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Abstract 
The AI field needs major breakthroughs in its thinking to 

achieve continuous, sensory-gathered, machine learning from the 
environment on unlimited subjects. The way to motivate such 
dramatic progress is to articulate and endorse research goals for 
machine behavior so ambitious that limited-domain, problem- 
solving knowledge representation methods are disqualified at the 
outset, thus forcing ourselves to produce valuable new “thought- 
ware”. After exploring why the tendency to associate intelli- 
gence with problem-solving may be a mental roadblock to fur- 
ther progress in AI science, some preliminary thinking tools are 
introduced more suitable for sensory learning machine rcscarch 
These include lifelong sensorimotor data streams, representation 
as a symbolic recording process, knowledge transmission, and the 
totality of knowledge. 

One day, Professor Nokemoff, a distinguished AI pro- 
fessor of robotics at a leading institution, called in a grad 
student to hand out a thesis project. “Build me a robot that 
can sort two different parts coming down a conveyor belt. 
Give me a call when you’re ready for a demonstration.” Six 
months later, the student called the professor down to the 
lab, and demonstrated the requested skill by having the eye- 
hand system look at each part, then lift it and place it on 
one of two respective pallets. The student received his Ph.D. 

Next semester, the professor called in another grad stu- 
dent looking for a thesis topic. 

“Build me a robot that can grasp a part out of a jumbled 
bin of identical parts. When you get something working, give 
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me a call.” Nine months later, the student called the profes- 
sor down to the lab and, sure enough, the robot, repeatedly 
dipped its hand into the bin and each time came up with 
exactly one part. The student received his Ph.D and a very 
lucrative job in industry. 

The following semester, the professor called in still an- 
other grad student and amiounced this thesis project: 

“Build me a robot that can completely assemble a Sears 
IO-speed bicycle. When you’re ready to show me something, 
give me a call.” Undaunted by the challenge, and supported 
by a generous equipment budget, the student pressed forward 
and, one year later, called the professor down to the lab to 
witness a complicated three-hour procedure where, starting 
with all the parts and assembly tools neatly laid out on a 
table, the bike was put together on a bike stand piece by 
piece to completion. The student received his Ph.D and bot,h 
hc and the robot went on to lucrative jobs in industry. 

The next semester rolled around, and Professor Noke- 
moff, reflecting on his students’ past string of noteworthy 
successes, was beginning to bristle slightly at the thought of 
giving out projects that were too easy. It just so happened 
that, around this same time a new grad student, a real eager 
beaver, was looking for a thesis topic. Smelling an opportu- 
nity, the professor called him in. 

“Build me a robot that can ride a bicycle across town 
and back, go down to Motor Vehicles and obtain a California 
driver’s license, play six innings of baseball, cook a gourmet 
dinner, and finish up with a rendition of Stephen Foster’s 
‘Oh Susannah’ played on piano.” The stud&, taken aback 
but not totally deflated as he got up and headed for the door, 
offered sarcastically “Anything else?” “Oh.. .” the professor 
shot back, “and when you think you’re finished, don’t call 
mc-have the robot come tell me in person.” 

In the preceding story, the professor’s frustration 
stemmed from a gut feeling, one shared by a growing number 
of Nokemoff’s nonfictional colleagues, that even after finding 
solutions to the parts-bin problem nud light assembly tasks 
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on the order of a lo-speed bike, or hundreds of other simi- 
lar problems that subsume a well-defined goal in a narrowly 
constrained environment, we may emerge no better in terms 
of understanding how intelligence works. 

Indeed, the operative paradigm in experimental AI of 
selecting a domain and building a system that solves a prob- 
lem within it may have nearly outlived its usefulness, from 
the standpoint of gathering new scientific knowledge about 
intelligence. This article begins with the professor’s chal- 
lenge, and moves on to examine why the “problem-solving” 
paradigm may be a roadblock to further progress in AI. It 
suggests an alternative paradigm whose emphasis is on ma- 
chine versatility, or the ability to do a great number of tasks 
in a great number of environments. Finally, it proposes some 
specific conceptual tools with which to embark into this new, 
uncharted territory. 

The Challenge of Versatility 

The thesis project the professor hands out at the end of 
the story roughly articulates the next major challenge facing 
the field of AI research -versatile behavior in unconstrained 
environments. The professor’s intent was not merely to have 
his student program five separate “experts” at bicycle riding, 
automobile driving, baseball playing, gourmet cooking, and 
piano playing, all packaged into one device. Were his stu- 
dent to head off in this direction, the professor would merely 
lengthen the list (as he nonchalantly does in the story punch- 
line), or better yet, impose increasingly vague requirements 
such as, 

“I really meant that I want the robot to be able to 
do complex sensory-motor tasks like ride a bike 
and drive a car. I’ll tell you the exact tasks I want 
to see performed the day of your final project 
review.” 

The professor’s intent in naming five or six areas of com- 
petence instead of one was clearly to challenge his student 
to come up with a mlified approach that can underlie the 
attainment of such diverse skills. 

Another aspect of Nokemoff’s previous students’ projects 
that bothered him was the degree to which his students 
were redesigning the robot’s work environment to make the 
problem easier. For example, in the parts-sorting problem, 
the conveyor belt was painted white in order to exploit a 
silhouette-imaging technique. It kept getting greasy and had 
to be wiped off frequently by the experimenters lest the ma- 
chine become confused. The parts-bin problem was solved 
using some esoteric %tructured” light sources, and the bicy- 
cle parts had to be laid out just so or else the robot would 
quit in midstream After a few of these experiences, the pro- 
fessor realized that he could continue indefinitely giving out 
Ph.D’s for laboratory demonstrations of single-task behav- 
ior, but that without the additional requirement that the 
task be performable with robustness in the face of environ- 
mental variety, not much was being learned about intelligent 
robotics. 

Thus, the challenge given to the ambitious student takes 
the robot out of the laboratory and puts it on the street. 
Passing a driving test for a California license denies the ex- 
perimenter the luxury of painting a special stripe on the 
road in advance. The route will remain unknown until the 
last minute or seconds during the test, and the robot will 
have to communicate naturally with the DMV inspector to 
receive directions. You cannot seriously entertain the notion 
of patching together the best speech recognition, natural lan- 
guage, voice synthesis, image understanding, and rule-based 
planning AI programs to achieve this amazing feat. Some- 
thing much more integrated is called for. Something much 
more elegant. 

It was on this gut feeling that the professor gave out the 
versatility problem. By making the project so outrageously 
ambitious, he hoped to force his student to quickly abandon 
existing methods and to invent some new ones better suited 
to a more holistic, robust machiue intelligence. And he knew 
that, should these new methods emerge, they would certainly 
be worth more than a Ph.D and a well-paying job in indus- 
try. More likely than not, they would earn their creator(s) a 
Nobel Prize in Artificial Intelligence. 

The Problem With Problem Solving 

The idea of studying isolated instances of behavior, per- 
ception, and language, as an alternative to the more intim- 
idating and complex issue of intelligent behavior in its to- 
tality, is firmly entrenched. The overwhelming adherence 
to this reductionistic strategy throughout experimental psy- 
chology and AI accounts for the fact that more and more 
papers can be published, I’h.D’s awarded, and conferences 
held with each passing year without the allied cognitive sci- 
ence community progressing at a coucomitant frenzy towards 
a concensus understanding of how intelligence works. De- 
spite this effort to break the complex problem down into 
simpler pieces, and despite notable success with the smaller 
pieces (z.e., expert systems), fundamental aspects of intelli- 
gence remain unsolved. One of the more persistent of these, 
ironically, is the question of how the brain chops a contin- 
uous stream of input sensation and output behavior apart 
into discrete phenomena. This is the segmentation problem. 
In order for these reductionistically oriented researchers to 
be able to discern subproblems of intelligence and isolate 
variables, they more or less have to take their own internal 
segmentation process for granted It makes them see the 
pieces. 

The legacy of reductionism for AI has been a method- 
ology that concentrates on constrained problem “spaces.” 
While impressive accomplishments have come out of this re- 
search paradigm, problem-solving methods seem to be 
strapped when it, comes to the challenge of open-ended, vcr- 
satile intelligence such as the professor has posed. In lieu of 
being able to explain clearly why this is so at this stage of 
the game, some clues can be offered. 
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castling 

Chess World. 

Figure 1. 

Clue #l: 
Prerequisite Knowledge and Time Order 
of Knowledge Acquisition. 

The knowledge representation problem concerns the ques- 
tion of how to come up with mapping from the external world 
to a discrete symbol system inside the computer. It is rel- 
atively easy to define all possible states of the world, for 
example, when the world consists of a game of chess, by 
coining abstract symbols for all the “pieces” of this world 
z.e., the players, the chessmen, board positions, legal moves 
(expressed in terms of the preceding symbols), and the ob- 
ject of the game. It is hard to carry this same approach over 
into the world of automobile driving. The difficulty isn’t so 
much in coming up with discrete symbols that apply (e.g., 
steering wheel, accelerator, intersection, and red light). The 
difficulty is in circumscribing all of them. The chess world 
has nice clean boundaries at the edge of its symbol system, as 
shown in Figure 1, whereas in the driving problem, it, seems 

that the symbol system peters out fuzzily into an enormous 
underlying pyramid of commonsense knowledge (see Figure 
2). 

The problem with trying to isolate driving-world knowl- 
edge can be explained as a violation of the principle of pre- 
requisite knowledge, or the notion that the time order best, 
suited for acquiring symbols into a knowledge base requires 
symbols written ‘Lon top of)l other symbols to come later than 
them. It seems that driving knowledge would be a lot eas- 
ier to ‘Lwrite” after the commonsensc knowledge is already 
in place, because the driving symbols want to be written 
borrowing symbols from the commonsense knowledge. 

Let’s go back to the chess world for a moment. What 
order makes sense for putting new symbols into the chess 
knowledge? Let’s suppose you choose to begin your chess 
knowledge base by creating a symbol standing for castling. 
Some of the elements you wish to associate under castling are 
when it’s legal, when it’s advisable, and which pieces move 
where. You decide to t,ackle t,he when-castling-is-advisable 

accelerator 

Driving World. 

Figure 2. 

62 THE AI MAGAZINE Winter, 1985 



branch first, inserting placeholding stubs for the other two 
symbol branches. The problem is that castling is not possi- 
ble to express until symbols for such basic elements as king, 
queen, and board position are available for use in construct- 
ing its definition. It makes more sense to start with symbols 
for board positions and the chessmen, as these symbols are 
general purpose with respect to symbols that will come later. 
King will be referenced in defining castling, check, and check- 
mate, for example. In knowledge acquisition, it is easiest to 
acquire a symbol when all the referents needed to tie down 
its meaning are already in place. 

A heuristic programmer working on the driving prob- 
lem would probably start with obvious symbols like acceler- 
ator, red light, steering wheel, and only after digging very 
deeply into the subject would come across obscure but nec- 
essary symbols for elements like ball-rolling-into-street-in- 
front-of-car and gasoline-spills-over-while-filling-tank. When 
confronted with adding these latter symbols to the knowl- 
edge base, the programmer is in the same fix as he’d be in 
with the chess world if he tried to define castling before king, 
queen, and position. The necessary prerequisite symbols just 
aren’t there. 

The alternative time order of knowledge acquisition alle- 
viates the problem. If prerequisite symbols for kids-playing 
and ball-rolls-into-street already exist, a symbol relating such 
as a driving hazard to the apply-brake response is easy to in- 
corporate. The knowledge about kids playing with a ball is 
general-purpose: it can be used as an ingredient for defining 
any symbol that comes into the knowledge base after it is in 
place. Figure 3 summarizes the critical time order of symbol 
tcquisition due to the principle of prerequisite knowledge. 

Prerequisite Knowledge. 

Figure 3. 

Simply stated, heuristic programming won’t work for 
building a car-driving robot because it approaches knowl- 
edge acquisition in the wrong time order. Merely to think of 
“driving knowledge” as a domain starts the researcher off on 
the wrong foot. Driving knowledge needs to be written on 
top of, and after, commonsense knowledge gathered in child- 
hood, and this prerequisite knowledge is good for learning 

many tasks besides driving. It is just sitting there for sub- 
sequent use in acquiring any new symbols. Similarly, once 
driving symbols have beeu incorporated, they too become 
available for general-purpose use in subsequent knowledge 
acquisition. From this vantage, it doesn’t make sense to di- 
vide knowledge into categories such as chess, or driving, or 
commonsense-better to look at it as a holistic fabric that 
serves as raw material for its ongoing expansion. 

So, the professor’s student already has a solid clue about 
machine versatility: Forget about knowledge domains, and 
concentrate instead on knowledge acquisition into a holistic 
symbol system, being careful to swim with the current of pre- 
requisite knowledge rather than against it. In other words, 
collect knowledge so you can collect some more! 

Clue #2: 
Problems Whose Goals Are Ongoing. 

Unfortunately, we cannot approach the problem of gener- 
al purpose experiential knowledge acquisition as a “problem” 
to be “solved” in the classical sense of formal problem-solving 
methods (Le., theorem proving). It is more to be “worked 
on”-the goal is to maintain an ongoing process, not to at- 
tain a final state. 

Several intriguing problems are extremely pertinent to 
intelligence with this flavor. Au example of such a process 
problem: 

Organize a symbolic recording of an ongoing 
stream of fly-by sensory data, on the fly, such 
that at any given time as much as possible can 
be quickly remembered of the entire stream. 

This is the sensory-learning problem. In the formula- 
tion of this research goal, note that no distinction exists be- 
tween visual, auditory, or tactile data-they are all funneled 
into the same stream before processing. An exteusion of the 
sensory-learning problem is the sensory-motor learning prob- 
lem, where the stream of output effector data is poured in 
with the sensor stream to form the thing that must be com- 
mitted to a compressed, symbolic recording. The traditional 
viewpoint would ask, “What’s the purpose of organizing all 
this sensory-motor data-i.e., what do you want to acconl- 
plish using it?” There are two answers, neither very satis- 
fying to the researcher acclimated to expert-systems think- 
ing: You need this symbolic heap to support a whole host 
of worldly tasks too numerous to mention (and too versatile 
to know in advance), and you need it to plow back into the 
process of recording future sensory-motor data symbols. 

If our analysis is correct that the car-driving problem will 
be easier if built on top of a base of commonscnsc knowledge 
good for other tasks besides driving, then this suggests that 
we might make progress in AI by backing away from a preoc- 
cupation with domain-specific problem solving, aud conceu- 
trate on the problem of acquiring and organizing knowledge 
for its own sake. This is the thrust of sensory learning re- 
search. 

Some other problems that share the same, nonformal 
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flavor as the sensory learning problem are as follows: 
Construct a robot whose repertoire of skills is 
continually expandable in the direction desired 
by its human master, and that communicates 
naturally through its sensory-motor peripherals. 

Design a user-machine interface that consistently 
makes good use of its user’s past experience in 
communicating information. 

These are open-ended problems, never completed, which 
nonetheless must solve a multitude of diverse worldly prob- 
lems, as innocuous side effects of the overall mandate, along 
the way. The difference between this, and artificial intelli- 
gence conceived to solve problems as we’ve used in the past, 
is mostly one of higher expectations. A final example of a 
process-problem: Imitate a Human. 

This is Alan Turing’s well known formulation of the goal 
of artificial intelligence research (Turing, 1950). Turing’s 
test calls for the kind of versatility captured in the profes- 
sor’s challenge, as opposed to the isolated islands of problem- 
solving ability we now have in medical diagnosis and gcologi- 
cal survey programs. The goal of the Turing Test is ongoing, 
and it cannot be neatly expressed in a closed formalism. 

The second clue, then, is to begin looking at intelligence 
not as the ability to solve problems, but as the ability to 
learn a continuing thread of new thoughts. 

Clue #3: 
The Chicken and the Egg Problem in Vision. 

Which came first, the world or the image? This question 
pops up often in computer vision research. If we read a 
viewpoint into such titles as “Recovering Depth Information 
from Illumination” and “Shape from Shading,” we find the 
more prevalent viewpoint, which I call 

The CHICKEN: The physical world behaves in ac- 
cordance with established optical laws, such that the 
light field collected on the retina can be explained in 
terms of external considerations such as an object’s 
position, dimensions, shape, surface reflectance, and 
the calorimetric makeup of light sources and relative 
positions of lights, objects and camera. So, in terms 
of cause and effect, the world precedes the image it 
casts. 

From the point of view of this belief system, the goal of 
vision is to work backwards from the image, computationally 
speaking, to such a physical description of the world. One 
of the embarrassing questions one can ask the CHICKEN 
worshipper is “DO you mean to say that, no matter what 
I point the camera toward, physics can completely explain 
why the image is exactly the way it is? What if I point it 
toward an ocean scene with billowing cumulus clouds hovcr- 
ing over giant wave crests that glisten in the sun and break 
into whitecaps near the shoreline? What physical parame- 
ters and equations determine the image intensities in that 
scene?” 

Clearly, physics models of image formation apply only 
to idealized worlds. For example, the Lambertian reflectance 
model was initially worked out for a point source of mono- 
chromatic light shining on a white spherical object of uniform 
surface reflectance against a backdrop of dark, empty space. 
This is a far cry from the busy street scenes that will greet 
the professor’s student’s robot when it goes out for a drive 
or a bike ride. Why haven’t physicists attacked the problem 
of trying to explain the light levels in a busy street scene in 
terms of physical parameters? It doesn’t make much scnsc 
to assume that there is a physical description for an arbi- 
trary street scene. Thus, when you get right down to it, 
Chicken-think is founded on lessons bounded by extreme cn- 
vironmental simplicity. One senses that these lessons have 
been the victim of overzealous generalization in the name of 
religion. 

Let’s look at the other side of the coin, the EGG position: 

The EGG: No ontological, physical world exists in- 
dependent of the observer The observer collects a 
sensory data stream and commits it to memory on 
the fly, and the result is an expanding symbol system 
that constitutes the world of the observer. In terms 
of cause and effect, the sensory data stream is the 
cause, and world model formation is the effect. 

The best part about this belief system is that it ap- 
plies universally to whatever you put, in front of the camera, 
whether ocean landscapes, busy street scenes, or white balls 
hanging in a black void. This is a distinct advantage if the 
objective is vision versatility. 

I suspect that the difference between “isolated world” 
machine vision such as we have now and the versatile kind 
the professor has asked for is intimately hinged to the di- 
rection we lean on the chicken and the egg matter. That 
is, it’s a matter of deep religious conviction. I took a B.S. 
in physics, and was properly inculcated as a young man in 
physics-world religion. I took ten years to convert to the 
other viewpoint. We’re fortunate to live in an age of great 
freedom. I’m basically pragmatic: CHICKEN has taken us 
through this far, and EGG can take us much further in the 
future. If you’ve been wanting to try your hand at tolerating 
ambiguity, here’s a chance to straddle two complcmcntary, 
deep-seated belief systems. 

I don’t feel enough has been done with the EGG religion 
yet to really compare it with the hard physics viewpoint. 
It is encouraging to see awakening interest in discovery of 
structure and “nonaccidentalness” as a unifying theme in 
vision (Witkin and Tenenbaum, 1983; Lowe and Binford, 
1983). From an early vantage, it seems that Egg-think of- 
fers a world view better able to explain knowledge acquisi- 
tion than physics. In Egg-think, the world is only the to- 
tality of what has become known so far by each individual. 
The physics world exists quite iudependently of either the 
sensory-gathering or knowing process, and fails to account 
for most of the richness, complexity, and change we know 
exist. 
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carpet unrolled: 
associations 

now 

R.olling-up-a-Carpet-on-a-Spool Metaphor of Intelligence. 

Figure 4. 

Equipped with the third clue, the professor’s protdgC will “DO you remember the time we poured vodka 
be skeptical of processing ideas that work well with certain down Jimmy’s drawers?” 
inputs but fall short of full generality. When somebody tries 
to pass off a physical world model on him, he will ask for a 
physical account of why an individual who visits the exact 
same place twice will learn more about it on his second visit. 

Clue #4: 
Context in Natural Language. 

Just like their counterparts in robotics and vision re- 
search, speech recognition and natural language [NL] inves- 
tigators tend to focus on specific “problems.” Ask these re- 
searchers if what they’re interested in is an understanding 
of how all instances of language communication work, and 
they will say the problem is too hard-come back in 25 to 50 
years. For now, we’re interested in limited-domain discourse. 

The parallels between the stance in NL, robotics, vi- 
sion, and speech are striking. In each an overwhehning ten- 
dency has been to treat the input as ob,jective, or having 
basically the same meaning regardless of whom it is input 
to. Since long before Noam Chomsky, I think people inter- 
ested in understanding how language communication works 
have secretly hoped that the meaning of words and speech 
utterances could be reliably assigned without having to drag 
into the picture the entire experience of the receiver from 
day one But the utterance between two old buddies: 

and its immediate evoking of recall suggest that language can 
connect with potentially anything in the experience stream of 
the listener. Thus, the context that must be considered to as- 
sign meaning to this utterance, far from being something that 
can be found by backing up a few sentences, is everything 
that has ever happened to the listener. Moreover, the above 
utterance, fed into another listener, will probably evoke a 
confused “Huh?” That is, the information value is entirely 
subjective, depending on the individual listener’s previous 
experience. Nils Nilsson’s proposal to work on a computer 
individual with continuing existence (Nilsson, 1983) signals 
a move in the right direction. Figure 4 shows a metaphor of 
subjective, cxpcriential intelligence as a carpet being rolled 
up on a spool. 

Limited-domain discourse tends to reinforce the oppo- 
site intuition-namely that utterances have objective mean- 
ings, and the job of the NL system is to figure them out. If 
you recall from the discussion of how difficult it would be to 
program a car-driving robot, heuristically, the problem was 
traced to lack of prerequisite knowledge. The natural lan- 
guage researcher who tries to isolate the subset of language 
knowledge needed to discuss medical diagnosis only has wan- 
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dered into the same forbidding territory. If doctors are to be 
allowed to say things to the computer like “His liver is the 
size of a football,” or “Order me about a mile of suture, this 
guy’s going to need it,” then somewhere along the line NL 
researchers are going to have to give up the idea that medical 
knowledge and medical language knowledge can be cleanly 
dissected from any other knowledge. Marv Minsky’s Webs of 
Meaning concept (Minsky, 1983), the idea that the meaning 
of something lies in the way it connects to all other things 
we know, represents a shift toward a more holistic view of 
knowledge. 

The fourth clue, then, is that, context is not to be feared, 
but a vital resource that bestows intelligence. Efforts to limit 
context to the immcdiatc past, or to a particular subject 
matter, are entirely counterproductive. 

Clue #5: 
AI Science Needs a Totality of Knowledge Concept. 

Another aspect, of NL research that fits a “pattern” with 
vision, robotics, and speech research is that no suitable defi- 
nition is given to exhaustively delimit the scope of language 
communication. It is easy to point out examples of purpo- 
sive communication not covered by natural language stud- 
ies, such as body language, nonspellable vocal sounds, vocal 
intonation, showing a child how to tie his shoes, and in- 
terpersonal touching. There is no attempt in NL research 
to throw a lasso around the subject of investigation. Until 
Dmitri Mendelyeev came along with his chart of the ele- 
ments, chemistry was in a similar position. As a science, AI 
would be on a much sounder footing if for instance, language 
researchers had a way of circumscribing, in a nutshell, all 
that is communicable, or if vision scientists had a statement 
of all that is viewable. But, a considerable overlap region 
exists between these two; what would be better is an um- 
brella covering everything, a Totality of Knowledge concept. 
Working from such a unifying platform, the efforts of indi- 
vidual researchers and laboratories would bc more likely to 
have wide application elsewhere. 

Problem-solving AI does not strive for a totality concept. 
Indeed, in order to be judged as valid research, proposals 
must “adequately constrain” the range of effects, inputs, en- 
vironments, behaviors, and goals that will be studied. If we 
look at the terms used to express limits of research inter- 
est, say in speech recognition research, a certain number of 
words, spoken by a number of speakers, in a limited subject 
category is typical. The question of what constitutes the to- 
tality of all words never enters in, nor does the question of 
the tot,ality of subjects one can speak on. These troublespots 
are avoided. 

The corresponding difficulty in computer vision surfaces 
as the problem of defining all the objects that can be viewed 
in the universe. Not only would it be impossible to exhaus- 
tively describe the totality of objects, but such an imaginary 
category “leaks” as a totality concept when it comes to non- 
physical, viewable elements like rainbows, wrinkles in cloth- 
ing, images projected on a screen, a person scratching his 

forehead, and the list goes on and on. 
Natural language people have their words, sentences, and 

subject domains. Vision people have their objects and im- 
ages. Signal interpretation people have their signals and 
emitting sources. Nobody in AI has put a finger on the whole 
ball of wax, nor does it seem necessary to do so as long as 
limited-world problem-solving is the stated objective of each 
AI project. That’s how the professor’s challenge blows past 
AI thinking out of the water! It forces you to look at the 
whole ball of wax! At the Totality of Knowledge! That’s 
clue #5. 

Clue #S: 
Segmenting Totality. 

Natural language, speech recognition, and vision work- 
ers make the cognition problem inordinately easier (in the 
short run!) by seeing to it that the computer’s input already 
comes “chopped up.” For instance, NL researchers tend to 
conceptualize language in terms of sentences, and are will- 
ing to program this concept into the machine at a very low, 
mechanical level, by giving punctuation marks a terminator 
status, or by signaling sentence completion with a carriage 
return. Story understanding systems are “told” a new story 
is starting with a formal language token. In this manner, the 
experimenter pre-segments the AI program’s lifetime input, 
in a sense dictating, a priori, which parts of the input have 
more to do with each other, and which parts have less to do 
with each other. 

Similarly, in image understanding, the camera is ordi- 
narily given a still “scene” to analyze or, in the case of mo- 
tion vision, a short segment that brackets the action under 
study. In the lifetime of such systems, many input samples, 
or problems, are received, and it is not normally expected 
that the image understanding process decide for itself when 
an old problem ends and a new one begins. The experimenter 
makes this decision. 

Segmentation is an area where a clear line separates ex- 
isting machine intelligence and human intelligence. The hu- 
man can do it, and he must do it in order to conduct limited- 
domain, problem-solving AI research. Otherwise he wouldn’t 
be able to articulate the domain of specialization and the 
primitive objects considered essential to build knowledge on 
top of-the axiomization stage of knowledge engineering. 

In contemplating the professor’s challenge, I doubt if 
anyone would particularly care to axiomatize all the features 
and objects, parameters, and slots that the robot will need 
to go down to the DMV and pass a driving test. WC need 
to offload the segmentation problem (What goes with what? 
And what is left unconnected after deciding what goes with 
what?) onto the computer. We need to work on machine 
segmentation of totality, and that’s clue #S. 

Before this challenge can be undertaken, we need the to- 
tality statement talked about earlier, so we can clearly define 
just what that totality is that needs to be segmented. I will 
propose such a definition shortly. 
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Clue #7: 
Intercommunicability and Knowledge Transmission. 

Part of the professor’s challenge rests on the notion that 
intelligence is much more about being richly connected with 
the outside world and all its myriad sources of intelligence, 
than with shuffling around symbols to solve a problem in a 
closed logical system. The proposition that we move beyond 
isolated islands of intelligence toward a more versatile, “open 
systems” brand of smarts can be interpreted as a direct man- 
date to incorporate stronger concepts for knowledge acquisi- 
ton and knowledge transmission (machine-machine commu- 
nication) into the next “generation” AI paradigm. 

It appears that logic and deductive inference as a theo- 
retical foundation has reached an asymptote in terms of the 
degree of intelligence that can be achieved. By no coinci- 
dence, logic theory offers nothing in the way of insight about 
knowledge acquisition and transmission. The very founda- 
tion of logic, factual propositions such as 

Man Is a Biped. John is a Man. 

are tainted by the quality of being observerless, or indepen- 
dent of any knowledge-gathering process. They should re- 
mind us of Lambert’s white ball, whose reflected intensities 
exist independently of whether or not they happen to be col- 
lected on a camera surface. Both are instances of what I have 
come to recognize over the years as an unspoken, unwritten, 
yet thoroughly institutionalized “style” of formalizing knowl- 
edge, where knowledge is stripped of its origin. 

Back to the issue of knowledge representation-the job 
of mapping worldly things into coded symbols in the com- 
puter: If, as has been the case up until now, this job is 
performed by the AI experimenter, then to a certain extent 
the knowledge in the AI program is tied indirectly to the 
outside world through the eyes, ears, and grey matter of its 
programmer. To say that Bacon (Langley, Bradshaw and 
Simon, 1981) discovered Kepler’s Law overlooks the simple 
verities that (1) Bacon could never have done it if Langley 
et al. had never heard of the planets, the Copernican model, 
orbits, time measurement, and the like, and (2) Bacon didn’t 
announce its discovery to the world, Langley did. This re- 
minds me a little bit of giving a difficult chemistry problem 
to a chemistry student with a pocket calculator, and then 
when he solves it, giving credit to the calculator for knowing 
chemistry. Admittedly, this analogy is a bit extreme, but it 
does contain the seeds of some truth. Lenat and Brown have 
acknowledged the role they as scientists played in attributing 
“meaning” to machine-discovered symbols, in their insightful 
and candid retrospective on AM (Lenat & Brown, 1983). So 
long as a human is needed as a go-between connecting the AI 
program’s terminal symbols (i.e., literal at,oms) and the out- 
side world i.e., so long as representation is tied off manually, 
knowledge acquisition and transmission will resist scientific 
explanation, and the role of the AI experimenter’s KA and 
KT ability in making his computer look smart will have to 
be subtracted from the credit given the machine. More im- 
portantly, if knowledge acquisition and transmission can be 

automated, it will be fast and inexpensive to put knowledge 
into computer systems, and to have computers share what 
they know with each other when desirable by their human 
masters. 

I have come to the conclusion that the knowledge rep- 
resentation problem needs to be reframed so as to place the 
entire burden of worldly connectedness on the computer, us- 
ing sensorimotor data streams as the connecting interface. 
The brain would consist of a hardware or firmware repre- 
sentation process that records and compresses the lifetime 
sensory-motor data stream as it is being collected. Symbols 
standing for patterns would be induced and recorded. At 
least then, the computer could maintain a traceable link be- 
tween the outside world (i.e., the peripheral I/O data stream) 
and its internal symbol system, having created this mapping 
itself. (If these ideas seem new and crazy to you, you’re not 
alone-I feel the same way. It may take two or three years 
to see where this kind of thinking will lead, and then some. 
Right now, though, we should be satisfied that new ideas 
offer strengths in exactly the same places current AI beliefs 
are weakest--r.e., in learning and totality.) 

It would benefit AI to give the topic of knowledge rep- 
resentation a fresh, new hearing, this time working with a 
strong approach to knowledge acquisition, segmentation, life- 
long data streams, and transmission of knowledge. We will, 
I am almost certain, need a fresh theory of knowledge strong 
in these areas in order to achieve the professor’s goal of ma- 
chine versatility. Once this theory is hammered out, I think 
it will become clear how the robot will be able to learn what 
it will need to pass the versatility demonstration, and people 
will believe it can be done before the robot has even been 
built. Such is my optimism. 

But before this, we need to break out of the “mind set” of 
some previous conceptions. To review seven clues for shifting 
our thinking: 

1. 

2. 

3. 

4. 

5 

6. 

7. 

Be aware of prerequisite knowledge and the crucial role it 
plays in time-order of knowledge acquisition 
Collect knowledge for its own sake in an ongoing process, and 
renew your allegiance to Turing’s goal statement. 
The world isn’t really out there, it’s all in your mind. Prepare 
for religious conversion to Egg-think 
Enlarge context to the maximum, so that informative value 
of input depends on everything that has come before. 
Get your hands on a good totality of knowledge concept be- 
fore going further 
Make the machine responsible for segmentation Give it only 
one very, very long, ongoing input “sentence”. 
Acquire and transmit knowledge through sensorimotor I/O 
streams; be able to trace meaning of all internal symbols 
formed. 

Future Directions 

From the preceding exploration of why existing methods 
are not up to the task of versatile intelligence, we can begin 
to see a rough outline of some new methods taking shape. 
The strong points of these new thinking tools will be not 
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The External World of the Individual. 

Figure 5. 

domain-restricted problem solving, but long-term knowledge 
aggregation for general purpose utilization. 

Thinking Tool #l: Lifelong Data Streams 
We need to begin thinking of intelligence, behavior, the 

external environment, and communication in terms of their 
totality over the lifetime of the indivzdual antelligent ma- 
chine. How can this be done? One way to get a handle 
on this totality is to define the external world separately for 
each individual as being the lifelong stream of data crossing 
the sensory-motor periphery. Notice that the external world, 
so defined, extends into the indefinite future (Figure 5). This 
leads to the following Totality of Knowledge claim: Can you 

think of any knowledge you either have now or can acquire 
in the future that is not expressed in this data stream? 

If you are uncomfortable with the idea of equating the to- 
tality of knowledge with the totality of your personal knowl- 
edge, then throw in the lifelong, peripheral data streams of 
everyone else as a way to circumscribe the Totality of Knowl- 
edge (Figure 6). 

I’m satisfied with the first formulationPit doesn’t, much 
matter to me if some thing or some knowledge exists that I 
can never know about. It’s sort of like extraterrestrial lift- 
it doesn’t make a whole lot of difference whether or not it 
actually exists unless it begins to communicate, in which case 

Totality of Knowledge Circumscribed by the External Worlds of All Beings. 

Figure 6. 
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it becomes covered by the umbrella of the egocentric Totality 
of Knowledge formulation, future inputs department.l 

In robotics, for example, the external environment will 
be conceptualized as the cumulative sensory data stream ap- 
pearing at the remotest edges of the camera, microphone, 
and tactile sensors, combined with the cumulative effector 
data stream transduced at arm-wrist-hand, camera-adjust- 
ment, camera-aiming, locomotion, audio-output, and video- 
output transducers. The earliest suggestion of the data stream 
world model I have found is in Solomonoff (1960). 
Thinking Tool #2: The Representation Process 

The most significant subproblem to be addressed is how 
the computer can remember this totality as it has transpired 
up to the present. This memory should consist of a sym- 
bol base built automatically by the computer on the basis 
of input and memory combined. This representation pro- 
cess makes a symbolic recording a lifelong sensory-motor I/O, 
whereby a compressed version of it is kept in which patterns 
have been segmented. Existing symbols serve as prerequisite 
knowledge, or available building blocks for learning new sym- 
bols; as soon as a new symbol is acquired, it joins the pool of 
knowledge available for use as prerequisite knowledge. Larry 
Rcndell’s (1983) idea of “knowledge as information compres- 
sion” and Paul Scott’s (1983) view of intelligence as “the 
organization of experience” indicate mounting interest in ex- 
periential recording as a unifying AI research theme 

Thinking Tool #3: Transmission Of Knowledge 
Intelligent communication works on the principle of caus- 

ing symbol formation to occur in the receiver, indirectly, by 
generating patterns in his sensory data stream. The repre- 
sentation process within the receiver fields communications 
the same way it handles knowledge acquisition from inani- 
mate sources-there is no need for a separate theory to ex- 
plain communication. 

This last thinking tool is the most daring one. It leads 
to a communication theory that views language as a learned 
system of audio visual patterns that, through consistent pre- 
sentation with previously symbolified patterns, leads to an 
“indexing” system for recalling knowledge and behavior. 

These arc the three most important themes that need 
to be kept, in mind as we reshape our thinking from single- 
purpose, programmed, performing systems to multipurpose, 
automatic learning systems. The groundwork is just now 
beginning to be laid (Bierre, 1982) for what promises to be 
an exciting, new direction in AI. The challenge of versatility 
poses many difficult problems that we are just starting to 
learn how to articulate, and that, offer opportunities for gen- 
uine breakthroughs to the scientists who possess the courage 
and determination to solve them As an example, we need 
people who can think about hardware, software, and mem- 
ory in nontraditional ways, in order to devise a computer 
for doing representation in parallel, on multiple parallel data 
stream input, in real time. Associative memories (Foster, 

1976; Weems, Levitan & Foster, 1983) and connection ma- 
chines (Hillis, 1981) are important steps in this direction, but 
much more needs to be done. Enough work is here to keep 
dozens of AI professionals busy for a decade or more. 

A few words need to be said about applied versus re- 
search AI. Currently, interest is keen in applying expert sys- 
tems techniques to real world problems where there is eco- 
nomic leverage, and this interest will expectably command 
the attention of the majority of the AI community in the 
immediately ensuing years. It is important that domain- 
bounded intelligence continue to be developed toward useful 
applications. There is a danger, though, that new research 
initiatives, such as sensory learning, might be unfairly pitted 
against applied AI in the scramble for funding. I think it is 
important to maintain a clear distinction between research 
and applied projects, and to pursue a well-balanced approach 
that will continue to produce a steady flow of working sys- 
tems, and progressive, far-ranging, new scientific ideas for 
future systems. According to John McCarthy (McCarthy, 
1983), we have to push harder on the basic research front at 
this point to maintain that balance. 

As I have indicated, the price we will likely have to pay 
for dramatic progress will be backtracking on some dearly 
held beliefs that skirt the fringes of unquestioned, religious 
belief. A defensive reaction to the call for radically new AI 
goals, beliefs, and methods is only natural, and we cannot 
expect the ensuing debate to remain on a strictly rational 
level. But if the history of science is any indication, such a 
period of intense struggle over conflicting fundamental be- 
liefs is the most reliable predictor that a dramatic surge of 
scientific progress is about to be made (Kuhn, 1962). 

It is precisely this surge of progress that the next ten 
years of AI research should be about. Already, stirrings of 
doubt indicate that we have gone about as far as we are 
going to go with formal logic and heuristic programming 
methods. Rather than ignore and repress these faint, rum- 
blings, we must allow them to surface into free expression, 
and at the same time begin aggressively to pursue alternative 
AI frameworks that show promise for allowing us to hurdle 
long-accepted barricades. 

Let us keep in mind one final observation: In posing 
the versatility problem, the professor instinctively knew that 
his challenge would disqualify current AI methods, and in 
so doing would inject doubt, confusion, and other unsettling 
feelings among members of his research staff, uneasy feelings 
that could spill over into the entire AI community. You have 
to understand that the professor is getting on in years (as 
many of us are), and for whatever selfish reasons, he secretly 
wants to see the mystery of human-quality intelligence un- 
raveled, not in 50 years, but in his own lifetime. I suspect 
hc is feeling the very mortal craving to want to be there and 
see how it all turns out in the end. 

IFor a more thorough treatment of knowledge totality, see Bierre, 1984 I’m with the professor. How about, you? 
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“Dr. Nokemoff, can I offer you a ride home?” 
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