on inde-
pendent subproblems.

To alleviate these problems, Hamadi, Jabbour,
and Sais (2009) have introduced a dynamic strate-
gy that uses control theory techniques to increase
or reduce automatically the quantity of clauses
shared between two search efforts. Their technique
estimates the quality of incoming clauses as the
observed performance and uses this information to
extend or restrict the cooperation.

Assessing the quality of a clause with respect to
its local impact is difficult and a generalization of
the clause deletion problem in modern CDCL
solvers. We think that the community should
spend some effort to define better quality measures
in order to leverage the benefits of clause sharing,
and we therefore propose the following challenge.

Challenge 4. Drive the cooperation through better
estimates of the local quality of incoming clauses.
●●○○○

Articles

104 AI MAGAZINE

Integer Factorization
We believe that it is beneficial to the
community to contemplate solving
challenging problems from related
areas for which SAT solvers may ulti-
mately present an effective solution.
Recently there has been an increased
interest in solving problems related to
security applications in the SAT com-
munity. One problem that is particu-
larly challenging, and of utmost impor-
tance in practical security applications,
is the (decision version of the) integer
factorization problem IF.

This problem is known to be in NP
and there exists a trivial encoding to
SAT, for example, through the Boolean
encoding of a multiplier circuit, but the
performance of current SAT technolo-
gy on such formulas is not competitive
with that of dedicated, subexponential
algorithms like the quadratic and gen-
eral number field sieve (for an intro-
duction see, for example, Crandall and
Pomerance [2001]). It is typical for
these dedicated algorithms to require a
large number of resources for a long
time. For instance, the recent success in
factoring a 768-bit integer through a
distributed number field sieve kept
many hundreds of machines busy for
almost two years, a total equivalent of
1500 years of computation on a single-
core processor (Kleinjung et al. 2010).

We consider IF a prime example of a
challenging problem for parallel SAT
solving, not only for its potential prac-
tical implications, but also because
advances in this direction would shed
more light on the structure of NP. Cur-
rently, IF is believed not to be NP-com-
plete, but also to lie outside of P. It is a
candidate for the NP-intermediate
complexity class (Ladner 1975),
which, currently, very little is known
about. Finding practically efficient par-
allel algorithms for problems in this
class would have a great impact not
only in practice but also for the theory
of SAT and parallel algorithms in gen-
eral.

Challenge 5. Design an encoding of IF
instances and a parallel SAT solver that
performs competitively with dedicated
algorithms for IF. ●●●●●

Specific Encodings
As a sixth challenge, we suggest to
investigate new encodings of the SAT

problem. Most SAT solvers support
only the solving of formulas in CNF
form and it is possible that this encod-
ing, while convenient, poses a limita-
tion for parallel solvers. For example, it
is conceivable that, when many proces-
sors are employed, a pipelined evalua-
tion of assignments on deep circuits
could perform better than a CNF
encoding with clauses held in the usu-
al watchlists, simply because the lock-
ing/synchronization overhead on the
watchlists grows too quickly as the
number of processors is increased.

Challenge 6. Devise a new encoding
of SAT problems specifically for paral-
lel solvers. ●●●●●

Starting from Scratch
Much of the ongoing research in paral-
lel SAT is focused on parallelizing exist-
ing algorithms and implementations,
many of them based on CDCL solvers.
We believe that parallelizing existing
procedures is not the best way to
obtain a truly well performing parallel
SAT algorithm. Instead we propose to
start from scratch and to investigate
completely new algorithms and data
structures for parallel SAT or to revisit
techniques that were deemed ineffi-
cient in the past.

The root cause of our suggestion is
the fact that most modern sequential
SAT solvers are ultimately based on
Boolean constraint propagation (BCP),
which is a P-complete problem and
thus suspected to be hard to parallelize
(Hamadi 2002). If we think of a CDCL
solver as a dynamic decomposition of
the search space (through decision
variables), then most of the speedups
are likely to be obtained on this higher
level of decomposition and recombina-
tion (decision making, conflict analy-
sis, and sharing), but it might ultimate-
ly remain difficult to effectively
parallelize the rest of the algorithm.
Further research into parallelizations of
existing solvers may help to gain a bet-
ter understanding of the challenges of
parallelizations of P-complete prob-
lems, but we believe that it will be hard
to design algorithms that perform well
in practice. It is conceivable that there
exist other algorithms that are much
easier to parallelize. For instance, it is
conceivable that an algorithm based
on a reduction to a series of bounded-

Articles

SUMMER 2013 105

The Integer Factorization
Problem (IF)
Given two integers N and
M such that 1 < M ≤ N,
determine whether N has a
nontrivial factor d < M.

width branching programs would be
considerably easier to parallelize, since
it is known that branching programs of
width 5 and of polynomial length rec-
ognize exactly those languages in NC1

(Barrington 1986), a complexity class
for which algorithms are suspected to
be easy to parallelize.

Challenge 7. Devise a parallel algo-
rithm for SAT that is not based on a
reduction to a (set of) P-complete
problem(s) and that performs on par
with or better than parallelizations of
CDCL. ●●●●●

Conclusion
Today, computers have multiple cores,
and cloud computing provides users
with an inexpensive way to rent virtu-
al resources on which to run their
applications. Still, most search
researchers restrict themselves to
sequential algorithms. This is paradox-
ical, especially when we consider the
importance of search. There are two
complementary explanations to this
situation: The first one lies in the lack
of parallel programming skills and the
second comes from the difficulty of
good intuition building.

The first problem is very general and
can only be tackled by making progress
in parallel programming languages and
tools and through an increase in paral-
lelism courses in undergraduate curric-
ula. This is difficult, but feasible. Solv-
ing the second problem is much more
challenging. It requires years of prac-
tice that can only sometimes provide
the expertise and intuition required for
significant contributions.

In this article, we try to address the
second point. Our strategy is to share
our views and understanding of the
evolution of parallel search in general
and parallel SAT solving in particular.
From that understanding, we present a

Based Distributed Bounded Model Check-
ing. International Journal on Software Tools for
Technology Transfer 8(4): 387–396.

Garey, M. R., and Johnson, D. S. 1979. Com-
puters and Intractability: A Guide to the Theo-
ry of NP-Completeness. San Francisco: W. H.
Freeman.

Guo, L.; Hamadi, Y.; Jabbour, S.; and Sais, L.
2010. Diversification and Intensification in
Parallel SAT Solving. In Principles and Prac-
tice of Constraint Programming CP 2010, Lec-
ture Notes in Computer Science Volume
6308, 255–265. Berlin: Springer.

Hamadi, Y. 2002. Optimal Distributed Arc-
Consistency. Constraints 7(3/4): 367–385.

Hamadi, Y.; Jabbour, S.; and Sais, L. 2008.
ManySAT: Solver Description. Microsoft
Research MSR-TR-2008-83, Redmond, WA.

Hamadi, Y.; Jabbour, S.; and Sais, L. 2009.
Control-Based Clause Sharing in Parallel
SAT Solving. In Proceedings of the Twenty-First
International Joint Conference on Artificial
Intelligence, 499–504. Menlo Park, CA: AAAI
Press.

Hamadi, Y.; Jabbour, S.; Piette, C.; and Sais,
L. 2011. Deterministic Parallel DPLL. Journal
of Satisfiability 7(4): 127–132.

Hamadi, Y.; Marques-Silva, J.; and Winter-
steiger, C. M. 2011. Lazy Decomposition for
Distributed Decision Procedures. In Proceed-
ings of the Workshop on Parallel and Distrib-
uted Methods in Model Checking (PDMC), 43–
54. Ithaca, NY: Electronic Proceedings in
Theoretical Science, Cornell University.

Kleinjung, T.; Aoki, K.; Franke, J.; Lenstra,
A.; Thomé, E.; Bos, J.; Gaudry, P.; Kruppa, A.;
Montgomery, P.; Osvik, D. A.; te Riele, H. ;
Timofeev, A.; and Zimmermann, P. 2010.
Factorization of a 768-bit RSA Modulus.
Deposited in Cryptology ePrint Archive,
Report 2010/006. Carson City, NV: Interna-
tional Association for Cryptologic Research.

Ladner, R. E. 1975. On the Structure of Poly-
nomial Time Reducibility. Journal of the ACM
22(1): 155–171.

Martins, R.; Manquinho, V. M.; and Lynce, I.
2012. An Overview of Parallel SAT Solving.
Constraints 17(3): 304–347.

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.;
Zhang, L.; and Malik, S. 2001. Chaff: Engi-
neering an Efficient SAT Solver. In Proceed-
ings of the Design Automation Conference,
530–535. Piscataway, NJ: Institute of Electri-
cal and Electronics Engineers.

Pruul, E. A., and Nemhauser, G. L. 1988.
Branch-and-Bound and Parallel Computa-
tion: A Historical Note. Operations Research
Letters 7(2): 65–69.

Rao, V. N., and Kumar, V. 1993. On the Effi-
ciency of Parallel Backtracking. IEEE Trans-
actions on Parallel and Distributed Systems
4(4): 427–437.

Ringwelski, G., and Hamadi, Y. 2005. Boost-

ing Distributed Constraint Satisfaction. In
Principles and Practice of Constraint Program-
ming, Lecture Notes in Computer Science
Volume 3709, 549–562. Berlin: Springer.

Wintersteiger, C. M.; Hamadi, Y.; and de
Moura, L. 2009. A Concurrent Portfolio
Approach to SMT Solving. Computer Aided
Verification, Lecture Notes in Computer Sci-
ence Volume 5643, 715–720. Berlin:
Springer.

Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-
Brown, K. 2008. SATzilla: Portfolio-Based
Algorithm Selection for SAT. Journal of Arti-
ficial Intelligence Research 32: 565–606.

Zhang, H.; Bonacina, M. P.; and Hsiang, J.
1996. PSATO: a Distributed Propositional
Prover and its Application to Quasigroup
Problems. Journal of Symbolic Computation
21(4): 543–560.

Zhang, L.; Madigan, C. F.; Moskewicz, M.
W.; and Malik, S. 2001. Efficient Conflict
Driven Learning in Boolean Satisfiability
Solver. In Proceedings of the International Con-
ference on Computer-Aided Design, 279–285.
New York: Association for Computing
Machinery.

Youssef Hamadi is a senior researcher at
Microsoft Research. He holds a doctoral
degree in computer science from the Uni-
versity of Montpellier in France and a Habil-
itation from the University of Paris-Sud,
France. His research interests involve the
practical resolution of large-scale real-life
problems. His work is set at the intersection
of optimization and artificial intelligence.
His research considers the design of com-
plex systems based on multiple formalisms
fed by different information channels that
plan ahead and perform smart decisions.
His current focus is on autonomous search,
parallel search, and Boolean satisfiability,
with applications to environmental intelli-
gence, business intelligence, and software
verification.

Christoph M. Wintersteiger is a researcher
at Microsoft Research. He holds an engi-
neering degree in computer science from
the University of Linz, Austria, and a doc-
toral degree in computer science from ETH
Zurich, Switzerland. His research is focused
on the investigation and design of automat-
ed reasoning techniques and applications
thereof, especially in the field of automated
software verification. He currently works on
parallel and distributed methods for SAT
and SMT solving.

list of important challenges. They have
different goals and different inherent
complexities. Our objective is not nec-
essarily to put the community onto
them, but we believe that by sharing
our views we can contribute to foster-
ing an increased interest in parallel SAT
solving and parallel search in general.
We hope that this will eventually result
in better parallel algorithms that fur-
ther increase the practical applicability
of search.

Notes
1. Operating at higher clock rates consumes
more electrical energy partly dissipated in
the form of heat. Overcoming this heat has
become technically difficult and economi-
cally inefficient. This was originally present-
ed as “hitting a thermal wall” by chip man-
ufacturers.

2. Note that in some cases the distribution is
a given. In distributed constraint reasoning
privacy can be a concern, and agents only
exploit a partial view of the problem (Ring-
welski and Hamadi 2005).

References
Arbelaez, A., and Hamadi, Y. 2011. Improv-
ing Parallel Local Search for SAT. Learning
and Intelligent Optimization, Lecture Notes in
Computer Science Volume 6683, 46–60.
Berlin: Springer.

Arbelaez, A.; Hamadi, Y.; and Sebag, M.
2010. Continuous Search in Constraint Pro-
gramming. In Proceedings of the 22nd IEEE
International Conference on Tools with Artifi-
cial Intelligence, 53–60. Piscataway, NJ: Insti-
tute of Electrical and Electronics Engineers.

Barrington, D. A. 1986. Bounded-Width
Polynomial-Size Branching Programs Recog-
nize Exactly Those Languages in NC1. In Pro-
ceedings of the Eighteenth Annual ACM Sym-
posium on Theory of Computing, 1–5. New
York: Association for Computing Machin-
ery.

Crandall, R., and Pomerance, C. 2001. Prime
numbers: A Computational Perspective. Berlin:
Springer.

Davis, M.; Logemann, G.; and Loveland, D.
W. 1962. A Machine Program for Theorem-
Proving. Communications of the ACM 5(7):
394–397. New York: Association for Com-
puting Machinery.

Eén, N., and Biere, A. 2005. Effective Pre-
processing in SAT Through Variable and
Clause Elimination. In Proceedings of the 8th
International Conference on Theory and Appli-
cations of Satisfiability Testing, 61–75. Berlin:
Springer.

Ganai, M.; Gupta, A.; Yang, Z.; and Ashar, P.
2006. Efficient Distributed SAT and SAT-

Articles

106 AI MAGAZINE

