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Introduction 
One of the major deterrents to productivity in industry today 
is the inability to effectively manage and control production. 
The problem is particularly acute in job shop environments 
where plant operation is routinely characterized by high 
work-in-process (WIP) inventories, tardy orders, poor re- 
source utilization, and other shop floor inefficiencies. Per- 
haps the single most significant obstacle to improved factory 
performance is the complexity associated with constructing 
and maintaining good production schedules. Good schedules 
must reflect both the full detail of the operating environment 
and the influence of a conflicting set of preferences that 
range from global organizational objectives to specific oper- 
ational idiosyncrasies. Existing computer-based techniques 
for production scheduling are capable of incorporating only 
a small fraction of this scheduling knowledge and, as a 
result, typically produce schedules that bear little resem- 
blance to the actual state of the factory. At best, these sched- 
uling techniques provide the plant scheduler or shop floor 
supervisors with high-level guidelines for developing de- 
tailed schedules. These guidelines, however, do little to re- 
duce the complexity associated with the detailed scheduling 
decisions that must be made. 

For the past several years, we have been engaged in 
work aimed at providing a better solution to the job shop 
scheduling problem. Viewing the problem as a complex 
constraint-directed activity, we sought to employ 
knowledge-based techniques to represent and operationalize 
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the constraint knowledge utilized in actual factory environ- 
ments. This led to the construction of the Intelligent Schedul- 
ing and Information System (ISIS), a series of experimental 
job shop scheduling systems (Fox, Allen, and Strohm 1982; 
Fox 1983; Fox and Smith 1984a, 1984b). ISIS-2 was demon- 
strated in the context of the Westinghouse Turbine Compo- 
nents Plant (WTCP) in Winston-Salem, North Carolina. 
More recently, we initiated work on a new system called 
OPIS (Smith and Ow 1985; Ow and Smith 1986; Smith et al. 
1986), which continues to generalize from the ISIS experi- 
ence and provide greater system flexibility in approaching 
various scheduling tasks. We feel we have made significant 
progress in this work, but there are difficult issues that re- 
main to be addressed. This article attempts to coalesce what 
we have learned thus far and to reflect on the potential of 
knowledge-based approaches to this difficult problem. 

Abstract To be useful in practice, a factory production schedule 
must reflect the influence of a large and conflicting set of require- 
ments, objectives and preferences. Human schedulers are typically 
overburdened by the complexity of this task, and conventional 
computer-based scheduling systems consider only a small fraction 
of the relevant knowledge. This article describes research aimed at 
providing a framework in which all relevant scheduling knowledge 
can be given consideration during schedule generation and revi- 
sion. Factory scheduling is cast as a complex constraint-directed 
activity, driven by a rich symbolic model of the factory environ- 
ment in which various influencing factors are formalized as con- 
straints. A variety of constraint-directed inference techniques are 
defined with respect to this model to provide a basis for intelligently 
compromising among conflicting concerns. Two Bnowledge-based 
factory scheduling systems that implement aspects of this approach 
are described. 
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The Factory Scheduling Problem 
In broad terms, the factory scheduling problem concerns the 
allocation over time of a finite set of resources to specific 
manufacturing operations such that the orders for parts re- 
ceived by the factory are produced in a timely and cost- 
effective fashion. The production of a given order typically 
involves the execution of a sequence of operations, each of 
which possesses a specific and, for the most part, a distinct 
set of resource requirements. In more detailed terms then, 
the scheduling problem consists of (1) the determination of 
an appropriate sequence of operations, or process routing, 

for each order and (2) the assignment of required resources 
and time intervals to the operations selected. 

To some extent, these two aspects of the problem are 
separable, and historically, this has been the case in most 
manufacturing organizations. Process-routing selection is 
viewed as a planning task that is carried out during part de- 
sign, and the allocation of resources to particular orders over 
time is viewed as the role of the scheduler. In actuality, how- 
ever, there is much greater interplay between these seem- 
ingly distinct functions. There are often several ways in 
which a given part can be produced (for example, alternative 
machines or production processes can be utilized) and al- 
though a particular routing might be designated as preferred, 
an a priori commitment to it ignores the dynamic nature of 
the actual factory floor. The feasibility of a given operation 
depends on the availability of its required resources, and 
consequently, many process-selection decisions cannot be 
intelligently made without consideration of the current status 
of the factory (for example, current order mix, current re- 
source levels, and so on.) 

The problem is further complicated by the unpredict- 
ability inherent in factory operation. Machines break down, 
in-process orders fail to pass intermediate quality control in- 
spections, engineering changes are introduced, operators 
call in sick, and so on, all of which quickly force changes to 
previously planned activities. As uncertainty in the perfor- 
mance of activities on the shop floor increases, the useful- 
ness of precise schedules decreases. The precision of sched- 
ules produced by a scheduler must be determined by the 
uncertainty of the information used in making the decision. 
Thus, we can identify two general goals in approaching the 
factory scheduling problem: 

1. An ability to effectively predict shop behavior through 
the generation of schedules that accurately reflect the 
full detail of the environment and the stated objectives of 
the organization 

2. An ability to reactively revise and maintain the schedule 
in response to changing shop conditions 

These activities are not viewed as distinct; rather it is felt that 
the same types of knowledge and methods are relevant to 
both. From a system engineering perspective, however, it is 
important to provide a system organization with the flexibil- 

ity to selectively focus on specific aspects of the current 
schedule. 

The job shop scheduling problem in many idealized 
forms is known to be NP-hard (belonging to a class of inher- 
ently intractable problems) (Garey and Johnson 1979). The 
situation in real-world scheduling environments is consider- 
ably more complex. Much of the complexity stems from the 
need to attend to a large and diverse set of objectives, re- 
quirements, and preferences that originate from many differ- 
ent sources in the plant. These scheduling influences are of- 
ten in direct conflict with one another, wherein lies the crux 
of the problem. The production schedule must reflect a satis- 
factory compromise with respect to these competing influ- 
ences . 

Scheduling Constraints 
We can partition the range of factors that influence factory 
scheduling decisions into two broad classes of constraints: 
(1) scheduling restrictions that serve to delineate the space of 
possibilities in developing a schedule and (2) scheduling 
preferences that provide a basis for differentiation among 
possible choices. This distinction is useful to make at the 
outset because existing computer-based scheduling systems 
typically give limited attention to both, and each offers dis- 
tinct opportunities for improving the quality of the schedules 
generated. 

Scheduling restrictions constrain the alternatives that 
can be considered in selecting and ordering operations, bind- 
ing resources to operations, and designating temporal inter- 
vals during which selected operations are to take place. Col- 
lectively, these restrictions serve to define the space of 
admissible schedules that the scheduler must search. Sched- 
uling restrictions include the following: 

l Causal Restrictions: Typically, there are precedence 
constraints associated with the operations that must be 
performed to produce a given part, restricting the man- 
ner in which orders for this part can be routed through 
the factory. A precedence constraint on an operation 
states that another operation must be performed before 
(or after) it. These causal relationships between opera- 
tions are further qualified by interoperation travel times, 
transfer quantity sizes (that is, the portion of the order 
which must be completed before any subsequent opera- 
tions can be initiated), maximum allowable times be- 
tween operations, and so on. In addition, each individ- 
ual operation possesses a well-defined set of resource 
requirements that must be satisfied for specific periods 
of time either before or during the execution of the oper- 
ation. For example, a milling operation might require 
the possession of a milling machine, an operator with 
the necessary skills, specific tools and fixtures, an ap- 
propriate NC tape (if the machine is a numerically con- 
trolled or NC machine), and so on. 
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l Physical Constraints: Each machine in a job shop has 
specific capabilities that restrict the types of operations 
which can be performed on it. For example, the size of a 
machine’s work bed might prohibit its use for operations 
on a particular class of parts. Likewise, each machine 
has particular operating characteristics (for example, 
cutting speed, setup procedures) which limit the amount 
of work that can be performed over a certain period of 
time. Generally speaking, physical constraints define 
the functional limitations of specific resources in the 
factory. 

l Resource Unavailability: There are also dynamic re- 
strictions on the availability of resources that limit the 
scheduling alternatives available. Here, we are speak- 
ing of events such as machine breakdowns that occur 
asynchronously and are outside the control of the sched- 
uler . 

An understanding of the full range of scheduling alternatives 
is essential to the development of a realistic model of the job 
shop environment. The simplifications introduced in most 
existing computer-based scheduling systems (for example, 
the designation of a single routing for each part) reduce the 
flexibility with which the system can respond to different 
scheduling problems, which results in a divergence of the 
schedules generated from the actual situation. At the same 
time, however, any attempt to embrace the full complexity 
of the environment requires the ability to explicitly represent 
and reason with the imposed scheduling restrictions during 
the generation of candidate schedules. 

In many problem domains addressed within the field of 
artificial intelligence (AI), the restrictions imposed by the 
problem constrain the set of admissible solutions to the ex- 
tent that least commitment and constraint-propagation tech- 
niques are sufficient to converge on an acceptable result (Ste- 
fik 198 1; Sussman and Steele 1980; Waltz 1975). This is not 
the case in the factory scheduling domain. Adherence to the 
scheduling restrictions identified earlier still leaves the prob- 
lem severely underconstrained, and knowledge of various 
preferential concerns must be considered to focus the sched- 
uler on good solutions. These scheduling preferences fall 
into several categories: 

l Organizational Goals: All manufacturing facilities are 
driven by a set of organizational goals. These goals re- 
flect global concerns and objectives with respect to the 
operation of the factory and imply general criteria 
against which prospective schedules can be compared. 
Organizational goals are established along several dis- 
tinct performance dimensions: 

- Meeting due dates: A major concern of a factory is 
meeting the customer due dates that are established as 
orders are received. A late order affects customer satis- 
faction and the likelihood of future business. 

- Minimizing WIP time: WIP inventory represents a sub- 
stantial investment in raw materials and added value. 

Because these costs are not recoverable until delivery of 
the final product, minimizing WIP time is an important 
goal. 

- Maximizing resource utilization: Maximizing the 
amount of time that critical machines in the shop are 
actually operating (as opposed to being prepared for op- 
eration or standing idle waiting for parts) can greatly 
increase the overall throughput of the plant. Also, typi- 
cally there are fixed costs associated with maintaining 
and operating the machines in a factory that can be mini- 
mized if resources are used efficiently. 

- Maintaining shop stability: The concern here is mini- 
mizing the amount of disruption to shop operations 
caused by revisions to the schedule. Last-minute 
changes to the schedule can lead to increased periods of 
machine idle time as the preparation (or machine setup) 
performed in anticipation of the previously scheduled 
operations is undone and as preparation for the newly 
scheduled operations is carried out. 

These performance concerns can all be viewed as ap- 
proximating the overall concern of the organization: a 
desire to make scheduling decisions that maximize 
profits. These concerns are addressed as part of the or- 
ganizational planning process and lead to the establish- 
ment of specific operating expectations. For example, 
production levels are designated for various areas in the 
plant, a forecast of the number of work shifts that will be 
run in each area is made, and preliminary resource 
maintenance schedules are developed. These prefer- 
ences all influence the shop schedule that is subse- 
quently developed. 

l Operational Preferences: These constraints express pre- 
ferred choices among alternatives at the level of individ- 
ual scheduling decisions (that is, the selection of specific 
operations, resources, and time intervals) and reflect the 
heuristic knowledge present in a given scheduling envi- 
ronment. In many cases, these preferences provide a 
tactical basis for accomplishing specific global objec- 
tives. For example, an ability to effectively exploit 
order-sequencing preferences to minimize the amount 
of time spent setting machines up for operations contrib- 
utes directly to maximizing resource utilization. In other 
cases, however, such knowledge reflects an understand- 
ing of the operational characteristics of the plant that 
cannot be captured in predictive estimates of how well 
various scheduling objectives have been met; for exam- 
ple, a decision to avoid a particular machine when possi- 
ble, based on knowledge of its susceptibility to break- 
downs, cannot be properly assessed until the schedule is 
actually executed on the shop floor. Such decisions can 
in fact have detrimental effects with respect to predic- 
tive measures of schedule quality. 

l Resource Unavailability: In contrast to the resource un- 
availability restrictions mentioned ealier, resource un- 
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availability preferences refer to constraints that are in- 
troduced by the scheduler. As resources are allocated to 
specific operations during generation or revision of the 
schedule, constraints declaring the resources unavail- 
able during the allocated time periods must be gener- 
ated. Such decisions must be viewed as preferences, be- 
cause they can later be retracted in the face of other 
overriding factors (for example, the receipt of a high- 
priority order). 

It is clear from this discussion that an effective solution to the 
real-world factory scheduling problem requires an ability to 
reason intelligently with an amalgam of diverse constraints. 
Our initial discussions with plant schedulers at WTCP 
underscored this point. It was found that schedules were not 
developed in any uniform fashion but rather through an itera- 
tive process of distributing a proposed schedule to various 
departments in the plant, collecting additional constraints, 
and attempting to alter the schedule accordingly. However, 
although it was clear that scheduling decisions were based on 
the full range of factors identified here, the lack of a method- 
ology for balancing these concerns consistently led to the 
generation of schedules that resulted in less than satisfactory 
factory performance. The schedulers were simply overbur- 
dened by the complexity of the task. 

Related Research 
Scheduling research to date has had relatively little impact on 
the real-world factory scheduling problem. Operations man- 
agement (OM) research has long been concerned with the 
scheduling problem but in relation to two rather restrictive 
perspectives. The first approach, centered around a desire to 
obtain optimal results, has sought to formulate mathematical 
models of the problem that are tractable by linear- 
programming techniques. Attention has been focused on 
simplified scheduling problems (for example, the single ma- 
chine case) that unfortunately have little in common with 
actual factory environments. A second branch of OM re- 
search has been concerned with the development of priority 
decision rules to provide a heuristic basis for order sequenc- 
ing. These rules, although useful in making local dispatching 
decisions, are typically responsive to specific types of con- 
cerns (for example, meeting due dates), ignoring all others. 
This restricted emphasis limits their effectiveness in global 
(that is, plantwide) decision-making contexts. 

In recent years, AI researchers in planning have also 
turned their attention to scheduling issues. Recognizing the 
limitations of reasoning with implicit notions of time, sev- 
eral researchers have focused on extending existing planning 
paradigms to include the assignment of time intervals to ac- 
tivities. Vere (1981) describes a technique used to schedule 
activities aboard a spacecraft which associates time windows 
and durations with the various activities in a plan and which 
propagates refinements to this temporal information as the 
plan crystallizes. A similar approach is adopted in Fukumori 

(1980) for generating train schedules. Others have sought to 
reformulate the planning process within an explicit temporal 
framework (Allen 1981; Allen and Koomen 1983; McDer- 
mott 1982). Expansion of the planning problem to explicitly 
address temporal concerns has also necessitated the estab- 
lishment of criteria for differentiating between alternative 
plans. Overall plan duration has been the most common con- 
sideration in AI scheduling systems. However, activity cost 
estimates are included in Daniel (1984)) and a scheduling 
framework described in Miller (1983) proposes the use of 
special-purpose critics to detect specific undesirable charac- 
teristics (for example, deadline violations). In relating these 
efforts to the factory scheduling problem, the chief point of 
divergence is the absence of conflicting constraints. This is 
due in large part to the emphasis on planning the activities of 
a single agent and the consequential lack of emphasis on effi- 
cient allocation of shared resources (that is, resource avail- 
ability is the sole concern). One exception is the NUDGE 
system (Goldstein and Roberts 1977), which compromises 
between the conflicting preferences of distinct individuals in 
producing a schedule for a given individual’s weekly activi- 
ties and appointments. 

Scheduling as a Constraint-Driven Search Process 

Our approach to the factory scheduling problem has been 
predicated on the assumption that the key to successfully 
managing complexity lies in appropriate use of knowledge 
about the constraints of the specific operating environment. 
This view raises three broad issues. The first concerns the 
development of an appropriate framework for structuring 
this knowledge. We have seen from the WTCP scheduling 
example that knowledge of constraints is accumulated in an 
unstructured, asynchronous fashion by polling different 
parts of the organization. A factory model that makes ex- 
plicit the scheduling restrictions in the environment and ap- 
propriately organizes knowledge about preferential con- 
cerns can, in itself, provide a sufficient amount of leverage. 
The second issue concerns an ability to differentiate amongst 
alternative sets of scheduling decisions. It is clear that devel- 
opment of good schedules requires exploration of alterna- 
tives, and different alternatives variably attend to various 
preferential concerns. Knowledge and mechanisms for esti- 
mating how well a given set of decisions satisfies the con- 
straints must be identified. The third issue concerns control 
of the search process: Only a very small portion of the under- 
lying solution space can feasibly be explored. Techniques 
for exploiting knowledge about constraints and their interde- 
pendencies to intelligently control the search must be de- 
fined. 

These three issues all relate to the representation and use 
of knowledge about scheduling constraints. In this section 
we address these issues, presenting what we believe to be the 
fundamental ideas that underlie our approach to factory 
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scheduling. In sections following, we turn our attention to 
the software systems that have arisen out of this work. 

Modeling of the Factory Environment 

A fundamental prerequisite to effective scheduling is an ac- 
curate model of the production environment. The model pro- 
vides a framework for representing and organizing the con- 
straint knowledge in the operating environment and imposes 
structure that can be exploited in the development of sched- 
ules. Our approach to modeling the production environment 
draws on frame-based representation techniques and empha- 
sizes the definition of a set of structural and relational primi- 
tives for describing manufacturing organizations. Kernel de- 
scriptions provide the basic concepts of states, objects, and 
activities and a set of temporal and causal relations for de- 
scribing their interactions. Higher-level descriptions refine 
these general semantic primitives into concepts germane to 
the scheduling environment. For example, in specifying the 
set of process routings associated with a particular product, 
manufacturing operations are defined as activities, and 
precedence constraints are composed of basic temporal and 
causal relations. The resources required by specific opera- 
tions are expressed as objects, with their allocation repre- 
sented as a collection of possession states spanning particular 
intervals of time. Individual components of the model are 
linked to composite entities (for example, machines are ag- 
gregated into work areas, detailed operations are aggregated 
into abstract operations, and so on) to provide multiple levels 
of description. 

To a large extent, the scheduling restrictions present in 
the factory environment and hence the set of alternatives rel- 
evant to specific scheduling decisions are directly reflected 
in the resulting model. This provides a structural framework 
for organizing the preferential concerns that influence vari- 
ous choices. This knowledge is encoded within a general 
constraint representation, and specific instances are attached 
directly to the relations-attributes in the model that they con- 
strain. This is illustrated in figure 1, which graphically dis- 
plays a portion of a factory model centered around the de- 
scription of a particular machining operation called ‘ ‘Pl root 
grinding. ’ ’ The constraint representation formalizes the 
sources of heuristic knowledge found to be useful in devel- 
oping constraint-satisfying schedules. The specific types of 
knowledge included are identified in the following subsec- 
tions. Detailed accounts of this approach to modeling the 
factory environment and its constraints, as well as its imple- 
mentation within Schema Representation Language (SRL), a 
frame-based, knowledge representation system (Wright and 
Fox 1983), can be found in Fox 1983; Fox and Smith 1984a; 
Smith 1983; Sathi, Fox, and Greenberg 1985. 

Relaxable Constraints 
The constraint representation extends the factory model to 
include the notion of relaxable constraints and provides an 

explicit basis for injecting preference knowledge into the 
reasoning process. Scheduling is a synthesis task in which 
the total set of alternatives cannot be enumerated. The role of 
constraints must therefore extend beyond the concept of 
“winnowing” an enumerated set in order to reduce the com- 
binatorics of the search process. It is necessary for con- 
straints to play a greater role in the generation of alterna- 
tives . Rather than create rules that embody this knowledge in 
an ad hoc form, we took the approach of expanding the se- 
mantics of the constraint representation to include specifica- 
tion of the following: 

l Alternatives: Acceptable alternatives for satisfying the 
constraint are made explicit. For example, a due date 
constraint would not only specify the actual date but also 
a continuum of acceptable dates possibly spanning a 
four-week period. 

l Utility: Each alternative might not be equally accept- 
able. The utility specifies the degree of acceptability of 
each alternative. In the example of a due date, the utility 
function could be normal in form, with the maximum at 
the actual due date and the tails at the earliest and latest 
alternatives. 

l Elasticity: In the specification of a shift constraint, we 
found that even though running more than one shift 
might be acceptable, it was not easy to implement the 
alternative. Consequently, a measure of a constraint’s 
elasticity is required as a measure of ‘ ‘ease of change. ” 
This can then be used to determine which constraints 
should be relaxed and which should be held constant 
during the search process. 

This extended representation of relaxable constraints en- 
ables the creation of general search operators that interpret 
constraints. In particular, knowledge of relaxation supports 
reasoning about the complexity of the search space, enabling 
the search to be bounded by restricting the set of generated 
alternatives. 

Quantifying the Notion of Constraint Satisfaction 
We have already observed that exploration of alternatives is 
an integral part of generating constraint-satisfying sched- 
ules. For the most part, the alternatives we speak of are par- 
tial solutions, subsets of the total set of scheduling decisions 
that make up the factory schedule. Candidate partial solu- 
tions under consideration might, for example, represent al- 
ternative sets of decisions that could be taken with respect to 
a particular order. This emphasis on the exploration of alter- 
native partial solutions is due to the combinatorics of the 
underlying search space, which makes it necessary to focus 
incrementally on specific aspects of the schedule and make 
commitments prior to seeing a complete schedule. We use 
the terms hypothesis, solution component, and partial sched- 
ule interchangeably to refer to a candidate partial solution. 

Central to the search that must be undertaken, of course, 
is a means of evaluating partial schedules; this is the issue we 
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Figure 1. A Portion of a Factory Model with Attached Constraints. 

address in this section. Given our view of the scheduling 
problem, we would like an evaluation of a specific partial 
schedule to intuitively reflect how well its constituent sched- 
uling decisions attend to, or satisfy, the various problem con- 
straints . Operationally, such an evaluation scheme requires 
constraint knowledge relating to three basic notions: 

l Relevance: Individual constraints are typically relevant 
to specific types of scheduling decisions. For example, a 
constraint that expresses a preference for a given ma- 
chine under certain circumstances should only be con- 
sidered in the context of scheduling decisions which in- 
volve the potential allocation of the machine. Also, 
different shift constraints might apply at different times 
of the year, for example, holidays. 

l Degree of Satisfaction: Typically, there are preference 
relationships among the set of choices that exist with 
respect to a given constraint. Specific choices compro- 
mise (or relax) the constraint to various extents. These 
relationships can be made explicit by attributing a spe- 
cific utility (that is, a degree-of-satisfaction estimate) to 
each alternative. 

l Importance: Different constraints do not typically exert 
the same influence on the final schedule. In cases where 
all constraints cannot be satisfied, some are more impor- 
tant to satisfy than others, and knowledge of these im- 
portance relationships must be taken into account. 

Our approach to representing and using this knowledge is 
sketched in the following paragraphs.* 

Determination of Relevant Constraints. As indicated ear- 
lier, a given constraint is typically relevant to a particular 
class of scheduling decisions. Thus, the first step in evaluat- 
ing a given hypothesis must be to identify the set of con- 
straints that should participate in the evaluation. The under- 

* An alter native approach to evaluation is to focus on the costs associated with 
relaxing various constraints and construct evaluations that estimate the total 
cost of partial schedules Cost is, in fact, the bottom line in differentiating 
between candidate schedules. However, our experience has found actual 
costs to be difficult to quantify in many cases The use of importance and 
degree-of-satisfaction estimates appears to provide a more tractable com- 
mon denominator in considering the influence of multiple constraints 
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lying factory model outlined in Modeling of the Factory 
Environment, which emphasizes the direct attachment of 
constraints to the objects they constrain, provides considera- 
ble guidance in this task. A given hypothesis to be evaluated 
designates specific objects in the model (that is, the schedul- 
ing decisions composing the hypothesis concern specific op- 
erations, resources, orders, and so on), and all potentially 
relevant constraints can be located by examining these ob- 
jects. We say the constraints collected in this manner are 
potentially relevant because there might be further condi- 
tions on their applicability. These conditions might specify 
particular attributes of the hypothesis (for example, the rele- 
vance of a machine preference might depend on dimensional 
characteristics of the product being scheduled) or identify 
specific types of scheduling decisions of interest (for exam- 
ple, an order’s due date and WIP constraints are relevant to 
any decision that commits to a particular interval of time). 
Each individual constraint possesses a specific applicability 
predicate that is used as a final filter in determining rele- 
vancy . 

Producing Constraint-Satisfaction Estimates. Our ap- 
proach to hypothesis evaluation centers around the notion of 
each relevant constraint imparting a utility indicative of how 
well it is satisfied by the hypothesis. These individual “rat- 
ings” are then combined to produce an overall measure of 
constraint satisfaction. Utility values are defined to range 
from zero to one, with zero interpreted as complete dissatis- 
faction and one interpreted as complete satisfaction. 

The expression of preference relationships among pos- 
sible choices, as well as methods for attributing specific util- 
ity values, varies according to the type of constraint in- 
volved. Given the diversity in the types of constraints 
encountered, this variation is not surprising. This diversity is 
accommodated in the model by defining a taxonomy of con- 
straint types, each of which provides an appropriate repre- 
sentation and associated methods for interpreting it. In many 
cases, a constraint expresses preference relationships over a 
set of choices that are explicitly defined in the model. For 
example, operations are defined to take place in certain work 
areas of the factory, and machine preferences promote spe- 
cific choices from the sets of machines in these areas. Speci- 
fication of the preference relationships in these cases entails 
an association of specific utility values with each of the de- 
fined alternatives. 

Many organizational goals, however, express prefer- 
ences over a continuous and often infinite range of possible 
values. A due date constraint, for example, must associate a 
degree of satisfaction with each point along the time line. 
Constraints of this nature require an implicit mapping of de- 
gree of satisfaction to possible alternatives. This mapping is 
accomplished by defining a characteristic function that, 
when evaluated with respect to a particular alternative yields 
a specific utility value. This approach to specifying the pref- 
erence relationships amongst alternative relaxations 

(choices) is not unlike the techniques employed in mathemat- 
ical programming and, in fact, allows advantage to be taken 
of OM heuristic priority rules that emphasize specific orga- 
nizational goals. 

Combining Estimates. The utilities assigned by the con- 
straints relevant to a particular hypothesis must be combined 
to produce its final evaluation. Here, it is necessary to con- 
sider the relative amount of influence that should be exerted 
by each contributing constraint. This entails a specification 
of weights for the utilities assigned. The weights are derived 
from both absolute and relative importance knowledge. Ab- 
solute importance measures, which are predefined and asso- 
ciated with the constraints themselves, provide a basis for 
expressing the importance relationships that exist among 
constraints of a given type (for example, machine prefer- 
ences). Importance relationships among different types of 
constraints are typically dynamic in nature. For example, 
satisfying a due date constraint is likely to be a much more 
important concern than satisfying the set of relevant resource 
preferences in the context of a high-priority order, but the 
opposite might be true in the case of an order generated to 
build inventory. Such relationships are established through 
the introduction of scheduling policies, which partition con- 
straint types into distinct importance classes and which asso- 
ciate with each partition a fraction of the total importance to 
be distributed among the constraints belonging to the parti- 
tion. This fraction is distributed in proportion to the absolute 
importance measures associated with these constraints. The 
weights derived are restricted to values between zero and 
one, such that the total set of weights sums to one. The final 
evaluation of a given hypothesis then is simply the weighted 
sum of the utilities assigned by the relevant constraints. 

This evaluation scheme provides a framework for selec- 
tive evaluation of the evolving solution at different levels of 
aggregation. For example, a subtask concerned with the gen- 
eration of a particular solution component, such as decisions 
relating to a particular order, can be driven by constraint- 
satisfaction assessments local to that portion of the solution. 
As sets of scheduling decisions are combined to form more 
encompassing partial solutions (for example, as schedules 
for individual orders are integrated into a shop schedule), 
corresponding aggregate measures of constraint satisfaction 
can be produced by appropriately merging previously col- 
lected sets of constraints. The scheme also provides a means 
for measuring the extent to which specific influences have 
been attended to at different levels of aggregation. With re- 
spect to meeting deadlines, for example, measures reflecting 
“how well order 10’s due date constraint is satisfied,” “how 
well the end-time constraints in the milling work area are 
satisfied, ” and “how well the due date constraints of orders 
of priority class x are satisfied” are all obtainable by focus- 
ing on different cross sections of the previously determined 
set of relevant constraints. These distinct levels of evaluation 
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can all provide useful information upon which to base 
search-control decisions. 

Controlling the Search for a Constraint-Satisfying 
Schedule 

Perhaps the most difficult questions concern how to carry out 
the search for a constraint-satisfying schedule. The schedul- 
ing restrictions defined in the factory model specify the 
range of admissible scheduling alternatives and provide the 
basis for deriving a basic set of operators for conducting a 
search. For example, causal restrictions provide the grist for 
generating alternative operation and resource selections. 
Likewise, work shift alternatives, resource availability re- 
strictions, and various physical constraints (for example, 
machine cutting speed) combine to provide a basis for gener- 
ating alternative intervals of time during which resources can 
be allocated to specific operations. However, the ability to 
define such operators in and of itself provides little leverage 
in achieving an effective compromise with respect to the do- 
main’s conflicting preferential concerns. To be sure, the ap- 
plication of these operators results in the generation and ex- 
tension of hypotheses that variably satisfy various 
scheduling preferences, and a comparison of alternatives can 
be made on this basis. Each local commitment made during 
the search, however, has unforeseen global consequences on 
the final solution that cannot be accurately predicted short of 
an exhaustive search of all possibilities. Indeed, it is these 
highly nonlinear interactions amongst preferential concerns 
that effectively preclude hope of obtaining an optimal global 
compromise. Thus, the goal is to heuristically impose 
enough structure on the search process to make the genera- 
tion of good solutions tractable. We argue that knowledge of 
constraint interactions can be exploited to this end. 

In stating a desire to heuristically structure the search, 
we speak of controlling the generation of alternative partial 
schedules. It is necessary to make commitments regarding 
specific scheduling decisions early on in the search and, for 
the most part, assume that these decisions will be part of the 
final schedule generated. Of course, there might be prob- 
lems with these commitments that only become apparent 
later in the search, but even in these circumstances it is desir- 
able (if not computationally necessary) to retain as much of 
the current partial schedule as possible. Thus, the control 
problem is largely one of determining the order in which 
various commitments should be made (that is, what subset of 
decisions should we focus on first, and so on). Because each 
decision that is made affects the extent to which specific pref- 
erential concerns can be satisfied, the control problem can be 
equivalently viewed as one of determining which constraints 
should be compromised (or relaxed). 

In considering these issues, it is useful to define the no- 
tion of a conflict. We use the term broadly to refer to a situa- 
tion in which scheduling decisions do not exist that mutually 
satisfy a given set of constraints. Resolution of a conflict can 
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be thought of as reaching a compromise amongst the con- 
straints involved in the conflict. Much of what we say in the 
following subsections is concerned with seeking out impor- 
tant conflicts (or types of conflicts) to resolve and reacting to 
unsatisfactory compromises that become apparent. An un- 
satisfactory compromise can be the result of earlier control 
decisions to deemphasize particular conflicts, or it can be the 
result of changing circumstances in the factory environment. 

Conflict-Directed Problem Decomposition. To provide a 
framework for controlling the search, it is necessary to spec- 
ify a set of control alternatives. We have identified several 
levels at which such alternatives exist: 

Scheduling Perspective Level: There are distinct sched- 
uling perspectives that might be adopted as a means of 
decomposing the overall scheduling task into more trac- 
table subtasks. For example, an order-based perspective 
views the shop schedule as a collection of order sched- 
ules and restricts attention at any point in time to the 
development of a particular order’s schedule. Alter- 
nately, a resource-based perspective views the shop 
schedule as a collection of resource schedules (for ex- 
ample, work area or machine schedules) and restricts 
system attention at any point in time to the development 
of a particular resource’s schedule. Each perspective 
advocates a specific local and incomplete view of the 
overall problem that is appropriate for resolving specific 
types of conflicts. 
Strategy Level: There are alternative scheduling strate- 
gies that might be adopted when operating within a 
given scheduling perspective, each varying in the types 
of constraints that are considered. For example, con- 
sider the reactive adjustment necessary to the current 
schedule in response to an external indication that a par- 
ticular machine has broken down. Reaction could vary 
in scope from a simple reservation shifting strategy 
where no preferential concerns are considered to an ex- 
tensive rescheduling of the encompassing work area 
where all relevant preferences are addressed. 

l Tactics Level: Although a given strategy defines a spe- 
cific range of conflicts that are attended to, it need not 
predetermine the specific sequence of actions to be 
taken in exploring alternative compromises. Determi- 
nation of which scheduling decisions to consider next 
might instead be a function of the current-problem solv- 
ing state. 

The extent to which alternatives are defined at any level re- 
flects the trade-offs that exist in approaching a given sched- 
uling task. We consider the nature of these trade-offs in the 
following paragraphs, along with the types of knowledge 
about constraint interactions that provide a basis for these 
control decisions. 



Decisions about how to decompose the scheduling task 
into subtasks affect the system’s ability to resolve conflicts. 
To optimally resolve a given conflict (that is, to achieve the 
best possible compromise), it must be possible to simultane- 
ously consider all of the constraints involved in the conflict. 
The subtasks that result from adopting different scheduling 
perspectives isolate different sets of constraints and hence 
emphasize different types of conflicts. An order-based de- 
composition groups together the constraints that surround a 
particular order and provides the opportunity to effectively 
resolve order-centered conflicts (for example, conflicts in- 
volving a WIP constraint and operation preferences). A 
resource-based decomposition isolates the constraints that 
surround the allocation of a particular resource (for exam- 
ple, order-sequencing preferences, and promotes the resolu- 
tion of a different class of conflicts). 

Given the implications of decomposing the problem in 
different ways, the choice of scheduling perspective requires 
knowledge about which conflicts are most important to re- 
solve. In reactive contexts, where specific problems have 
been introduced by unanticipated external events, there is 
often a direct mapping to the conflicts of interest. For exam- 
ple, a machine breakdown clearly suggests a focus on the set 
of conflicts surrounding this resource. Similarly, an indica- 
tion from quality inspection that a particular order requires 
rework suggests a specific set of order-centered conflicts. 
Alternately, in predictive contexts where substantial por- 
tions of the shop schedule are being generated, both 
resource-centered and order-centered conflicts are likely to 
be of concern. Here, it is advantageous to selectively address 
different aspects of the problem from different perspectives. 
One useful heuristic in this regard is the observation that the 
most important resource-centered conflicts are those which 
surround the bottleneck resources in the shop. This leads to a 
partitioning of effort, wherein a resource-based perspective 
is used to construct schedules for those resources which are 
predicted to be in high demand, and an order-based perspec- 
tive is used to schedule the remaining operations required by 
each order (see The Opis Project). 

Control decisions at the scheduling perspective level 
yield a specific set of focal points around which to generate 
or revise scheduling decisions. Strategy-level control deci- 
sions concern the approach that is adopted in carrying out 
these tasks. Alternative scheduling strategies differ in the 
types of constraints they consider and hence provide an op- 
portunity to further restrict the range of conflicts that are 
explicitly addressed. In initially generating partial schedules 
relative to a given focal point, the control decision at this 
level is clear; we are interested in the schedule that offers the 
best possible compromise among all relevant preference 
constraints and want a strategy which takes all constraints 
into account. However, in reacting to problems that arise, 
there are two reasons why specialized strategies might be 
desirable. First, it makes sense to take advantage of those 
aspects of the original compromise (that is, the compromise 

which originally led to the solution component under revi- 
sion) which remain unchanged. For example, if an operation 
is reported to have finished 10 minutes after its scheduled 
finish time, it is unlikely that a simple shift of the affected 
portion of the schedule can dramatically alter the degree to 
which relevant preference concerns are satisfied, and noth- 
ing sophisticated is warranted. The second reason for prefer- 
ring specialized strategies concerns the pragmatics of having 
to produce a result within specific response-time constraints. 
It is often necessary to sacrifice the potential of achieving a 
better compromise to accommodate the urgency of the prob- 
lem at hand. 

Generally speaking, the determination of which aspects 
of the original compromise are most cost effective to revise 
is a difficult problem. However, guidance can be provided 
by (1) knowledge of how the scheduling restrictions on the 
solution have changed (for example, the start-time constraint 
on an operation has been pushed forward in time by a signifi- 
cant amount), (2) knowledge of how different types of con- 
straints generally interact with one another (for example, the 
ability to meet deadlines is influenced by work shift and 
order-sequencing decisions), and (3) knowledge of the 
amount of search effort required to relax specific types of 
constraints (for example, exploration that considers alterna- 
tive work shift assignments versus exploration which as- 
sumes preferred shift assignments). 

Control decisions at the tactics level concern the actual 
generation and extension of candidate partial schedules. 
Here, we are talking about making decisions that satisfy or 
relax specific constraints. In the most desirable case, we 
might envision a compromise process involving specialized 
operators that function as lobbyists for specific constraints. 
Each proposes scheduling decisions that satisfy its benefac- 
tor, operators are applied on the basis of the relative impor- 
tance of various concerns, and compromises are made only 
when it is recognized as necessary. In practice, this type of 
dynamic search control at the lowest level has been difficult 
to realize, and it has been necessary to consider scheduling 
decisions in a well-defined order. For example, in generat- 
ing alternative partial schedules for a particular order, we 
use the precedence constraints on operations, or, generally, 
the set of process plans they define, to dictate the order in 
which decisions are considered. 

A Hierarchy of Problem Descriptions. One device com- 
monly used within AI planning systems to reduce complexity 
is abstraction. A hierarchy of problem descriptions is de- 
fined, each level omitting or aggregating specific lower- 
level details. The levels of aggregation defined in the under- 
lying factory model provide one example of how the 
scheduling problem can be abstracted. Machines can be 
grouped functionally into work areas, which in turn can be 
grouped into larger work areas, and so on. The resulting 
hierarchy provides increasingly less precise descriptions of 
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both the resources that must be allocated and the allocation 
decisions themselves. Stated another way, the hierarchy ab- 
stracts away specific constraints. Generally, we can view the 
exclusion of any set of constraints as an abstract formulation 
of the actual problem. 

Solutions to abstract forms of the problem can provide 
useful guidance in solving the detailed problem. They can 
yield insights about where the detailed scheduling effort 
would best be focused next. For example, computation of an 
aggregate-level schedule might serve to highlight particular 
areas of high resource contention. They can also be used to 
reduce the search in carrying out a detailed scheduling task. 
We might, for example, assume that machines are the most 
important resource to be allocated and defer consideration of 
the preferences defined over other types of resources until 
machine assignments have been made. 

There is another important reason for working with 
higher-level descriptions of the scheduling problem at hand. 
Given the unpredictability inherent in the factory environ- 
ment and the likelihood of change, it does not make sense to 
generate detailed scheduling decisions over more than a 
short-term time horizon. To do so not only requires addi- 
tional computational effort but is also likely to complicate 
later efforts to revise the schedule. 

Summary 

In this section we advocated an approach to schedule con- 
struction and maintenance based on the application of heuris- 
tic knowledge about the various restrictions, goals, and pref- 
erences present in the actual factory environment under 
consideration. We began by considering the issue of repre- 
senting and organizing this knowledge. A model of the do- 
main was outlined, designed to explicitly capture the full 
range of scheduling alternatives and provide a framework 
for structuring preferential knowledge. We then presented a 
technique for estimating the quality of a given set of schedul- 
ing decisions based on the degree to which the decisions sat- 
isfy various preferential concerns. Finally, we examined the 
role of constraint knowledge in controlling the generation of 
alternatives. We now turn attention to the prototype schedul- 
ing systems whose construction has given rise to these prin- 
ciples of constraint-directed scheduling. 

ISIS: An Intelligent Scheduling 
and Information System 

The Intelligent Scheduling and Information System (ISIS) 
project was initiated in the fall of 1980 in conjunction with 
Westinghouse Electric Corporation to investigate the appli- 
cability of knowledge-based approaches to the problem of 
job shop scheduling. WTCP was selected as a test site for the 
work. During the period from 1980 through 1984, several 
versions of an experimental job shop scheduling system 
called ISIS were constructed and tested with an evolving 
model of the WTCP manufacturing facility. Each iteration 

reflected a better understanding of both the WTCP schedul- 
ing problem and the types of constraint knowledge required 
to enable a flexible solution. 

Much of the early work centered around a categoriza- 
tion of the scheduling constraints in the environment and the 
development of an appropriate knowledge representation. 
This led to an initial SRL model of the factory, which in- 
cluded an explicit representation of scheduling preferences 
and proposed the knowledge-structuring ideas described in 
Modeling of the Factory Environment. These ideas were ex- 
tended and refined over the course of the project as the prob- 
lem became better understood and as additional aspects of 
the problem were addressed. The basic approach regarding 
comparison of alternatives discussed in Quantifying the No- 
tion of Constraint Satisfaction, was also formulated fairly 
early in the project. Experimentation with different con- 
straint evaluation schemes led to the specific mechanisms 
previously described. Later versions of ISIS focused on tech- 
niques for carrying out the search for a constraint-satisfying 
schedule. A nonhierarchical heuristic search technique was 
initially formulated and subsequently enhanced through the 
introduction of additional levels of analysis. Although some 
difficulties with the final search architecture have subse- 
quently been recognized (see The OPIS Project), we feel that 
the contributions made by ISIS toward a general solution to 
real-world scheduling problems are significant. In this sec- 
tion we briefly describe the WTCP environment, the opera- 
tion of the final version of the ISIS system, and its current 
status. Further details can be found in Fox, Allen, and 
Strohm 1982; Fox 1983; Fox and Smith 1984a. 

Problem Domain 

The WTCP scheduling problem addressed during the ISIS 
development effort was restricted to the portion of the plant 
responsible for the production of steam turbine blades, 
which constituted approximately one-third of the total shop 
floor area. A turbine blade is a complex three-dimensional 
object produced by a sequence of forging, milling, and 
grinding operations to tolerances of one-thousandth of an 
inch. Thousands of different blade styles are produced in the 
plant, primarily in batches of 1 to 200 blades. Orders re- 
leased to the floor fall into distinct priority classes, which 
range from replacement orders for malfunctioning blades in 
currently operating turbines to blade orders that accompany 
orders for new turbines to orders for blades to be placed in 
stock for future use. There are typically 100 to 200 blade 
orders on the shop floor at any time. 

Each style of turbine blade produced in the plant has one 
or more possible process routings associated with it, each 
ranging in length from 10 to 15 operations. Distinctions be- 
tween alternative routings can be as simple as substituting a 
different machine or as complex as changing the manufactur- 
ing process. In-process orders in the shop must share the use 
of approximately 50 machines and human-manned work 
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Figure 2. Successive Refinement of an Order’s Schedule within 
ISIS. 

centers as well as a full array of supporting resources (for 
example, operators, tooling, NC tapes, box gauges, and so 
on). Shop floor scheduling at WTCP is a formidable task, 
and decisions are influenced by the full range of concerns 
outlined earlier. 

Constraint-Directed Generation of Factory 
Schedules 
In constructing a job shop schedule, ISIS assumes an order- 
based scheduling perspective. An initial decomposition of 
the problem is performed, wherein the orders that require 
scheduling are prioritized, and the shop schedule is then de- 
rived by incrementally determining a schedule for each indi- 
vidual order. The generation of a given order’s schedule is 
cast as a hierarchical, constraint-directed search. Different 
levels of the search operate with different abstractions of the 
problem, each a function of the types of constraints which 
are considered at that level. Control generally flows in a top- 
down fashion, moving through successively more detailed 
levels of analysis. This is illustrated in figure 2. The follow- 
ing subsections summarize the major components of this 
search architecture. 

Problem Decomposition. The order-selection level of anal- 
ysis constitutes the system’s global problem-decomposition 
strategy. It collects the set of orders that require 
scheduling-for example, newly released orders, partially 
scheduled orders, and previously scheduled orders whose 

schedules have been affected by unanticipated events or de- 
cisions imposed by the user-and assigns a priority to each. 
This prioritization of the orders to be scheduled provides a 
high-level, order-by-order plan for completing the shop 
schedule. The ISIS search manager carries out this plan by 
selecting orders for scheduling in priority order. The sched- 
uling of a given order can disrupt existing schedules for 
lower-priority orders, in which case the affected lower- 
priority orders are queued for rescheduling. The particular 
prioritization schemes that have been tested presume a 
grouping of orders into distinct priority classes and base the 
order-priority calculation on both priority class and the 
closeness of the requested due date. 

Constructing an Order’s Schedule. Construction of the 
shop schedule proceeds by repeatedly selecting and schedul- 
ing the unscheduled order with the highest priority. We 
found that order-centered search in the presence of bottle- 
necked resources resulted in a significant horizon effect. The 
need became obvious for a hierarchical search in which an 
abstracted version of the problem, focusing on critical re- 
source capacity, was solved. Consequently, a level of analy- 
sis based on critical resource capacity is first applied to prop- 
agate the temporal consequences of the requested start and 
due dates assigned to the selected order. The result is a 
coarse schedule that reflects due date considerations in the 
context of the current shop load. Propagation is carried out 
by means of a dynamic programming analysis that elaborates 
the set of possible routings for the selected order and associ- 
ates an earliest start time and a latest finish time with each 
operation. This information is embodied in a set of prefer- 
ence constraints which serve to influence the decisions that 
are made during the subsequent detailed resource analysis. If 
these constraints are satisfied by the final schedule produced, 
then the order is completed within its externally imposed re- 
lease and due dates. The constraints are cast as preferences, 
however, to enable compromise with respect to other con- 
flicting concerns. 

The detailed resource-analysis level considers the full 
range of restrictive and preferential constraints that surround 
the production of the current order. Again, operating over 
the set of possible routings, a heuristic search is performed 
that proceeds either forward from the order’s requested start 
date or backward from its requested due date. Alternative 
schedules for the order are explored incrementally: On each 
iteration of the search, the current set of candidate partial 
schedules is expanded by considering one additional sched- 
uling decision, for example, the selection of an operation to 
perform, the selection of a resource for an operation, or the 
selection of a time interval for an operation. Using a beam 
search, ISIS retains and extends at each iteration only the n 
best partial schedules. Constraints are collected and applied, 
as described in Quantifying the Notion of Constraint Satis- 
faction, to assess how well each candidate satisfies relevant 
preferences; this method provides the basis for pruning. 
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Upon completion of the search, a commitment is made to the 
highest-rated hypothesis. Constraints reflecting these deci- 
sions are posted to restrict the final determination of the or- 
der’s schedule. The inclusion of the operation time-bound 
constraints from the capacity level has what we call a peri- 
scope effect on the search: Their consideration in the local 
evaluation of a partial schedule provides a look ahead into 
the possible consequences of the decisions. 

The schedule produced during detailed resource analy- 
sis significantly refines the coarse schedule generated at the 
capacity-analysis level of the search. A specific process rout- 
ing has been selected for the order under consideration, re- 
sources have been selected for each operation in that routing, 
and resource time-bound constraints have been associated 
with each selected resource. Complete specification of the 
order’s schedule at this stage requires only the refinement of 
the imposed resource time bounds. The resource-assignment 
level of the search carries out this refinement, leading to final 
allocation decisions for each resource required in the order’s 
schedule. Operating within the time bounds imposed by de- 
tailed resource analysis, ISIS makes allocation decisions that 
attempt to minimize the order’s WIP time. Once finalized, 
these decisions are added to the existing shop schedule and 
serve to further constrain any subsequent scheduling that is 
required. 

Deviating from the High-Level Plan. This top-down ap- 
proach to generating an order’s schedule constitutes the sys- 
tem’s default order scheduling-plan. The ISIS search archi- 
tecture provides a framework for deviating from this plan in 
problematic situations by associating presearch and post- 
search analysis phases with each level of the search. Post- 
search analysis is concerned with the detection of unaccepta- 
ble search results (that is, poorly satisfied constraints) and 
the identification of prior decisions that are likely to have 
caused the problem. If problems are encountered, the diag- 
nosis identifies the appropriate level at which to redirect the 
search. Presearch analysis responds to diagnosed problems 
by altering the set of assumptions under which the targeted 
level of the search will proceed (that is, relaxing specific 
constraints which would otherwise be considered nonnego- 
tiable). In practice, these aspects of the ISIS search architec- 
ture have not been extensively explored. This has been due 
primarily to difficulties in mapping appropriate prescriptive 
actions into the specific levels of analysis conducted by ISIS. 
In particular, an ability to adopt different scheduling per- 
spectives (as suggested in Controlling the Search for 
Constraint-Satisfying Schedule) is necessary in many reac- 
tive contexts. 

Dealing with Shop Floor Plan Deviations. A rudimentary 
facility was provided for handling problems on the shop 
floor that forced deviations from plan, (for example, ma- 
chine breakdowns). Because a schedule is viewed as a set of 

constraints on the availability of resources, deviations were 
viewed as constraint violations. Our approach implemented 
a policy that the repaired schedule deviate as little as possible 
from the original in order to reduce shop instability. This 
was accomplished by turning the original schedule’s 
resource-reservation constraints into preference constraints 
to be used in the rescheduling of the affected orders. 

Interaction with the User 
The ISIS user interface is viewed as a medium for communi- 
cating constraints to the system. The user specifies what the 
constraints are, and the schedules produced are responsive to 
these concerns. To facilitate acquisition and refinement of 
this constraint knowledge, a number of high-level interfaces 
are provided, The constraint editor is used to formulate pref- 
erence constraints. Driven by knowledge of the underlying 
constraint representation, the editor provides guidance to the 
user in specifying or revising the necessary information re- 
lating to alternatives, relevance, importance, and partial sat- 
isfaction. Once specified, a new constraint is automatically 
integrated into the existing knowledge base. Similar editors 
are provided to facilitate changes to other aspects of the fac- 
tory model. A status-update interface is used to communi- 
cate new scheduling restrictions that result from factory op- 
eration. 

The interactive scheduling subsystem provides a 
graphic interface through which the user can manually per- 
form some portion of the scheduling task. The user can elect 
to make specific scheduling decisions prior to involving the 
automatic scheduler (for example, manually schedule a criti- 
cal area of the plant), or can manually adjust the automati- 
cally generated schedule after the fact. Scheduling decisions 
imposed by the user are treated as additional constraints dur- 
ing subsequent automatic scheduling. 

As individual scheduling decisions are made by the 
user, the system uses its constraint knowledge in an advisory 
capacity. Relevant scheduling restrictions are checked for 
constraint violations (for example, the operation being 
scheduled cannot be performed on the machine indicated), 
and if any are found, feasible alternatives are suggested. If a 
proposed scheduling decision is found to satisfy all schedul- 
ing restrictions, the decision is evaluated with respect to rele- 
vant preferential concerns. Once again, constraints are col- 
lected and applied in the manner described in Quantifying 
the Notion of Constraint Satisfaction, and the satisfaction 
estimates returned are used to provide the user with an indi- 
cation of the desirability of the decision. A sample commen- 
tary is shown in figure 3. In this case, five distinct preference 
constraints were found to be relevant to the decision in ques- 
tion. The partitioning of these considerations reflects the 
particular scheduling policy associated with the order being 
scheduled. These assessments make the user aware of all 
constraints that the system knows to be relevant to specific 
scheduling decisions. In doing so, the assessments also pro- 
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Decision being contemplated: 

order: mo 00039 operation: op.4.CSEl 
resource: r205 5 start-time: Wed Apr lo 1985 

end time: Fri Apr 12 1985 

Primary considerations (Importance >= 30%): 

on order Sufficient lead time exists to complete preceding operations 
mo-00039 if started by the requested start date of Tue Apr 2, 1985 

Due date constraint sufficiently satisfied. Order mo-00039 should finish early 
by 4 day[s] 4 hour[s]. 

Secondary considerations {Importance < 30%): 
r2OS-5 was a preferred choice because number ofJugs of product was 

satisfied 

The preceding order on r2OS 5 is not of the same airfoil-type. NO 
sequencing advantage taken. 

The following order on r2C8.5 is of the same airfoil-type Good sequencing 
decision 

Figure 3. Evaluating a Scheduling Decision. 

vide a context for identifying constraints that are incorrectly 
specified or currently unknown to ISIS. 

The OPIS Project 

As experience was accumulated with the ISIS search archi- 
tecture, limitations stemming from its strict reliance on an 
order-based decomposition strategy were perceived. As dis- 
cussed in Controlling the Search for a Constraint-Satisfying 
Schedule, it was suspected that any single-perspective 
scheduling system would run into difficulties in effectively 
attending to the full range of preference constraints. These 
perceptions were later confirmed in an experimental study 
(summarized later). The Opportunistic Intelligent Scheduler 
(OPIS) Project grew out of the recognition of these problems 
and the desire to explore the potential benefits of a dynamic, 
conflict-directed approach to problem decomposition. Here, 
we describe the results we have obtained thus far regarding 
the use of multiple scheduling perspectives, summarize the 
current OPIS architecture, and briefly describe our current 
directions. The reader is referred to Smith and Ow (1985), 
Ow and Smith (1986), and Smith et al. (1986) for further 
details of this work. 

Current Status 

In December 1984 a production prototype of ISIS was in- 
stalled at the Winston-Salem facility and demonstrated for 
Westinghouse management. The effort was considered suc- 
cessful by all involved, and all prespecified objectives were 
met. Nonetheless, the next step-putting ISIS into field test 
in the plant-did not take place. This decision was made for 
two reasons. First, the ISIS prototype was implemented in 
SRL, a noncommercial, experimental knowledge represen- 
tation language embedded in Franz Lisp. In the absence of 
commercially available counterparts at the time, SRL pro- 
vided a useful and necessary tool for conducting our re- 
search. However, its inadequacy as a delivery vehicle be- 
came painfully apparent as the ISIS factory model was scaled 
up to capture the full detail of the tapered blade scheduling 
environment. Problems with both SRL and the underlying 
LISP implementation in dealing with such a large system (the 
ISIS knowledge base alone now occupied over 10 megabytes 
of disk space) made it extremely difficult to operate the pro- 
totype. It was clear that a translation of ISIS to robust, com- 
mercially supported software (which was now available) was 
a prerequisite to an actual field test. 

A second reason concerned the need for integration with 
existing information systems, an issue that was not previ- 
ously addressed. It was felt that the development of an ability 
to directly interact with the order-entry system, engineering 
databases, and so on, should also precede field testing. 
Given these considerations, Westinghouse decided to sus- 
pend work at Winston-Salem. ISIS was instead taken over by 
the Westinghouse Productivity and Quality Center (WPQC), 
the technology transfer arm of the corporation. Since that 
time, WPQC has been engaged in transforming the ISIS pro- 
totype into a production package. 

A Comparative Analysis of Multi-Perspective and 
Single-Perspective Scheduling 

To provide experimental justification for the claims put forth 
regarding the use of multiple scheduling perspectives, an ini- 
tial multiperspective scheduling system was configured. A 
resource-scheduling strategy based on the focused-approach 
priority rule developed by Ow (1985) was implemented, and 
the scheduling strategy of ISIS was adapted for use as the 
order scheduler. To simplify issues of coordination, the fol- 
lowing tightly controlled pattern of interaction between these 
two scheduling perspectives was imposed: 

l The resource scheduler was first applied to a single, pre- 
specified bottleneck resource (a work area of the plant 
consisting of some number of machines). 

l The order scheduler was then applied to work outward 
from this established portion of the shop schedule to 
complete the schedules for each individual order. 

The performance of this system, designated OPIS 0, was 
then contrasted with that of ISIS and a dispatch system using 
the COVERT priority rule for minimizing tardiness cost as 
formulated in Vepsaleinen (1984). The latter system repre- 
sents a well-known and well-regarded approach to job shop 
scheduling and was included to provide a benchmark for the 
experimental study. The results obtained in this comparative 
analysis are summarized here. Complete details can be 
found in Ow (1986). 

A scaled-down model of the Winston-Salem job shop 
was used to provide an environment for the experimental 
study. Six product types were included in the model, with 
associated process plans that utilized over 30 machines. Ma- 
chines were functionally grouped into 11 work areas. The 
bottleneck area contained 7 machines. The orders to be 
scheduled were known in advance, and predetermined due 
dates and tardiness cost rates were used. For purposes of 
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Figure 4. Average Tardiness Cost per Order and Average WIP time per Order over Different Problem Categories. 

comparison, the schedules generated by each system were 
evaluated with respect to tardiness costs, WIP time, and the 
number of machine setups. 

The comparative analysis was carried out over a total of 
22 test problems. Twenty of these test problems required 120 
orders to be scheduled, and the remaining 2 problems in- 
volved only 8.5 orders. Individual problems were generated 
by manipulating 4 parameters: the pattern of order releases 
(daily, weekly, and exponential rates), the number of orders 
released in each batch of releases, the product mix, and the 
setting of due dates. The set of problems was grouped into 18 
categories, representing different shop conditions and load 
factors ranging from 70% to 120% of the capacity of the 
bottleneck area. 

Figure 4 summarizes the performance of each system 
with respect to tardiness cost and WIP time. On each ac- 
count, OPIS 0 outperformed both ISIS and COVERT. Only 
four test problems were solved using ISIS largely because of 
the length of time taken to complete each task. Furthermore, 
it became clear from a detailed analysis of the ISIS schedules 
that the shortcomings predicted in using a purely order-based 
perspective were experienced. ISIS performed well with re- 
spect to minimizing WIP time because achievement of this 
objective depends primarily on an ability to resolve order- 
based conflicts. However, its performance with respect to 
tardiness cost suffered because of its inability to effectively 
handle resource-based conflicts. This fact is underscored by 

examining the number of setup changes in the schedules pro- 
duced by OPIS 0 and ISIS. The ISIS schedules contained 
close to twice as many setup changes for bottleneck ma- 
chines as did the schedules generated by OPIS 0. The time 
required to perform these setup changes appeared to account 
for much of the discrepancy in tardiness cost performance. 
The variances in average tardiness costs were also smaller 
for OPIS 0 than for ISIS and COVERT. WIP time variances 
for OPIS 0 and ISIS were between 4 and 9 days, and those for 
COVERT ranged from 14 to 225 days because of the strictly 
local nature of the dispatch-based decision making. 

A System Architecture for Conflict-Directed 
Problem Decomposition 
OPIS 0 was constructed for the purpose of assessing the rela- 
tive advantages of multiperspective scheduling. From the 
standpoint of system flexibility, some rather severe limita- 
tions were imposed: 

l The system operates with a fixed plan for partitioning 
effort between its two scheduling perspectives that re- 
quires a priori specification of a single bottleneck work 
area. In an actual shop, the situation is often much more 
complex. Several bottleneck resources can exist, either 
independently of one another or in a specific primary 
bottleneck-secondary bottleneck relationship. Further- 
more, the bottleneck resource in the shop often “floats” 
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over time, in which case specific resources need not be 
considered critical for the entire duration of the sched- 
ule. A priori specification of these complex resource re- 
quirements is unreasonable, because many of the spe- 
cific relationships emerge only after some amount of 
scheduling is performed. An ability to dynamically pre- 
dict high-contention areas of the shop schedule is neces- 
sary to fully exploit the resource-based scheduling per- 
spective . 

l The system assumes that the resource-based subprob- 
lem at the bottleneck resource completely dominates the 
order-based subproblems that involve nonbottleneck 
operations. The order scheduler is obliged to make 
scheduling decisions that are consistent with the bottle- 
neck schedule which is initially constructed by the re- 
source scheduler. In the general case, it must be possible 
to reconsider and revise the bottleneck schedule when 
conflicting concerns surface in subsequent subprob- 
lems . 

l The system implements a particular schedule- 
generation strategy and provides no facilities for reac- 
tively revising a portion of the shop schedule in light of 
changing circumstances in the shop. 

Having experimentally confirmed our intuitions regarding 
multiperspective scheduling, we designed and implemented 
a scheduling architecture sensitive to these concerns. The 
current OPIS architecture draws from principles of standard 
blackboard style architectures (Erman et al. 1980) and simi- 
larly assumes a system organization comprised of a number 
of knowledge sources (KSs) that extend and revise a global 
set of one or more hypotheses. In this case, the KSs imple- 
ment alternative scheduling strategies, and the hypotheses 
being manipulated are candidate shop schedules. A frame- 
work for conflict-directed control is provided by specializing 
system activity in the following two ways: 

1. Centralized Schedule Management: An underlying 
schedule-management component assumes sole respon- 
sibility for maintaining an accurate characterization of 
the current state of a given candidate schedule. All revi- 
sions or extensions to a given schedule resulting from 
either KS execution or external circumstances pass 
through this component, which in turn propagates the 
temporal consequences of these decisions (that is, oper- 
ation time-bound constraints and their origins) to other 
affected parts of the schedule. Thus, the schedule- 
management component serves as the system’s mecha- 
nism for communicating constraints among interdepen- 
dent subproblems. It also enables straightforward 
detection of any constraint violations that are intro- 
duced. The techniques employed are descended from 
but significantly extend those described in Smith 
(1983). 

2. Event-Based Control: Problem decomposition and sub- 
sequent coordination of the scheduling effort is carried 

out by a designated KS called the manager. The man- 

ager operates in an event-driven fashion, formulating 
and initiating subtasks to be performed in response to 
changes in the current schedule. A hierarchy of event 
types is defined to characterize the specific kinds of 
changes that are of interest. One subclass of events con- 
cerns the reporting of scheduling progress; for example, 
a resource schedule has been added to the shop sched- 
ule. Other subclasses designate specific types of incon- 
sistencies and preference compromises. The hierarchy 
of event types provides a basis for structuring the man- 
ager’s control knowledge. Associated with each specific 
type of event is a set of event-processing heuristics that 
map characteristics of the event to specific courses of 
action (that is, sequences of subtasks to assign to desig- 
nated KSs). Generally, they encode specific pieces of 
constraint-interaction knowledge. (These mechanisms 
are described in more detail in Smith et al. forthcom- 
ing .) 

Within this control framework, we augmented the previous 
configuration of resource-based and order-based scheduler 
KSs with two additional KSs. The first, referred to as the 
capacity analyzer: implements a shop-level scheduling per- 
spective. It provides a basis for dynamic problem decompo- 
sition by generating predictions of likely areas of high re- 
source contention. In contrast to the detailed schedulers, the 
capacity analyzer operates with aggregate descriptions of re- 
sources, operations, and resource-allocation decisions. It 
constructs a predictive shop schedule that satisfies the time- 
bound constraints posted with each aggregated operation, 
using a general line-balancing heuristic. The demand for ca- 
pacity reflected by this schedule is then compared with the 
actual capacity of the required aggregate resources, and 
likely bottlenecks are predicted. The second KS added to the 
configuration implements a simple right-shifting strategy 
and is employed to resolve minor inconsistencies that might 
arise. The manager’s current body of control heuristics gen- 
eralizes the OPIS 0 control strategy to one where effort is 
initially focused on scheduling any number of predicted bot- 
tlenecks (as dynamically determined by the capacity ana- 
lyzer), and the schedule is then completed on an order-by- 
order basis. Contingencies are also included for revising 
decisions made by the resource scheduler in response to in- 
consistencies that arise later on in the search. 

Current Directions 
The current thrust of our work centers on the issues sur- 
rounding reactive management of existing schedules. We 
see several open research problems. The first concerns the 

* Despite the name, this KS bears no relationship to the capacity-analysis 
level of the ISIS search architecture In fact, the ISIS capacity analysis level 
has been subsumed by the propagation techniques of the schedule- 
management component and removed from the orde! scheduler. 
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use of specialized reactive scheduling strategies in response 
to inconsistencies that are introduced. We need to gain a bet- 
ter understanding of the conditions under which local 
changes can be expected to adequately preserve the global 
compromise reflected by the current schedule. A more diffi- 
cult problem concerns the detection of weaknesses in the cur- 
rent schedule (that is, situations where preference concerns 
are unsatisfactorily compromised). Although we currently 
have an ability to detect individual preference violations, we 
do not yet have a methodology for estimating the ramifica- 
tions of individual compromises on the global solution (or 
some global aspect of it). A final issue concerns an ability to 
maintain predictive accuracy as schedules move farther out 
in time. A failure to somehow account for the unpredictabil- 
ity inherent in the scheduling environment can result in 
overly optimistic predictions. 

Final Remarks References 

ing environment. We feel that the results presented in this 
article have made important strides toward the realization of 
this ability and demonstrate the viability of this perspective. 
To be sure, there are many important issues that remain un- 
resolved, and the ultimate potential of this research must 
await further investigation. Nonetheless, we feel that 
knowledge-based factory scheduling systems will soon pro- 
vide an attractive alternative to the scheduling techniques 
currently employed in manufacturing environments. 
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In this article we presented work aimed at providing a 
knowledge-based solution to real-world factory scheduling 
problems. We focused specifically on the problem of gener- 
ating and maintaining detailed production schedules in job 
shop environments. We began by examining the characteris- 
tics of this activity and identified the large and conflicting set 
of factors that influence scheduling decisions in real-world 
environments. This led to a view of scheduling as a complex 
constraint-directed process, and an approach to the problem 
centered around the representation and use of knowledge 
about these diverse scheduling concerns. We then focused 
attention on determining the types of knowledge necessary to 
make intelligent job shop scheduling decisions. Issues relat- 
ing to the use of constraint knowledge in decomposing the 
problem, generating alternative partial solutions, assessing 
the quality of alternative solutions, and compromising 
amongst conflicting constraints were all considered, and a 
set of constraint-directed reasoning mechanisms was de- 
fined. 

We next described a series of software systems that have 
been constructed during the course of our work. These sys- 
tems provided a basis for experimenting with and refining 
our ideas and illustrate a progression toward increasingly 
more sophisticated constraint-based reasoning techniques. 
We first examined ISIS-2, which emphasized the use of a 
rich symbolic model of the factory environment and an initial 
methodology for constructing schedules that reflect the full 
complexity of a given production environment. Recognition 
of a need for greater system flexibility in addressing different 
scheduling tasks led to the development of OPIS, which pro- 
vides constraint-based techniques for opportunistically foc- 
using the scheduling effort. This remains the current focus of 
our efforts. 

This work was initiated on the premise that a practical 
solution to factory scheduling problems requires an ability to 
represent and reason with knowledge of the specific operat- 
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call for participation 

Workshop on 
Spatial Reasoning and 
Multi-Sensor Fusion 
sponsored by AAAI 

Spatial reasoning is central to the interaction of an intelligent robot with its environment. 
Although the problems are somewhat different for mobile and stationary robots, the basic 
need for correlating perceived information -- which due to viewpoint limitations in most cases 
constitutes only partial evidence about scene entities -- with the stored world knowledge 
remains the same. Also common to both cases are the problems of integrating incoming 
information through various sensors, such as photometric, range, tactile and force/torque. 
Such issues will form the focus of this workshop. In particular, the topics that will be 
highlighted at the meeting include 

l Reasoning about shape from partial evidence 
l Fusion of photometric and range data for mobile robots 
l Fusion of 20, 3D, tactile and F/T sensing for assembly robots 
l Evidential reasoning for verification vision 
l Reasoning architectures for spatial data 
l Programming paradigms for spatial reasoning 
l Representation of world knowledge for assembly and mobile 

robots 
l Formal theories of spatial reasoning 
l Spatial planning and problem solving 

Papers on these topics are invited for consideration. Three copies of an extended abstract or 
a full-length paper should be sent to either of the following two addresses prior to March 15, 
1987. 

Su-shing Chen 
Dept of Computer Science 
University of North Carolina 
Charlotte, NC 28223 

Avi Kak 
Robot Vision Lab 
EE Building, Box 121 
Purdue University 
W. Lafayette, IN 47907 

This workshop will be held August 20-22 immediately preceding the IJCAI conference which 
is to be held in Milan, Italy Aug 23-30, 1987. The workshop site is Hilton International Mllano 
on Via Galvani in the heart of the city. 
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