Editorial Introduction

Space Applications of Artificial Intelligence

Steve Chien, Robert Morris

The case for increasing the level of autonomy and automation for space exploration is well known. Stringent communications constraints are present, including limited communication windows, long communication latencies, and limited bandwidth. Additionally, limited access and availability of operators, limited crew availability, system complexity, and many other factors often preclude direct human oversight of many functions. In fact, it can be said that almost all spacecraft require some level of autonomy, if only as a backup when communications with humans are not available or fail for some reason.

Increasing the levels of autonomy and automation using techniques from artificial intelligence allows for a wider variety of space missions and also frees humans to focus on tasks for which they are better suited. In some cases autonomy and automation are critical to the success of the mission. For example, deep space exploration may require more autonomy in the spacecraft, as communication with ground operators is sufficiently infrequent to preclude continuous human monitoring for potentially hazardous situations.

Space applications of AI can also be divided in terms of three kinds of operations they support: predictable, unpredictable, and real time (Jónsson et al. 2007). Even predictable operations can be extremely complex — enabling artificial intelligence to play a key role in automation to manage complexity or to assist human decision making. Unpredictability of the operating environment increases requirements on the AI system to appropriately respond in a wide range of situations. Real-time requirements may impose limitations on the amount of reasoning performed by the AI system.
Of course, deploying large numbers of integrated intelligent agents, each utilizing multiple AI technologies, is the end vision of space AI technologists. The first major step toward this vision was the remote agent experiment (RAX) (Muscettola et al. 1998, Bernard et al. 2000). RAX controlled the Deep Space 1 spacecraft for two periods totaling approximately 48 hours in 1999. RAX included three AI technologies: a deliberative, batch planner-scheduler, a robust task executive, and a model-based mode identification and reconfiguration system.

More recently, the autonomous sciencecraft has controlled the Earth Observing-1 mission for almost 10 years as this article goes to press. This run of operations includes more than 50,000 images acquired and hundreds of thousands of operations goals. The autonomous sciencecraft (Chien et al. 2005a) includes three types of AI technologies: a model-based, deliberative, continuous planner-scheduler (Tran et al. 2004, Rabideau et al. 2004), a robust task executive, and onboard instrument data interpretation including support vector machine-learning derived classifiers (Castano et al. 2006, Mandrake et al. 2012) and sophisticated instrument data analysis (see figure 1) (Thompson et al. 2013b).

Many individual AI technologies have also found their way into operational use. Flight operations such as science observation activities, navigation, and communication must be planned well in advance. AI-based automated planning has found a natural role to manage these highly constrained, complex operations. Early successes in this area include the ground processing scheduling system (Deale et al. 1994) for NASA space shuttle refurbishment and the SPIKE system used to schedule Hubble Space Telescope operations (Johnston and Miller 1994). SPIKE enabled a 30 percent increase in observation utilization (Johnston et al. 1993) for Hubble, a major impact for a multibillion dollar mission. Also impressive is that SPIKE or components of SPIKE have been or are being used for the FUSE, Chandra, Subaru, and Spitzer missions. AI-based planning and scheduling are also in use on the European Space Agency’s Mars express and other missions. For a more complete survey of automated planning and scheduling for space missions see Chien et al. (2012a).

In this issue, the article by Mark D. Johnston, Daniel Tran, Belinda Arroyo, Sugi Sorensen, Peter Tay, Butch Carruth, Adam Coffman, and Mike Wallace describes the deep space network (DSN) scheduling engine (DSE) component of a new scheduling system that provides core automation functionality for scheduling of NASA’s deep space network, supporting scores of missions with hundreds of tracks every week. The article by Russell Knight, Caroline Chouinard, Grailing Jones, and Daniel Tran describes the application and adaptation of the ASPEN (automated scheduling and planning environment) framework for operations of the Orbital Express (OE) mission.

Because space missions produce enormous petascale data sets, machine learning, data analysis, and event recognition for science and engineering purposes has been another fertile area for application of AI techniques to space applications (Fayyad, Hausler, and Stolorz 1996). An early success was the use...
of the decision tree machine-learning techniques in SkiCat (Fayyad, Weir, and Djorgovski 1993) to semi-
automatically classify the second Mount Palomar Sky Survey, enabling classification of an order of magni-
tude greater sky objects than by manual means. Another early advance was the use of Bayesian cluster-
ing in the Autoclass system (Cheeseman and Stutz 1996) to classify infrared astronomical satellite (IRAS) data. From these beginnings has emerged a plethora of subsequent applications including automatic classification and detection of features of interest in earth (Mazzoni et al. 2007a, 2007b) and planetary (Burl et al. 1998, Wagstaff et al. 2012) remote-sensing imagery. More recently, these techniques are also being applied to radio science signal interpretation (Thompson et al. 2013a).

In this issue the article by José Martinez Heras and Alessandro Donati studies the problem of telemetry monitoring and describes a system for anomaly detection that has been deployed on several European Space Agency (ESA) missions.

Surface missions, such as Mars Pathfinder, Mars Exploration Rovers (MER), and the Mars Science Laboratory (MSL), also present a unique opportunity and challenge for AI. The MER mission uses several AI-related systems: The MAPGEN (Ai-Chang et al. 2004, Bresina et al. 2005) constraint-based planning system for tactical activity planning, the WATCH (Castano et al. 2008) system (used operationally to search for dust devil activity and to summarize information on clouds on Mars), and the AEGIS system (Estlin et al. 2012) (used for end-of-sol targeted remote sensing to enhance MER science).

Many rover operations, such as long- and short-
range traverse on a remote surface; sensing; approaching an object of interest to place tools in contact with it; drilling, coring, sampling, assem-
ing structures in space, are characterized by a high degree of uncertainty resulting from the interaction with an environment that is at best only partially known. These factors present unique challenges to AI systems.

In this issue, the article by David Wettergreen, Greydon Foil, Michael Furlong, and David R. Thomp-
son addresses the use of onboard rover autonomy to improve the quality of the science data returned through better sample selection, data validation, and data reduction.

Another challenge for autonomy is to scale up to multiple assets. While in an Earth-observing context multiple satellites are already autonomously coordi-
nated to track volcanoes, wildfires, and flooding (Chien et al. 2005b, Chien et al. 2012b), these sys-
tems are carefully engineered and coordinate assets in rigid, predefined patterns. In contrast, in this issue, the article by Logan Yliniemi, Adrian K. Agogino, and Kagan Tumer tackles the problem of multirobot coordi-
nation for surface exploration through the use of coordinated reinforcement learning: rather than being programmed what to do, the rovers iteratively learn through trial and error to take actions that lead to high overall system return.

The significant role of AI in space is documented in three long-standing technical meetings focused on the use of AI in space. The oldest, the International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS) covers both AI and robotics. I-SAIRAS occurs roughly every other year since 1990 and alternates among Asia, North America, and Europe with 12 meetings to date. Second, the International Workshop on Planning and Scheduling for Space occurs roughly every other year with the first meeting in 1997 with eight workshops thus far. Finally, the IJCAI3 workshop on AI and space has occurred at each IJCAI conference beginning in 2007 with four workshops to date.

We hope that readers will find this introduction and special issue an intriguing sample of the incredible diversity of AI problems presented by space exploration. The broad spectrum of AI techniques, including but not limited to machine learning and data mining, automated planning and scheduling, multi-objective optimization, and multiagent, present tremendously fertile ground for both AI researchers and practitioners.

Acknowledgements

Portions of this work were carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Notes

1. See robotics.estec.esa.int/i-SAIRAS.
2. See robotics.estec.esa.int/IWPSS.
3. See ijcai.org.

References


Steve Chien is head of the Artificial Intelligence Group and a senior research scientist at the Jet Propulsion Laboratory, California Institute of Technology where he leads efforts in automated planning and scheduling for space exploration. He is a four time honoree in the NASA Software of the Year competition.

Robert Morris is a senior researcher in computer science in the Exploration Technology Directorate, Intelligent Systems Division at NASA Ames Research Center. Over the years he has been involved in projects applying AI-based planning and scheduling technologies to solving problems in observation planning, navigation planning and autonomous operations of exploration vehicles.