
Heuristic Search for
New Microcircuit Structures:

An Application of Artificial Intelligence

Douglas B. Lenat

Heuristic Programming Project
Department of Computer Science

Stanford Unavers%ty

William R. Sutherland

Sutherland, Sproull, d Associates, Inc

James Gibbons

Stanford Electronacs Laboratory
Stanford Unaversaty

Summary

Eurisko is an AI program that learns by discovery We are apply-
ing Eurisko to the task of inventing new kinds of three-dimensional
microelectronic devices that can then be fabricated using recently de-
veloped laser recrystallization techniques Three experiments have been
conducted, and some novel designs and design rules have emerged.

The paradigm for Eurisko’s exploration is a loop in which it. generat,es
a new device configuration, computes its I/O behavior, tries to “parse”
this into a functionality it already knows about and can use, and then
evaluates the results In the first experiment, this loop took place at
the level of charged carriers moving under the effects of electric fields
thl ough abutted regions of doped and undoped semiconductors. Many
of the well-known primitive devices were synthesized quickly, such as
the MOSFET, Junction Diode, and Bipolar Transistor. This was un-
surprising, as they were short sentences in the descriptive language we
had defined (a language with verbs like Abut and ApplyEField, and
with nouns like nDopedRegion and IntrinsicChannelRegion) Future

We wish to thank those graduate students who have aided us in the
construction of RLL, the language in which Eurisko is written, most
notably Greg Harris at CMIJ and Russ Grciner at Stanford. For advice
and ideas during the design and construction of Eurisko, we thank .John
Seely Brown, Bruce Buchanan, Ed Feigenbaum, Mike Genesereth, and
Herb Simon Harold Brown and Mark Stefik and their collaborators
paved the way for the encroachment of AI int>o VJSI design, and we
are grateful to them for reports of their efforts. The excellent computa-
tional facilities of Xerox PARC’s CIS made it possible to build Eurisko
quickly and to run it for long periods of time on several machines. A
round of thanks to the Interlisp-D group both for their language and
for excellent response to suggestions and bugs Theoretical aspects of
this research were funded by ONR N00014-80--C-0609.

innovation at this level would require adding a large knowledge base of
physical equations, judgmental rules for employing them, and numeri-
cal routines for efficiently applying them

Rather than carrying out this expansion, we decided to seek a higher,
less numerical level of abstraction at which to design new devices Prc-
viously, our program had worked at a purely geometric level, where
each region had a precise size, shape, and orientat,ion. Briefly, we con-
sidered a purely topological level, where only conduction paths mat-
tered This proved too abstract, as most of the designs that were
efficient at that level were unrealizable geometrically. WC derived an
intermediate level, that of “tiles.” The tile model posit,s that each
region (channel, metal, etc) is a cube (or other space-filling element) of
three-space of approximately the same size A device is a lattice of tiles
in a particular 3-D configuration The philosophy was that if Eurisko
could produce an interesting design at that level, Gibbons could find a
way to fabricate it using the new high-rise chip techniques.

In our first attempts to work at the tile level, Eurisko carried out sys-
tematic exhaustive searches with few useful new designs This gave us
an appreciation for the size of the starch space. During one week-long
run, the program serendipitously synthesized a very compact three-
dimensional design for a flip-flop

Our final experiment was also at the tile level, but in this case
Eurisko employed a body of heuristics to guide the synthesis of new
devices These informal judgmental rules served as both plausible move
generators and implausible move eliminators Almost immediately, the
“Symmetrize” heuristic produced a very powerful yet simple device, one
which simultaneously computes NAND and OR using only two small
metal regions, two n-doped regions, two p-doped regions, and one in-
t.rinsic channel region. These devices are composahle in two ways-

THE AT MAGAZINE Summer 1982 17

AI Magazine Volume 3 Number 3 (1982) (© AAAI)

Relevant Recent Developments

Some important AI advances that underlie our explorations of this interdisciplinary synthesis include

1 Operational AI programs that can reason-and discover new concepts-in specialized domains of knowledge,

2 AI systems that can introspect and monitor their own performance and discover new algorithms and heuristics,

3. Emergence of the AI subfield called knowledge engineering and its accumulation of experience in applying heuristic methods

to problem solving, search, and design tasks in several technical domains

Some important microelectronic fabrication advances that provide important assumptions to this and other projects include:

1 Recrystalization of silicon films to make multilayer “high-rise” circuit structures, and structures no longer limited to wafer-

sized areas,

2 The use of (nearly-)intrinsic channel material-that is, a region that can support a channel of electrons or holes, depending
only on what types of doping its neighboring regions exhibit,

3 Increasing computer control of fabrication equipment--fabrication operations are becoming more precisely defined and thus
more faithfully representable inside a knowledge base,

4 The potential to merge CAD and CAM in the electronics domain into a new form of operation where design, fabrication, and

testing are intertwined,

5 Doping patterns need not be rectangular, but may be hexagonal or even irregular The limiting factor is no longer “difficulty
of fabrication,” but rather “complexity of design ”

Figure 1 The recent developments upon which this research is founded

they pack into the plane and they stack on top of each other, so the
asymptotic number of regions used is reduced t,o one of each type The
device is unconventional in that currents of both holes and electrons
must coexist (and cross) inside a single thin film layer In April 1982,
the design was “proved” by Gibbons by successfully fabricating them
in his labor atory These devices now form the primitive building blocks
of Eurisko’s latest high-rise chip designs

Besides the useful devices, we now have a few useful heuristics for
the task of designing three-dimensional VLSI circuits: in every second
metal layer, wires should run N-S (and in the other metal layers, E-W);
any 3-D folding of a 2-D design should replace (most of) the pairs of
gates sharing a common control by single pieces of metal serving simul-
taneously as gat.es for regions above and below t,hem; etc Our cur-
rent research is aimed at getting Eurisko to design three-dimensional
microelectronic devices for more complex functions and to discover ad-
dif.ional informal rules for designing such circuits

Background: Recent Developments in AI
and Microelectronic Fabrication

The late seventies produced technological improvements
in both microelectronic fabrication capabilities and in artifi-
cial intelligence systems (see Fig. 1). These parallel devel-
opments have suggested using AI techniques for designing
or discovering new microclect,ronic circuit structures. This
article reports on one such interdisciplinary research effort.

Relevant recent developments in microelectronic
circuit fabrication. One central advance in microcir-
cuit fabrication m&hods that is motivating our effort,s is
the ability t,o build three-dimensional st,ructures- so-called
“high-rise chips.” A thin film of deposited silicon can

18 THE AI MAGAZINE Summer 1982

be melted in place and recrystallized into transistor-grade
material. Appropriate related steps of doping, oxide growth,
and metal deposition have been shown t,o produce working
devices. Lee et al. (1978) showed that both enhancement
and depletion mode devices could be made in recrystallized
polysilicon, and Gibbons and Lee (1980) produced a one-gate-
wide CMOS inverter in which a single piece of metal served
as the gate control for two transistors-one above the metal
and one below it.

One begins with a normal t,wo-dimensional MO!? chip,
adds a new layer of amorphous silicon “frost” on top of
it, scans and recrystalizes it with a laser, dopes the new
silicon layer, deposits a new gate-oxide and metal pattern
on top of that, then deposits a new layer of silicon frost,
scans it, etc. In this way, arbitrarily many alternating layers
of metal and semiconductor are assembled into a “high-rise
chip,” much like a layer cake or a piece of plywood. The
resulting structure contains many active devices in a very
small volume. To date, the number of layers has been small
(only a few 3-ply layers), but this is due more to a lack
of worthwhile designs to fabricate rather than to technical
problems with the process.

An intriguing opportunity is to dispense with the “bot-
tom silicon crystal” entirely-just start with, say, a sheet of
glass. In this way, the area of the structure is not limited
to single-crystal wafer-sized regions, but could be arbitrarily
large (e.g., the size of a CRT display screen, or a dashboard,
or a desk-top). While these possibilities are exciting and
probably will be important in the future, they would demand

a major laboratory retooling One big advantage of the laser
recrystallization process is that many existing commercial
VLSI fabrication facilities already have the equipment re-
quired for that process and, thus, can produce high-rise chips
provided they are at most wafer-sized.

One concern is that of yzeld. Given no dramatic increase
in the reliability of fabrication techniques, any enormous
structure is bound to contain many faults. Besides the usual
design techniques for overcoming this (e.g., redundancy),
a new technology that may be important is the ability to
dynamically monitor the complex structure as it is being
fabricated, layer by layer. That is, one might fabricate “wit,h
the power on.” If part of one layer has too many faults, the
program might alter the design of the rest of the layer at
that moment before the computer advances the laser or ion
implantation beam If an entire layer is unacceptable, one
might, even evaporate it and try again. This merging of CAD
and CAM might open up a new paradigm for the design and
production of microelectronic structures.

The second major innovation we are relying on is the
use of intrinsic--or nearly-intrinsicPmchannel material. This
is a region of semiconductor material that is so lightly doped
that it can support a channel of electrons or holes, depending
only on what types of doping its neighboring regions exhibit.
This advance, like t,he one before it, explodes the size and
complexity of the design problem.

As more and more of the fabrication process comes under
computer control, it becomes easier---and more worthwhilc--
to represent fabrication knowledge within a knowledge base.
Once the knowledge is accessible to artificial intelligence
programs, t,hey can carry out tasks involving planning,
dynamic monitoring and replanning, and (as we shall dis-
cuss in detail) guided exploration for novel devices, mask
configurations, fabrication sequences, and post-production
tailoring via recrystallization.

With computers doing much of t,he design and fabrica-
tion, there is less need to make the doping patterns rectan-
gular. For example, if a gate is to join five regions, we can
shape it as a hexagon (still leaving one edge of the hexagon
free to have metal deposited over it, prior to doping, if that
is the order of fabrication steps that finally is employed).

All of these notions are exciting. The excitement is
dimmed slightly by the question: “What do WC use all this
for, exactly?” To answer that question, we turn to a very
different part of computer science-artificial intelligence.

The limiting step in the VLSI world is not so much
fabrication techniques as coping with the combinatorial ex-
plosion of the design problem. A vast new and as yet
unexplored design space for three-dimensional microcircuit
elements is being opened. The size of this search space
makes it a promising domain for some kind of AI approach
Recent developments in AI suggest trying an automated in-
duction approach, that is, building a program that learns-
by discoveryPnew physical devices, circuits, and more or less
informal rules for designing them What are the AI results
that suggest this?

Relevant recent developments in artificial intel-
ligence. In the past decade, a style of AI program has
emerged known as expert systems. These programs work
in real-life technical domains, such as medical diagnosis,
mineral or oil exploration, and planning genetics experiments
(see, e.g., Feigenbaum, 1977). The human expert works with
a computer scientist, known as a knowledge engineer, who
enters the expert’s knowledge into a program. The first
body of knowledge extracted from the expert inva.riably com-
prises terms, facts, standard procedures, etc.-the kind of
knowledge one would read about in journals and tcxthooks

But programs with only this type of information do not,
perform well. A cyclic procedure is followed to improve the
prograin-the knowledge engineer has the program try to
work on a problem or cast, the expert disagrees with its
reasoning at some point, and the knowledge engineer forces
the expert, at that moment, to introspect, on what extra
knowledge he or she is bringing to bear. This usually results
in the expert explicating a judgmental rule, an informal hit
of wisdom we refer to as a heurrstzc. These heuristic rules
are rarely discussed verbally. Rather, the apprentice (intern,
graduate student, etc.) is expected to induce them from
experience by watching a master at work. As more and
more heuristics are added to the program, it incrementally
approaches the expert in competence at the task.

Most. AT texts talk about heurist,ics as if they were rules
that helped you constrain a search by pruning away im-
plausible moves Some of the heuristics that emerge in the
knowledge engineering cycle do indeed have this flavor, but
many heuristics appear to serve a very different role-- they
propose plausible moves to try, plausible promising actions
to carry out in certain situations In the “implausible con-
strainer” sense, as you add heuristics you have less and less
to consider; in the “plausible suggester” sense, when you add
more heuristics you have more to do. This notion of heuris-
tics as plausible move generators is useful when the space to
be explored is too immense to even consider having a legal
move generator as your primary engine.

The field of knowledge engineering has hy now con-
tributed much in the way of representations for knowledge,
control structures for managing large collections of heuristic
rules, languages that, facilitate the construction and dehug-
ging of enormous programs, ways of validating the perfor-
mance of expert syst,ems, etc. One can think of our tasks---
designing three-dimensional microcircuitsPas such an expert
t,ask It involves a search through an enormous space of pos-
sibilities, there is much technical information to represent
and use, it is a task of interest, and practical utility, and
it is a domain where no algorithmic approach is known at
present. In short, it satisfies most of the criteria for at,tack
by the knowledge engineering approach.

The nature of the three-dimensional microcircuit design
task is one of open-ended exploration in a large space where
the goals are criteria such as lower power, higher gain,
smaller space, less time, fewer masks, etc. These criteria
are not too diflicult to test, but they are of little aid in in-

THE N MAGAZINE Summer 1982 19

venting novel designs that satisfy them. Although most ex-
pert syst~e~ns have performed tasks that were classificatory
(c g , diagnosis), only some have dealt with problems of
design, and a couple have tackled problems that involved
open-cndcd concept discovery and explorat,ion (see, e.g., AM,
Davis and Lenat,, 1981; Browser, Dankel, 1979).

AM was given the definitions of a hundred concepts from
finite set theory and a body of two hundred heuristic rules
that guided it in forming plausible definitions, gathering
data about those new concepts, noticing regularities in the
dat,a, forming plausible conjectures thereby, designing and
carrying out experiments to test them, and (to close the loop)
extracting useful new definitions based on these results.

To get the flavor of AM, consider this mathematics
heuristic:

Given an interesting function f : A X A + B,
It’s worthwhile defining and studying g(z) = f(x, 2)

When f is Multiplication, the derived function g is Squaring;
when [is Addition, the heuristic causes us to define and
study Doubling. When f is a predicate such as Greater-Than,
it causes us to notice that a number is never greater than
itself. When f is Int,ersection, it points us tJo the fact that
Intersect(z, X) = 2. The use of this heuristic is not limited
to mathema,tics, of course. We could make f the binary
relation Employed-By, in which case g defines the predicate
Self-Employed. Once a new concept has been defined, it is
of-ten a relatively straightforward aflair to find instances of it
and then to look for patterns in that data (see Polya, 1945).

In one hour-long run on a KI -10, the AM program defined
two hundred new concepts, of which about half were reason-
able, recognizable mathematics objects (including the empty
set, natural numbers, and primes), operators (including
compose-with-itself, addition, factoring), and conjectures
(including de Morgans laws, the unique factorization theorem,
and a strange regularity involving numbers with very many
divisors).

One difIiculty with AM was that, as it began to work
in fields further and further removed from set theory, its
initial set of heuristics was not adequate to guide it away
from implausible concepts (e.g., numbers that are both odd
and even) and toward plausible ones. This need for new,
domain-specific heuristics for each new field raises a serious
problem with our microcircuit design task.

The task of exploring the space of high-rise chip designs
is analogous to AM exploring the space of set theory concepts
in all major respects save one-there are as yet no human
cxpcrts in the field. There is no one who knows what the
heuristics are. It is easy to find and program hundreds of
heuristics for dealing with sets and functions, but it is impos-
sible to do so for high-rise chips. The few people now work-
ing in t,he field arc employing analogues of heuristics from
two-dimensional VLSI design, which in turn got most of its
heuristics from even older technologies where, for example,
wires were cheap and small entities The economies, trade-
offs, and opportunities for local optimizations and counterin-
tuit,ive designs are very different in VLSI design, and even

after several years only a partial set of design heuristics has
emerged. We expect just as radical a change in design when
going from two to three dimensions, and nil of those new
heuristics are waiting to be discovered.

The relevance of AI does not end a.t this point. WC refer
to a program that learns new heuristics by discovery, in-
ducing them from experiences it has while exploring. This
program, Eurisko, is described at, length in Lenat (1982a,
198213). In brief, its presumption is that just as a body of
heuristics was able to guide AM in discovering set theory
concepts, a body of heuristics might be able to guide a pro-
gram in discovering, testing, and modifying new heuristics
This might seem to be dangerously circular, but in fact some
useful results have been obtained by applying a heuristic to
itself. Consider the following heuristic:

IF F is sometimes useful but sometimes just takes up a
lot of time,
THEN try to find some specializations of F.

This rule was rclcvant and useful sometimes, but sometimes
took up a lot of time to apply. Therefore, the heuristic was
relevant, to itself. Eurisko applied it to itself and produced
several new, more specialized heuristics, a useful one of which
was:

IF F is sometimes useful, but, usually just takes up a lot
of time,
THEN try to find some extreme specializations of F.

Eurisko explored several domains, including set theory,
number theory, games, biological evolution, and the design
of naval fleets. The latter is perha.ps of most relevance to
our circuit design task Eurisko was given two hundred
pages of rules and constraints on designing individual ships,
plus a simulator which allowed it to determine which final
fleet could beat which other fleets. It then designed fleet
after fleet, using its simulator as the “natural selection”
mechanism as it “evolved” bct,tcr and better fleet designs
The search space-the number of parameters-was much too
large for any sort of systematic (e.g., linear programming) 01
even monte carlo approach to the problem to succeed

For instance, when one fleet beat another, Eurisko had to
analyze the differences between them, which usually meant,
analyzing the differences between individual ships. Even
once a single parameter appeared to be important (c.g , one
fleet, was more heavily armored), experiments must be done
(i.e., new designs made) to investigate the overall benefits of
armoring.

After a while, Eurisko also noticed another kind of
regularity. For almost each parameter, the optimal value
seemed to be almost, but not quite, an extreme value. This
was formed into a heuristic rule that enabled Eurisko to very
rapidly settle in on a winning fleet design. That new heuris-
tic said

IF designing either an individual ship or a fleet for
Traveller TCS, and a certain parameter is having its
value changed,

20 TIIE AI MAGAZINE Summer 1982

THEN change it to a nearly-but not quite-extremal
value.

The final fleet Eurisko designed had a large number of
ships-each was fairly small, each had nearly as many types
of weapons as allowed, each was nearly as heavily armored
as possible, each was nearly as slow as possible, etc.

Each evening during June 1981, Lenat would start
Eurisko running on this task on one or more Xerox 1100
(Dolphin) machines. All night it would try out new designs
and occasionally new design rules and run simulated battles
to evaluate them. In the morning, a quick glance over its new
ideas would be in order to occasionally give an extra reward
t,o one that Eurisko failed to appreciate fully. For example,
one morning Lenat noticed a fleet that was decimated, ex-
cept for a small lifeboat that could not be defeated because it
had been designed with incredibly expensive computer COII-

trols that enabled it to outmanuevcr all incoming fire. The
significance of this was not fully appreciated by Eurisko, but
we made sure to include one such small unhit,table craft in
the final tournament fleet. On July 4, 1981, that fleet, won
the nat,ional (Traveller TCS Origins) tournament by winning
seven consecut,ive battles. Following the victory of Eurisko’s
highly unconventional fleet, some of the rules were changed
for this year’s tournament. In particular, repairing of ships
is no longer permitted and this turns out to eliminate the
usefulness of the small unhittable ship.

Because the general design heuristics for Travellcr TCS
are (probably) still valid, even with the changes in the rules,
it, should take Eurisko much less t,ime to design a good
fleet for this year’s competition. If it had not abstracted
its experiences into heuristics, we would have had to start
Eurisko all over again this year, slowly evolving a fiect design.
There was a regional tournament in the Bay Area over
Washington’s birthday in which a dozen rule changes were
announced only a couple days before t,he event. Since the
design heuristics were still valid, Eurisko did come up with a
good design in two days and its fleet won that tournament,.
One rule change was that victory is now tied to monetary
damage, not ultimate survival Another rule change involved
limiting the number of exchanges of fire to 40. Eurisko tried
nearly-extreme designs and came up with a ship that in many
ways is the opposite of its little lifeboat. This new ship is
large, has huge weapons, but no defense whatsoever. Since
there arc only forty rounds of fire allowed, one builds forty
of these ships and puts one up each round. Yes, it gets sunk,
but since most of one’s money goes for defenses in Traveller
TCS, the monetary damage one inflicts on the enemy is great
The rule changes had a great impact on the final designs,
but little on the heuristics. Because it discovered a body of
design rules, Eurisko became (in a small way) an expert, at
designing Travcller TCS fleets.

Research with Eurisko in various domains has estab-
lished its abilit,y to learn simple judgmental rules by abstract-
ing them from experience, by modifying existing rules, and
occasionally by analogy to existing rules. This ability to dis-
cover heuristics is crucial in our high-rise chip design task,

where task-specific heuristics probably exist and are neces-
sary for good performance, but are as yet, undiscovered by
people. Another way of saying this is that WC are embarked
on the task of creating an “expert syst,em” for a field in
which there are as yet no human experts to copy from or
learn from and that we propose to try doing this through
Eurisko’s ability to discover useful heuristic expertise itself.

The Opportunity: Using AI Methods
to Search for New Microcircuit Structures

With the above technological capabilities as background,
in July 1981 we began to consider how to apply Al capabilities
to the synthesis of novel microelectronic structures. Our
basic approach has three simple and obvious steps:

The program starts with some primitive microcir-
cuit concepts as built-in knowledge along with simple
rules and evaluation criteria.

IJsing composition rules, it combines several known
entities into a new one. In rare cases, a rule takes a
single known entity and mutates it

This new structure, rule, operation, etc is then
evaluat,ed for interest and either retained or junked
as appropriate

The most common instance of action 2 is to take known
primitive (or complex) microcircuits and produce new ones.
More rarely, new heuristic rules are produced. Even more
rarely, new evaluation criteria emerge.

Within this strategic paradigm of design exploration,
there are obviously many tactical choices (see Fig. 2).

Finally, there is a battery of implewlentation-level tasks
and decisions. Some of t,hese involve Al (e.g., exactly how is
knowledge t,o be represented, what, control structure is used,
what language or program is employed) and some involve
microelectronics (e.g., exactly how will the designs he fabri-
cated).

The “opportunity” mentioned in the title to this sect,ion
derives from the colocation and interest in collaboration of
the creator of the Eurisko program (Lenat), the fahricat)or of
the first few high-rise chips (Gibbons), and someone familiar
with both fields (Sutherland). Thus, the implementation-
level problems have precise answers The representation and
control arc taken from Eurisko (frames and agendac), and
the fabrication (including design of masks) is performed by
Gibbons and his staff. By using the already extant Eurisko
program, we were able to concentrate on knowledge ratliel
than on programming and quickly obtain some results. We
believed it, would be adequate for our task, as it, had already
discovered concepts and design strategies in other domains.

This article is a report on six months of part-t,ime ex-
ploration of this opportunity by the three authors. During
this time, we have tried several approaches to questions l-4,
in Figure 2. The rest, of this article documents our efrorts
to dat,e and what, we have learned as a result. Just trying
t,o make some of the choices implied above has been most

THE AI MAGAZINE Summer 1982 21

1 What level of representation is appropriate for primitive microcircuit elements?

2 What kinds of combining operations are needed given the primitive element representation chosen?

3 How are new combinations of elements constructed (e.g., randomly or with some kind of common-sense knowledge about
likely usefulness)?

4. What are good criteria for evaluating a new complex structure to decide if this structure should be recorded as useful or
thrown out as not good for anything?

Figure 2 Tactical choices to be made in automatic exploration for microcircuit structures.

illuminating. In our discussions and early program runs, we
have invented important new structures and design heuristics
and improved our understanding of the space of choices.

Experiment 1: Eurisko Applied to
Random Generation at the Carrier Level

Our initial idea was to include knowledge about proper-
ties of semiconductor regions such as doping, diffusion and
drift, recombination, etc. Rules for synthesizing new devices
would place different kinds of regions in contact and then in-
teractions would be deduced. We had only some very general
evaluation criteria in mind at this point. Gain, non-linearity
frequency dependent behavior, etc., seemed like interesting
properties that would make a new device promising cvcn bc-
fore any specific application for it were known.

This first “carrier level” of representation was largely ex-
plored by hand. WC tried to sort out the primitive elements,
rules, and evaluation methods tjhat, as a start, could generate
and notice well known devices such as the Junction Diode,
Bipolar Transistor, and MOSFET. Since we tailored our
primitive components and operators on this basis, indeed,
those well known devices wcrc short expressions easily found

Name : SetClfAllDevices

once we began running the Eurisko program.

The representation we initially used at this carrier level
quickly evolved as a result of Eurisko’s noticing useful im-
provements. That is, the Eurisko program monitored how
well the representation matched the processing that was
going on, and made suggestions, from time to time, of
ways in which that representation might be improved. Let,
us consider an example of this. In the original repre-
sentation we provided to Eurisko, each individual device was
a unit (frame, Being, etc.) one of whose slots was called
“Terminals." This slot was always so big (i.e., had, empiri-
cally, so many entries) that eventually Eurisko finally decided
to split it into pieces by defining two useful specializations of
this slot-XMustBeInputTerminalsV and “XorInputTerminals”
(a list of sets of terminals, such that for each set, one and
only one element must be an input terminal).

Below arc four concepts as they appeared in Eurisko.
The first represents the set of all physical devices; the second
is the archetype for an individual device; the third represents
a particular individual device; the fourth represents a heuris-
tic rule which takes thermal motion of carriers into account.

ISA:

Generalizations: (SetOfAllPhysicalDevicePhysicsObjects
SetOfAllPhysicalObjects
SetOfAllDevicePhysicsObjects
SetOfAllDevicePhysicsConcepts
SetOfAllComplexStructures
SetOfAllComplexStructuresBuiltOutOfComplexStructures
Anything)
(AbstractDevicePhysicsObject
DevicePhysicsConcept
AbstractObject
SetOfUnits
Set
Anything)

InitialWorth: 500
Worth: 800
DomainOf: (Abut DAbut CopyDevice ApplyEField ApplyCEField)
RangeOf: (Abut DAbut CopyDevice ApplyEField ApplyCEField)
FocusTask: FocusOnDevices
TypicalExample: TypicalDevice
Examples: (TypicalDevice SimpleNRegionDevice SimplePRegionDevice)
MyCreator: Lenat
MyTimeOfCreation: "19-July-81 13:37:18"
MyModeOfCreation: (Copy&Edit SetOfAllShips)

22 THE N MAGAZINE Sunmler 1982

Name :
ISA:

InitialWorth:
Worth:
PartOf:
Parts:
SimulationHeuristics:
FocusTask:
MyTypicalExampleOf:
MyCreator:
MyTimeOfCreation:
MyModeOfCreation:

-
TypicalDevice
(SetOfAllPhysicalDevicePhysicsObjects
SetOfAllPhysicalObjects
SetOfAllDevicePhysicsObjects
SetOfAllDevicePhysicsConcepts
SetOfAllComplexStructures
SetOfAllComplexStructuresBuiltOutOfComplexStructures
Anything)
500
500
Device
(SolidStateMaterials EFields Devices)
(~65 H66)
FocusOnTypicalDevice
SetOfAllDevices
Lenat
"19-July-81 13:40:55"
(Eurisko suggested Copy&Edit TypicalShip)

Name :
ISA:

InitialWorth:
Worth:
PartOf:
Parts:

SimulationHeuristics:
Terminals:
InputTerminals:
XorInputTerminals:
FocusTask:
MyCreator:
MyTimeOfCreation:
MyModeOfCreation:

Device-817
(SetOfAllPhysicalDevicePhysicsObjects
SetOfAllPhysicalObjects
SetOfAllDevicePhysicsObjects
SetOfAllDevicePhysicsConcepts
SetOfAllComplexStructures
SetOfAllComplexStructuresBuiltOutOfComplexStructures
Anything)
500
600
Device-809
((SolidStateMaterials: NRegion-1953 PRegion-75 NRegion-1954)
(EFields: EField-930 OrthogonalEField-18)
(Devices: no subdevices))
(~65 H66)
(NRegion-1953 NRegion-1954)
NIL
((NRegion-1953 NRegion-1954))
FocusOnDevice-817
(Task-82 "Find examples of SetOfAllDevices")
"25-July-81 16:02:29"
(ApplyEField
(ApplyOrthogonalEField
(Abut NRegion PRegion NRegion))) -

Name : H65
ISA: (SimulationHeuristic

Heuristic
MultiValuedOp
SideEffectsOp
AbstractOp
OP
Anything)

UsedInSimulating: (TypicalDevice)
English: (If you are simulating a physical device,

Then it's important to simulate the thermal meanderings
of carriers in the solid state materials in the device)

Abbrev: (If a device has solid state materials,
Then simulate thermal motion of carriers)

IfCurrentTaskIsToWorkOnA: PhysicalDevice
IfCurrentTaskIsToPerformA: Simulation

IfSimulating:
IfPotentiallyRelevant:

IfTrulyRelevant:
ThenPrintToUser:
ThenCompute:

ThenAnalyze:
ThenFillInEntries:
Arity:
Domain:
Range:
InitialWorth:
Worth:
Generalizations:
MyCreator:
MyTimeOfCreation:
MyModeOfCreation:
MyLastRunOn:
MyThenComputeRecord:

PhysicalDevice
(X (dev)
(Setq SpaceToUse
(TheSubsetOf (Parts dev)
(WhichAre 'SolidStateMaterials))))
(X (> (MoreThanlKindOfElement SpaceToUse))
Simulated the thermal motion of the carriers in d)
<lisp code that finds the type of carrier for each
region, computes the penetration depths into all
neighboring regions >
<lisp code that analyzes what occurs at each boundary>
<lisp code that adds values to dev’s Behavior slot>
I
Task
(Entries for (Behavior dev))
700
750
(TypicalOp TypicalHeuristic H60)
Lenat
"19-July-81 15:11:03"
(Copy&Edit H6O)
SimplePRegionDevice
(12 successes, averaging 72 seconds each)

MyThenComputeFailedRecord: (I failure, averaging 4 seconds each)
MyThenPrintToUserRecord: (12 successes, averaging 9 seconds each)
MyOverallRecord: (12 successes, averaging 89 seconds each)
MyOverallFailedRecord: (I failure, averaging 16 seconds each)

<a dozen other such record-keeping slots>

Although this article is not focusing on representation of
knowledge, let us briefly illustrate how new domain-specific
kinds of slots arc generated by Eurisko We have already seen
the usefulness of doing this kind of activity when Terminals
was specialized to form two new slots, InputTerminals and
XorInputTerminals

In 1165, the IfPotentiallyRelevant slot used to contain
an extra condition not shown above-a predicate testing
whether or not the current task (the one chosen from the
agenda) dealt with simulating a physical device. So many
heuristics had IfPotentiallyRelevantslotswhosevalueswerc
"test whether or not, the current, task deals with simulat-
ing 37” that Eurisko decided to make that a new slot
called Ifsimulating. So H65 now only has to have an If-
Simulating slot with the value PhysicalDevice. 'I'he If-
PotentiallyRelevant slot could now be shortened (and in
many cases completely eliminated). Whenever it was needed

(i.e., some rule interpreter asked for a heuristic’s Ifpoten-
tiallyRelevant)an extratest would besynthesized automati-
cally from that heuristic’s IfSimulating slot,.

A second case of forming a new slot happened later
when Eurisko noticed that,-in several domains, not just
VLSI-many of the If- slots had constructions of the form
(Setq SpaceToUse X1. It defined a new kind of slot, If-
SearchSpaceCanBeComputed, that, is simply filled with X, and
whose side effect is to bind the variable SpaceToUse to X.

A third example of this process was when Eurisko noticed
that many of these slots had values of the form (Subset
(s d) (WhichAre ‘y)) The new slot, in this case, called If-

24 THE AT MAGAZINE Surlurler 1982

SubspaceCanBeComputed, is simply filled with the list (s y),
in this case the list (Parts SolidStateMaterials) By this
compact entry, the new H65 communicates t,hat it wants
t,o assure that some parts of the device are solid st,atr
materials, and assuming this to be the case, binds the vari-
ahlc SpaceToUse to the set, of parts which are solid stat,c
materials.

Note how, as this process of defining new slots goes on,
the heuristic gets a few extra slots, but the length of the
entries goes down dramatically

This focus on adding new kinds of slots is not a digres-
sion, but rather the main new source of power that Eurisko
uses AM worked because its representation-LISP predi-
cates-was very natural for the concepts they represented
characteristic functions for mathematics concepts. This was
really a lucky accident due to John McCarthy deszgnzng LISP
to bc a natural language for mat,hematics. Random muta-
tions and compositions of the LISP code often resulted in
code that, was the characteristic function of an interesting,
useful mathematical concept. But LISP is not a natural lan-
guage for representing heuristics. Encoded as large lumps
of LISP code, almost any small change or combination is
bound to be disastrous. Above we saw how Eurisko has
evolved a natural, well-matched language for sta.ting heuris-
tics compactly-a language that, facilitates their discovery
and combination, something Conway and Stefik would call
a syntheszs language. Their article in this issue of The Al
Magazzne expands upon that idea

Much of the knowlcdgr in H65 is embedded deeply within

the Then- dok. This is somewhat unfortunate from the
point of view of modifying H65 to get new heuristics.
I-165 computes penetration depths, analyzes each interregion
boundary, and decides where annihilation will occur, deple-
tion layers form, etc All this is packed into two slots-
ThenCompute and ThenAnalyze. One very general result from
Eurisko’s work in other domains was that it is more impor-
tant to finely categorize and partition the If- parts of a
heuristic rule than the Then- parts. This appears to hold
for our three-dimensional microelectronic circuit design task
as well, as there was little urging to split the Then- slots in
any way. This seems to be related to the fact that most
of the new heuristics synthesized, both in this domain and
in others Eurisko has worked on, have had modifications
to If- parts-very few successful new heuristics have had
modifications to Then- parts. It remains to be seen whether
this is a phenomenon to be studied or a defect to be over-
come.

The main observations to make from the four units are:

1. Concepts are represented as lists of attributes (slots)
and associated values. This structuring allows rules
to be very specific yet still remain brief.

2. Some slots are prefaced My- to indicate that they
refer to the unit as a data st,ruct,ure. This implc-
mcnts the distinction bctwecn object- and mela-level
knowledge.

3 Heuristics are representled essentially the same way
as all t,he other knowledge. This enables heuristics
to apply to each other as well as to VLSI concepts.

4. The conditions and actions of a heuristic are spread
out over many slots. This enables new heuristics to
be created as small variants of known ones.

5. A great amount, of bookkeeping and recordkeeping is
done. This enables later attempts at induction about.
the knowledge and its use.

6 Separate units are maintained for TheSetOfAllX’s,
TypicalX, and each X This forces the builders and
users of the system to avoid ambiguity.

The basic control structure is that of best-first search.
An agenda of tasks is maintained, with symbolic reasons
supporting the plxusibilit,y of each task. One task looked
something like t,hat below:

Name : Task-2610

At, each moment, Eurisko is working on the t,ask with
the highest priority, which in turn is a number derivccl from
the reasons supporting the task. To work on a task, Eurisko
scans through its collection of heuristic rules, finds those
which are relevant, and executes (obeys) them. During the
execution of a heuristic, three types of actions can occur:

1 new tasks can be proposed and added to the agenda,
2. new concepts can be defined, and
3. new values can be found and added to some slot of

some unit.

Although all three actions might occur many times for each
task, for the task below (Task-2610) we would expect that
sometime while working on Task-2610, during the execution
of some heuristic H that was relevant to it, one of H’s actions
would be to fill in some values for the I/OBehavior slot of the
unit called Device-817.

Some slots arc filled in when the unit is first created
(e.g., Name, ISA, InitialWorth, Parts, MyCreator, MyTimeOf-
Creation, etc.), some are filled in gra.dually and continuously
as part of rccordkeeping (e g., MyOverallRecord), and some
are filled in only during the execution of tasks that specifically
call for finding those entries (e g., Examples, Specializa-
tions).

Experiment 2: Eurisko
Systematic Generation

Applied to
at the Tile Level

To extend Eurisko to discover physically novel devices
(e.g., ones with nonlinear gain due to striped doping pat-
terns), we would have to program the various equations
involved~- -equations which are much more complex in form
and usage than the trivial ones Eurisko employed, such as
the one to compute the thickness of a depiction region. Ad-
ditionally, we would have to extract and include into the
knowledge base many heuristics for when and how to use the
equations, what terms to ignore under what circumstances,
etc. Doing this was beyond the scope of an initial explora-
tion. Rather, we moved on to a higher level of functional
abstraction

We briefly considered a very abstract topological level of
representation and rejected it as admitting too many inter-
esting designs that could never be realized geomet,rically.

ISA: (SimulationTask DevicePhysicsTask TaskToFind Task Anything)
RunAs : ((Run 24, Task 180, Task 195) (Run 26, Task 14) 1
English : “Find the I/O behavior of Device-817”
UnitToWorkOn: Device-8i7
SlotToWorkOn: I/OBehavior
Priority: 743
Reasons : ((Device-817 is taking up a lot of room so let’s see if it’s a loser)

(Device-817 was recently created and we should gather data on it)
(The I/OBehavior of Device-809 wanted this to be done))

OnAgenda :
MyIsA:
My.. .etc

(DevicePhysics)
(EuriskoUnit)

THE AI MAGAZINE Summer 1982 25

gate oxide gate oxide

Figure 3 A simple MOS gate If the Metal tile is high, the
two n-tiles are connected together electrically The “Metal” tile

can be any conductor Thus, this gate might be drawn as a

standard “red over green” transistor A similar gate exists with

the metal tile below, rather than above, the n-c-n tiles Two
other primitive gates exist, using p-c-p rather than n-c-n For
them, conduction occurs if and only if the metal tile is low

WC then settled upon an intermediate level we call the
tzle model. A device is composed of a set of regions. The five
types considered were n-doped, p-doped, channel, insulator,
and metal. Each region is conceived as a tile and every tile in
the device has the same size and shape For now, visualize
a tile as being cubical. These tiles are then packed into
three-dimensional arrays and each such array corresponds to
a three-dimensional microcircuit

The n- and p-tiles refer to negatively- and positively-
doped substrate material. Channel tiles represent undoped
substrate (i.e., more or less intrinsic channel material) which
are by default presumed to be coated with gate oxide on both
their top and bottom surfa.ces. Metal tiles represent not just
t,rue metal, but any conductor at all (such as polysilicon)
which can serve as a gate

Constraints on the building of structures are few. Layers
of semiconductor tiles (p, n, and c) alternate with metal
la,yers (metal and insulator tiles). In slightly more det,ail, our
first guess at the possible tiles in the metal layer were Solid-
Metal, SolidInsulator, TopHalfMetal, and BottomHalfMetal.
The half and half t,iles were used for providing electrical con-
tacts across a substrate tile without, short,ing to it-that is,
each ones serves as a miniature version of a wire. Other types
of tiles were experimented with, such as CenterMetal and Cen-
terrnsulator, MetalThread (i e., a vertical core of metal sur-
rounded by insulator on all sides), and even diagonal metal.
Finally, we decided t,o conceptualize each metal layer as if
it were two separate, independent, layers one on top of the
other. The only possible t,iles in each layer are Metal and
Insulator. To get the effect of TopMetal, one places a metal

tile over an insulator; to get aSolidMetal,one places ametal

26 THE AI MAGAZINE Summer 1982

tile over a metal tile; etc
Since each channel tile is coated on both its top and

bottom surfaces with a thin layer of gate oxide, an MOS gai,c
is formed if a metal tile is placed above or below the channel
tile, and two n- (or two p-) tiles flank t,hc channel tile (see
Fig. 3).

For electrical behavior, we used a swit,ch level model
which connects source and drain tiles when the approprial,e
gate control signal is present. In terms of tiles, the details
are:

IF you see n-c-n, with m above (or below) c,
and m is “high,”
THEN the two n tiles will bc conncctcd together
electrically

IF you see p-c-p, with m above (or below) c,
and m is “low,”
THEN the two p tiles will be connected together
electrically

These are somewhat, simplified; for cxamplc, in t,he first
rule, we should also check that at least one of the n tiles is
low. From t,he simulator’s point of view, this is not necessary,
since if both n tiles are hzgh, that is equivalent, to theil
being connected together electrically (i.e., there is only one
idealized voltage level called “high”)

Unlike purely topological models, a latt,ice of tiles cannot
be stretched and twisted into unrealistic connectivities. The
lattice retains enough geometric reality to permit exploring
three-dimensional structures and expect them to be realiz-
able and fabricatable in a straightforward manner. Yet the
tilt model is simple-it avoids most of the det,ails that, hog

Substrate Layer

Metal Layer

Substrate Layer

Figure 4 A side view of a device designed by Eurisko that it claimed was

a flip-flop The rightmost column was not provided by Eurisko explicitly,
but rather was assumed to exist due to a programming bug in array bounds

checking, a bug introduced by Eurisko “improving” itself

down any fully authentic geometric model The tile model
focuses on the neighbors of a region rather than the details
of size, shape, orientation, how to fabricate it, etc.

From another viewpoint, by changing from the carrier
model to the tile model, we shifted the domain of exploration
from an analysis of potentially interesting semiconductor
configurations (interesting based on electrical characteristics
such as nonlinearity) to an exploration of the combinatorial
possibilities inherent in various arrangements of tiles in a
lattice (such as recognizable functionality).

Eurisko was able to handle this shift surprisingly easily.
Within a week it was generating and examining arrays of
t,iles. It soon became clear that we were very poor at visualiz-
ing t,he various devices Eurisko came up wit,h. To aid us, we
bought a collect,ion of 1” square, .25” thick ceramic shower
tiles of various colors Employing them, we rea.lined why
Eurisko was (wrongly) claiming the structure in Figure 4
acted like a flip-flop

Due to a programming bug (introduced by Eurisko, in-
cidentally, in its attempts to modify its own code), Eurisko
was not always checking its array bounds properly. It
thought, that, the right neighbor of the rightmost column of
tiles (in Fig. 4) was the leftmost column of tiles, and not only
that but, with up-down invert,ed. This structure is const,ruc-
tible in three-space, namely as the surface we call a Mobius
strip. If one builds the device shown in Figure 4, holds it by
t,hc ends, gives it, a half twist, and fuses the two ends together,
the behavior of the device IS that, of a conventional flip-flop,
as Eurisko claimed (see Fig. 5). Although it could be built,
and although it does use significantly fewer regions than a
standard memory cell, given present fabrication techniques

it is not a cost-effective design for large-scale production.
WC have already covered the answer to decision 1 from

Figure 2, that is, the level of representation chosen. A?
for 2, the combining operations are quite simple in the tile
model-~ -one simply stacks up tiles into three-dimensional
arrays. Combination translates to adjacency-two devices
arc combined by pushing them next to each other. The
combined device is more than the sum of its parts in three
cases:

1 Two metal tiles-one from each subdevice-happen
to wind up touching. In this case, a new electrical
connection has been made.

2 A metal tile from one subdevice happens to wind up
directly above or below a (oxide-coated) channel tile
from the other subdevice and there are some doped
tiles adjacent to the channel tile.

3 Two doped tile+ one from each subdevice-happen
t,o wind up touching If they are both of the same
type, a new (low-grade) electrical connection is made;
if they are of different types a junction diode is
formed.

The answer to 3, from Figure 2, is that the combination
process was random-often one of the subdevices is a simple
single tile.

The answer to 4 is more involved. Question 4 asked how
a synthesized device was evaluated. The steps involved here
are as follows:

First, a pass is made through the (unit. representing and
describing the) device to find all regions that are electri-
cally connected to each other permanently. This can

THE AI MAGAZINE Summer 1982 27

N2

N3
A-

N3

N4

Nl
-B

Nl

N4

0 0

Figure 5 The circuit Eurisko thought the device in Figure 4 was equivalent to

occur within a substrate layer (whenever two like-doped
tiles are adjacent) or within a met,al layer (whenever two
metal tiles are adjacent) or between two layers (whenever
a metal tile is above or below a doped tile). By finding
the transitive closure of such pairwise connectivities, the
entire device is partitioned into electrically connected
equivalence classes

Second, a pass is made to find all the possible gat,es (MOS
transistors) in the device. This occurs wherever a metal
tile is above or below a channel tile and (at least) a pair of
like-doped tiles are adjacent, to the channel tile. A rule
checks to see if the regions (equivalence classes) which
would be connected by this gate (were it “on”) are the
same. If so, this gate will always be a NO-OP and, hence,
can be ignored.

Once the gates are known, the device can be partitioned
by the equivalence relation “Might possibly be connected to,
by gates ” Ideally, one input terminal will exist for each
such region If more than one exists, a short might develop,
so special care must be taken in those cases. Additional
constraints are brought to bear. Finally, a set of all legal
divisions of terminals into inputs and outputs is computed.

For a given set of input terminals, all logical inputs
are computed and simulated through the circuit. Situations
involving “state” require more than one call on the simulator.
At this point, (some of) the I/O behavior of the device is
known.

28 THE AI MAGAZINE Summer 1982

The input/output behavior is then “parsed” into large1
functional units already known by the system In the case of
a device created from subdevices, t,his behavior will usually
refer to at least some of those subdevices. The basic elements
initially supplied were logical operators (such as AND), flip-
flops, stack cells, light controllers, 7-segment decoders, and
a large set of mathematical operations (such as factoring,
squaring, unioning, etc.) that were available essentially “for
free” as one of Eurisko’s earlier domains was elementary
mathematics. There was also a remote possibility that the
program would stumble onto a device whose behavior could
most easily be explained in terms of some Traveller fleet
battle operation, or some biological concept, etc., but this
never occurred.

Once the description of the device’s behavior is at as
high a level as possible, it is evaluated by a set of heuristics.
These check for such events as the following:

1. computing the same function as X, but in less time
or space or power;

2 computing the same functions as X and Y, but in
much less than the combined space;

3. symmetry; et,c

Thousands of hours of runs with this version of the pro-
gram (over t,he course of about one month-yes, we were
using multiple Dolphins) convinced us that the “hit rate” for
good devices was below one in a billion and gave us a healthy

RI gate oxide

Metal

tile
/

Figure 6 Side view of a gate augmented with a new metal tile

to make it more symmetric

respect for the size of the search space for even such small
devices as 3 X 3 X 3 ones.

Experiment 3: Eurisko Applied to
Best-first Generation at the Tile Level

Blindly searching for interesting microcircuit structures
is combinatorially too explosive to be profitable for even
very small devices. The solution was to remain true to
our paradigm of rule-guided heuristic search-that is, find
(eit,her manually or by having Eurisko discover them) some
heuristics which could guide the program toward plausible
new devices to consider. The legal move space was too
large LO have merely zmplauszble prunzng heuristics-most
of the generfition would have to be constrained by plauszble
generation heuristics. For this experiment, Eurisko remained
at the tile level, as described in the last section.

As we are exploring completely new territory, it is “fair”
to provide as much help as possible to the program Its
final evaluation will be in t,erms of genuine new discoveries it
motivated or made itself. With that in mind, we allowed
Eurisko to use all the very general, domain-independent
heuristics that it had accumulated from other domains.
These included some strategies such as noticing trends and
tendencies, augmenting structures to make them more sym-
metric, examining extreme cases, etc.

Previously, in the unguided search experiment, a new
small (3 X 3 X 3) device was synthesized every .9 second. Now,
with a hundred heuristics guiding the generation process, it
took about 30 seconds to produce each device design. These

times are for Xerox 1100’s (Dolphins) which currently run a
version of Eurisko at approximately l/4 the speed of Eurisko
on a DISC 2060.

Despite the slowdown of 1.5 orders of magnitude, the
frequency of valuable new devices rose from one in 10,000 to
one in 10. In fact, six of the first t,wclve devices turned out
to be exceptionally valuable. A symmetrizing heuristic was
responsible for them. Let us see how they arose.

In the very first case, the heuristic t,ook a highly valued
known device-a gate-and tried to make it more sym-
metric. If you look at the standard gate (Fig. 3), you

can see the same obvious addition to make it more sym-
metric, namely, add one metal tile below the channel tile (see
Fig. 6).

This symmetrized structure is quite important. It is an
efficient way to compute OR, as the two doped regions will
be at the same voltage level if either metal is high. (Recall
that all Channel tiles are coated with gate oxide both above
and below.)

One of the next few devices to emerge was the same
thing as the one depicted in Figure 6, but with p-doped
semiconductor regions instead of n-dopcd. This is a compact
way to compute NAND, as the doped regions are at the same
level unless both metals are high.

The very next device produced by the symmetry heuris-
tic was the one presented in Figure 7 It is the other, slightly
messier, way to symmetrize the g&e.

This device is also quite importa.nt. It, has a single
piece of metal controlling t,wo “poles.” Many circuits, fol
example, inverters, employ two gates whose control signals

THE N MAGAZINE Summer 1982 29

Figure 7 The second way Eurisko symmetrized a gate (side view)

are tied t,ogether. In three-dimensional microcircuit design,
both of these gates can be realized by the single device above,
thereby saving an extra metal tile (for the second gate) not
to mention several metal tiles which would have functioned
like a wire comlecting the two metal gate tiles.

The next device t,he heuristic produced was a slightly
less-preferred symmetrizing, less highly rated because it used
p as well as n tiles (see Fig. 8).

This device turned out, to have a very interesting be-
havior. When the metal is high, the two lower, n-doped
regions are connected electrically; when the metal is low,
the two upper, p-doped regions are connected This device
did not surprise Gibbons at all, as he had independently
come up with it earlier. It formed t,he building block for the
first high-rise chip ever produced, his one-gate-wide CMOS
inverter (Gibbons and Lee, 1980). When the input signal A
is high, the lower (n-doped) regions are connected, so the
rightmost n-doped region is 0 (low). But the rightmost n-

and p-doped tiles are both joined by a metal tile that is also
taken to be the out,put, so in this case the output is low.
Similarly, if the input A is low, a charmel forms across the
top and the output is high

The next device produced by the symmetry heuristic was
similar in mat,erials to the one above, but it was a horizontal
arrangement of them. Figure 9 provides a view of the device.

When the metal is high, the two n-doped tiles are con-
nected; when it is low, the two p-doped tiles are connected.
Note how this exploits the intrinsic nature of the central
channel tile capable of supporting a current of electrons or
of holes.

The next few symmetrizings were uninteresting The

30 THE Al MAGAZINE Summer 1982

twelfth one took the design from Figure 9 and added a gate
underneath it, t,hus making it more symmetric. This new
device, which we call the JMOS cross, is the building h1oc.k of
our current designs, a new design technology we call XMOS
(pronounced “cross-moss”). As shown in Figure 10, it can bc
used to compute both NAND and OR simultaneously and it
tesselates three space (it packs side to side and also on top
of each other), so t,hat in t,he long run we get these functions
at a cost of just one metal tile, one channel tile, one n-doped
tile, and one p-doped tile. It was extremely unintuitive that,
this could possibly be done at all before we saw this design
By not fixing two of the input,s t,o be 1, as we do in Figure 10,
more complex conditional expressions can be computed by
these devices.

Conclusions

One important choice for the VLSI design task is the level
of abstraction employed. The charge model needs a lot of
mathematical back-up to deal with the electrical properties
of t,he component interactions. This model operates rela-
tively closely to natural phenomena with little abstraction
The tile model, in contrast, retains enough geometrical
detail to keep us honest with respect to fabrication con-
straints along with enough electrical det,ail to determine
functional utility It ignores enough detail that thousands
of carrier-model-level devices map int,o the same t,ile-model-
level device. But even this is not sufficient in and of it-
self to allow random or systemat,ic search to be fruitful
A few heuristics had to be added to guide the search fo‘ol
plausible devices. Of thy csc, a symmetrizing heuristic had

9
1

A

0

-* NOT(A)

Figure 8 The third way Eurisko symmetrized a gate (side view) The electrical connections shown turn

it into a one-gate wide inverter The two metal tiles are not touching each other

Figure 9 The fourth symmetrizing (side view) The metal tile

is laid on top of, and obscures, the Channel tile Either the two
n-tiles or the two p-tiles will be electrically connected, depending

on whether the metal tile is (respectively) high or low

THE N MAGAZINE Summer 1982 31

Figure 10 A fifth symmetrizing, related to Figure 9’s but with an

extra piece of metal added In the center of the device is a Channel

tile (almost completely obscured in the figure) The Channel tile lies in
the same plane as the four doped tiles

great success-half of its first dozen suggestions turned out
to be valuable new devices. In a next try, we will probably
try to merge the best features of both the charged carrier and
the tile models, perhaps in a sequential way (i.e., worry more
carefully about, electrical details once an interesting lattice
arrangement is found)

The operation of the Eurisko program was satisfactory
In this new field, we were able to enter the knowledge for the
t,wo different models relatively easily. The existing learning
heuristics remained applicable. One of the conclusions from
earlier research on Eurisko was the import,ance of gcncrat,-
ing new, task-specific kinds of slots, as well as new heuris-
tics. This turned out to be true for the VLSI design task as
well, and in this article we have .illustrated several cases of
automatic and semi-automatic defining of new slot types.

Although it was expected, the futility of exhaustive
search --even at “the right level”-was strongly reinforced
WC do not, yet have a satisfact,ory understanding of ap-
propriate construction heuristics which provide a reasonable
hit rate on useful structures. Even our initial attempts at,
such heuristics paid off handsomely, however, so we are en-
couraged to cont,inue our investigation.

The discipline of thought required of us in trying this
comput,er applicat,ion was extremely valuable. In such a
new unexplored field, the organization of our thoughts into
a computer-digestible form led us by hand to the discovery
of several new devices and device possibilities which we shall
not catalog in this article One example of this was the not,ion

32 THE AI MAGAZINE Summer 1982

of doping a region only half-way down, thereby leading to a
new kind of precharging of devices provided they are not
retriggered too quickly.

,Just the act of representing knowledge in Eurisko oc-
casionally provided us with novel insights. The use of an
array-like data structure led to the notion of a circuit as a
lattice of regions (of a few t,ypes), ra.ther than the conveIl-
tional decomposition of it into small devices hooked togethel
by wires Some of Eurisko’s designs do have several metal

regions in a row, acting like a wire, but most of its useful
devices have few if any of these chains, and where they do

exit they are short and (most, of) those metal regions serve a
dual purpose such as acting as a gate.

There is no need t,o restrict ourselves to cubic tiles, OI

any sort of rectangular prismatic regions, of course. Going
to fish-and-gccsc might hc a bit, t,oo fa.r, however C:urrent,ly
Eurisko tesselates space with cylinders whose cross-section is
hexagonal. One problem with this is the difficulty obtaining
bathroom tiles with that shape, so it is hard to visualize
the designs Eurisko comes up with This is not a purely
whimsical dificult,y Seeing a set of designs, one for each
plane, spread out on a flat screen, makes it, arduous to trace
functionality. Some of this problem goes away by having
Eurisko describe what is going on at higher and higher levels
of functional abstraction. IJnfortunately, by the time it, can
do this for any given design, it is usually ready to move on

to the next one What was needed was a more nat,ural was
to visualize the 3-D structures.

To provide that power, we have equipped a doubly-wide
Dolphin display screen with a stereoscopic viewer so we can
literally see the structure Eurisko is considering at each
moment. We considered various methods for 3-D viewing
including varifocal mirrors, expensive optical image-fusing
setups, oscilla.tor-driven polarizing goggles, etc., and finally
found we could get by with an inexpensive fusion device-a
first-surface mirror held vertically near the bridge of one’s
nose Six other Ylat” windows on the Dolphin screen dis-
play further information to the user-the state of Eurisko’s
agendae, details of the current task and why it was chosen,
details of the current concept(s) being worked on, the heuris-
tics being applied to further the current task, etc.

We were also able to assess t,he expertise needed to do
the job. This expert,ise is quite wide ranging and includes
knowledge about geometry, semiconductor electronics, and
fabrication processing.

The most important conclusion is that there are indeed
many unintuitive, simple, yet powerful device designs lying
“near the surface” in the space of three-dimensional microcir-
cuits Heuristics which suggest plausible changes and com-
binations appear to be necessary and sufficient to economi-
cally find such devices Eurisko appears to be a promising
vehicle for exploring this space as it can find such heuristics,
even t,hough they may be counterintuitive to human beings.

Future Directions

Our efforts to date have reinforced our initial opinions
that this is a fruitful area of application of AI. We have
barely scratched the surface and considering the small effort
expended believe there is much paydirt to be mined. We offer
no claims that we have found the right level of representation
or abstraction yet. It is clear that much more exploration by
many more people will he required. In fact, it is likely that
the interplay of viewpoints from different a.pproaches will be
most productive. One such effort is described in Stefik and
Conway’s article elsewhere in this issue.

We certainly hope to see other levels of representation
and abstraction explored. Building an expert system with t,he
knowledge and mathematics needed for dealing with semi-
conductor properties at an electron/hole level is one clear
direction for future work That is, extending Experiment 1
could be profitSable.

Another promising direction is to incorporate more
knowledge about fabrication processes and equipment. As
mentioned before, the computerization of fabrication equip-
ment is making fabrication knowledge and parameters more
precise. Additionally, computer controlled equipment could
directly use processing commands derived from a knowledgc-
based process design system. Such a related application of
process design as opposed to device design will require a
solid knowledge base of semiconductor and related material
properties. To give one simple example, a device may be
no faster, use no less power, etc. than an old design, yet be
highly prized because it requires fewer masks to produce.

The novel feature of an AI system working in an emerg-
ing field alongside people who are just learning their expertise
deserves careful scrutiny. Trying to do this in another quite
unrelated field could provide valuable insight about heuris-
tics for learning.

We note again that the traditional paradigm for micro-
electronics is design, fabrication, and test. These three
steps are performed serially-one is completed before the
next begins. It is now becoming possible to merge these
three. Computer systems process the design data, cont,rol
the fabrication, and run the tests. By coordinating the pro-
grams that do these activities, a real and new integration
of the microelectronic construction process is possible. Our
little exploration has helped to convince us of this poten-
tial. We discussed in the article the possibility of fabricating
with the power on, testing (each pa.rt, of) each layer as it is
deposited. Low yield regions might cause rapid redesign of
the rest of that layer In exceptional cases the entire layer
could be evaporated and tried over again. “Backup” would
finally have been pushed not merely to the hardware level,
but to the level of fabrication of hardware!

Our final remark is a strategic one on the possibility
of major industrial or national impact if this AI application
can be successfully pursued. As we enter the era of VLSI

technology, there are shortages of critical people, an explo-
sion of design complexity, and increasingly aggra,vating test
requirements, to name only a few of the problems hinder-
ing the field. The advent of three-dimensional VIST t,echnol-
ogy explodes t,he magnitude of all of those problems. Any
industrial firm or nation which could successfully devote a
large number of computation cycles on a sustained basis to
intelligent exploration of microelectronic design, fabrication,
and test possibilities would certainly be ahead. We enjoy the
dream.

References

Dankel, D D., II, (1979) Browsing in large dat,a bases IJCAI 6,
188-190

Davis, R., & Lenat, D. B. (Eds) (1981) Knowledge-based systems
in artificial intelligence. New York: McGraw-Hill

Feigenbaum, E. A. (1977) The art of artificial intelligence:
I. Themes and case studies in knowledge engineering. IJCAI 5,
1014~1029

Gibbons, J., & Lee, K (1980) One-gate-wide CMOS inverter
on laser-recrystallized polysilicon IEEE Electron Device Letters
IXDL-1, 6.

Lee, K F., Gibbons, .J., Saraswat, K. C , Kamins, T I., Lam,
H. W , Tasch, A T , & Holloway, T. C. (Eds) (1978) AlP
Conference Proceedings

Lenat, D B (1982a) Eurisko: Discovery of heuristics by heuristic
search. Working paper, Computer Science Dept., Stanford
University.

Lenat, D. B. (1982b) The nature of heuristics. Artzficzal Intel-
ligence

Polya, G. (1945) How to solve it Princeton, N.J.: Princeton ITnivcr-
sity Press

THE AI MAGAZINE Summer 1982 33

