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Introduction 
This report summarizes our experience in building PIES, a 
knowledge-based system that diagnoses problems in semi- 
conductor fabrication processes by analyzing parametric test 
data. 

Parametric measurement, which is performed on test 
circuits at the end of a complicated semiconductor fabrica- 
tion process, provides semiconductor engineers with early 
information to monitor the “health’ ’ of the overall fabrica- 
tion process. Typically, hundreds of measurements are made 
on each wafer. The problem is to reduce the resulting ream 
of data to a concise summary of the process status: whether 
the process is functioning correctly and, if not, what the nat- 
ure and cause of the abnormality is. Currently, this interpre- 
tation taskis performed by a group of semiconductor special- 
ists known as failure-analysis or yield-enhancement 
engineers and routinely consumes a large portion of their 
time. It is critical that problems be identified quickly to avoid 
a major operational loss. 

For any knowledge system to be effective in this appli- 
cation, it must be able to deal with two common characteris- 
tics of an engineering domain: (1) knowledge about the do- 
main matures progressively with experience, following a 
learning curve, and (2) the process sequence is subjected to 
continual modification. These characteristics entail ongoing 
maintenance of the knowledge base. Unfortunately, it is im- 
practical to use highly trained artificial intelligence (AI) pro- 
fessionals for this continuing support function. The PIES ap- 
proach to this problem is to provide a knowledge-acquisition 
environment that permits the failure-analysis engineers 
themselves to build up and maintain the actual contents of the 
knowledge base. The traditional AI knowledge engineering 
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task has been reduced to initially analyzing the domain and 
defining an appropriate structure for the knowledge base. 

The structure of the knowledge base reflects the way 
fabrication engineers reason causally about semiconductor 
failures, First, measurement deviations are used to infer 
physical defects of wafer structure, such as the thickness or 
doping density of some layer being too high. These struc- 
tural anomalies are then linked to problems in particular pro- 
cess steps; for example, a wafer layer might be too thick 
because the wafer was left in an oven too long or because the 
oven temperature was too high. Finally, process problems 
are traced to root causes; for example, the wafer was left in 
the oven too long because a timer broke. 

The multilevel causal structure of the knowledge base 
permits fabrication engineers to codify their knowledge of 
and experience with failures of a fabrication process in a 
form they find natural: causal links that associate evidence at 
each level with hypotheses at the next level. Thus, there are 
associations linking deviated measurements to structural 
anomalies, anomalies to process problems, and process 
problems to root causes. A knowledge editor supports and 
enforces this conceptual structure. 

The structure of the knowledge base also helps focus the 
diagnostic reasoning process by providing natural, inter- 

Abstract The Parametric Interpretation Expert System (PIES) is 
a knowledge system for interpreting the parametric test data col- 
lected at the end of complex semiconductor fabrication processes, 
The system transforms hundreds of measurements into a concise 
statement of the overall health of the process and the nature and 
probable cause of any anomalies. A key feature of PIES is the struc- 
ture of the knowledge base, which reflects the way fabrication engi- 
neers reason causally about semiconductor failures. This structure 
permits fabrication engineers to do their own knowledge engineer- 
ing, to build the knowledge base, and then to maintain it to reflect 
process modifications and operating experience The approach ap- 
pears applicable to other process control and diagnosis tasks. 
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mediate levels for hypothesizing and verifying. Usually, 
there are many root causes that could account for an ob- 
served set of parameter deviations. Instead of directly asso- 
ciating measurements with root causes, it is computationally 
efficient to proceed step by step, hypothesizing and prioritiz- 
ing or ruling out possibilities at the structural and process 
levels. In addition to being efficient, this multilevel diagno- 
sis leads to explanations that fabrication engineers find easy 
to comprehend. 

A working knowledge-based system incorporating 
these concepts was implemented in Franz Lisp on a VAX/ 
Unix system at Schlumberger Palo Alto Research (SPAR). 
This core system was then installed at Fairchild’s fabrication 
facility in Puyallup, Washington, running on a VAX under 
VMS. The knowledge base was compiled and is maintained 
solely by failure-analysis engineers at the production site. 
Performance of the system is currently being evaluated. 

Background 
In the following two subsections, we present a brief discus- 
sion of semiconductor fabrication and parametric testing, 
and shallow-level versus deep-level approaches to expert 
systems. 

Semiconductor Fabrication and Parametric 
Testing 
Semiconductor devices are manufactured in two phases, as 
shown in figure 1: Wafers are first fabricated in batches 
(known as lots) in the controlled environment of a clean 
room; the wafers are then cut into “dice,” which are indi- 
vidually packaged and tested. Parametric testing is per- 
formed on lots at the conclusion of the fabrication process, 
just before the wafers are cut. 

The recipe for a modern semiconductor product typi- 
cally contains more than 100 process steps. Each step is a 
chemical-physical interaction between a wafer and its envi- 
ronment under the precise control of process equipment, for 
example, epitaxy, oxidation, etching, and ion implantation. 
Although the result of each individual process step is moni- 
tored by a so-called in-process test (such as measuring the 
thickness of an oxide layer) to make sure that it is within 
tolerance, the combined effect of these process steps cannot 
be verified until the recipe has executed completely, hence 
the need for parametric testing. 

When abnormal measurements of some key parameters 
are detected, the wafer is rejected and is sent for failure anal- 
ysis accompanied by a complete test record of the lot. The 
job of the failure-analysis engineer is to diagnose the process 
step(s) responsible for the failure and take appropriate cor- 
rective action. The daily work load of a failure-analysis engi- 
neer thus depends on the number of rejected wafers during 
the previous day and the difficulties of those cases, each of 
which takes tens of minutes to hours to diagnose. A 

knowledge-based system such as PIES can enhance the pro- 
ductivity of a failure-analysis engineer in two ways: first, it 
focuses an engineer’s attention by reducing the flood of raw 
test data to a few likely failure candidates; second, it ensures 
an objective analysis by providing a complete and unbiased 
assessment of the situation. 

Semiconductor fabrication was selected as a good ex- 
perimental domain in which to pursue our long-term interest 
in applying AI technology to manufacturing. The choice was 
based on a number of considerations. First, there is high 
leverage: because of the high volume (millions of die a year), 
small-percentage increases in yield can result in considera- 
ble increases in profit. Second, the processes are not always 
well understood, so that actual operating experience is criti- 
cal to achieving acceptable yields. It is important to be able to 
codify this experience so that it can be widely replicated and 
shared. Third, semiconductor fabrication is an ideal domain 
in which to pursue AI research on qualitative modeling and 
reasoning. Due to the ever-changing nature of fabrication 
technology, a knowledge system that is totally dependent on 
hand-coded, process-specific, task-specific, experiential 
knowledge is inefficient to maintain and difficult to general- 
ize. Moreover, semiconductor engineers routinely invoke 
models of solid-state physics and silicon processing to ex- 
plain a problem not encountered previously. To achieve the 
same level of competence as a human engineer, we set as a 
long-term goal the development of qualitative modeling and 
reasoning techniques that can supplement the PIES 
experience-oriented knowledge base. 

A Shallow-Level Versus a Deep-Level Approach to 
Expert Systems 
A conventional way to build an expert system for diagnosing 
process faults is to rely on a knowledge engineer to capture 
the experience of fabrication engineers in the form of if-then 
or production rules (Davis et al. 1975). An inference mecha- 
nism might then use a forward-chaining inference process 
(Winston 1984) to transform an input set of parametric 
symptoms into a set of possible faults. The approach so de- 
scribed is sometimes referred to as a shallow-level approach 
(Hart 1982), because its knowledge base records only as- 
pects of experience acquired from human experts and not a 
model of the domain about which the system is supposed to 
be an expert. An alternative, deep-level approach would be 
to perform diagnosis by reasoning with causal models of the 
domain (Pan 1983). 

A shallow-level approach is suitable when experience 
and not the exercise of theory plays the key role in perform- 
ing a task. For a fixed problem, a shallow system can be built 
in a relatively short time and can be “tuned” to a high level 
of performance, as demonstrated by MYCIN (Shortliffe 
1976). However, a shallow-level system will require re- 
engineering of its knowledge base whenever there is a 
change in the domain. 
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Figure I. A Typical Semiconductor Manufacturing Process. 

Failure Analysis 

The deep-level approach complements the weakness of in the source materials or clean-room environment, or hu- 
the shallow-level system because of its potential to derive man error. Any of these causes will result in variations in the 
solutions for unanticipated situations from the underlying fabrication process, which, in turn, will produce physical 
principles of the domain. It is particularly advantageous in abnormalities in the wafer structure and corresponding devi- 
engineering-oriented domains where a complete or partial ations in parametric measurements associated with the struc- 
domain theory already exists. The progress made in the di- ture. The PIES diagnostic approach is to isolate the possible 
rection of qualitative modeling and reasoning (Forbus 1984, causes of observed symptoms by reversing this causal chain 
DeKleer 1979, Kuipers and Kassirer 1983, Pan 1983) is level by level, following the sequence of measurement devi- 
promising, but the technique needs futher development be- ations, physical-structure abnormalities, process variations, 
fore it can be useful in practice. and root causes. 

The PIES knowledge base approach falls between the 
shallow and deep-level approaches (semideep). It is similar 
to a shallow-level system in that it attempts to help domain 
experts in formalizing their experience and to apply the 
knowledge so acquired in diagnosis. However, it explicitly 
represents the structure of the domain in terms of multiple 
causal levels and uses such conceptual levels to communicate 
naturally with domain experts (in both knowledge acquisi- 
tion and diagnostic reporting). 

The knowledge base in PIES consists of four levels that 
correspond directly to those in figure 2. At each level, we 
enumerate observed failure modes. For instance, at the 
physical-structure level, such modes include incorrect thick- 
ness or doping density of particular wafer layers, such as the 
epitaxial layer. At the fabrication process level, the failure 
modes include incorrect temperatures or gas densities during 
particular process steps, for example, oxidation or ion im- 
plantation. Rules provided by the fabrication engineer link 
failure modes at adjacent levels. Thus, EPI-thickness-high is 
associated with abnormally high temperature during the epi- 
taxial process stage. Approach 

Overview 

Figure 2 shows the causal chain through which fabrication 
failures originate and propagate. The root cause is either a 
malfunction in some fabrication equipment, contamination 

Fabrication engineers often find it convenient to orga- 
nize their knowledge around specific failure cases, each cor- 
responding to an observed or expected anomaly in physical 
structure. Associated with each such structural anomaly are 
a set of expected symptoms (that is, measurement devia- 
tions) and a set of possible causes (that is, process failures). 
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Figure 2. Multilevel Causal Structure of Fabrication Diagnostic 
Knowledge. 

Diagnosis proceeds as a multilevel hypothesis- 
verification process. Parametric measurements are first pre- 
processed to transform them from numeric values to qualita- 
tive ranges, for example, normal, high, very high. Each 
measurement that is abnormal implicates one or more 
physical-structure problems. The expected symptoms asso- 
ciated with each of these hypothesized physical-structure 
problems are compared with the complete set of abnormal 
measurements. A score is assigned corresponding to how 
well the expected symptoms match the observed ones. The 
scores are compared, and hypotheses with significantly 
lower scores are eliminated from consideration. The same 
hypothesis-verification process is then used to select the 
most probable process failures based on the surviving struc- 
tural problems. Finally, the root causes are selected that best 
explain the most probable process failures. This iterated 
hypothesis-verification approach identifies the primary, that 
is, most likely, failures. In many cases, it also reveals multi- 
ple failures that might be independent of, or causally related 
to, the primary failure. 

The PIES knowledge editor makes it possible for a fabri- 
cation engineer without AI training to build and maintain the 
knowledge base. It does this by directly supporting the PIES 
multilevel case-centered knowledge organization, thereby 
guiding an engineer to decompose knowledge in a way that is 

example, having discovered a new type of physical-structure 
failure, the engineer can add the failure to the knowledge 
base along with the expected symptoms and probable causes. 

Knowledge Base 

The top level of the PIES knowledge base is organized into 
four explicit causal levels: measurement, physical structure, 
process, and root cause. As part of the representational 
mechanism in PIES, the causal sequence among these four 
levels is described by a set of symbolic links that are used by 
both the knowledge editor and the diagnostic reasoner. 

At each causal level, the knowledge base is decomposed 
into framelike structures, called failure cases or cases for 
short, each encoding knowledge about a type of failure at 
that level. 

The cases have slots for encoding attributes that de- 
scribe a particular type of failure. Examples of such attrib- 
utes in the current implementation of PIES are the “popu- 
lar” name commonly used by domain experts to refer to a 
failure case, comments from fabrication engineers about the 
failure, and most significantly, four associational link types 
that describe how this case is causally related to other failure 
types. Other slots are used in conjunction with the knowl- 
edge base editor (desribed below) to group failure cases in 
ways that users find convenient. 

A domain expert’s knowledge about possible causal 
connections between two failure types is represented in PIES 
by associational links. A link can be one of two types: causes 
or caused-by, which are further distinguished between intra- 
level and interlevel, depending on whether the other failure 
case it refers to is at the same or a different causal level. Each 
associational link has an associational strength, which is a 
heuristic estimation of the strength of the causal relationship, 
and can be one of five quantized states: must, very-likely, 
likely, probably, and maybe. 

As an example, a common failure in a bipolar ISO-Z 
process at the physical-structure level occurs when an ion- 
implantation problem alters the distribution of doping in the 
base region of a transistor. The PIES representation for this 
problem, known as BASE DISTRIBUTION deep, is shown 
(in its pretty print form) in figure 3. 

In this example, the failure type of BASE DISTRIBU- 
TION deep is said to be causally related to other failure types 
at the process level, the measurement level, and the physical- 
structure level itself. If this failure it occurs, it can result in 
seven types of measurement deviation, some of which are 
more likely to manifest themselves. For example, WE- 
10BETA is more likely than RBl . 

Knowledge Editor 

both natural and required by PIES. Using the editor, an engi- The knowledge editor enables domain experts to build and 
neer can focus on the failure cases at any level and can create maintain the PIES knowledge base without on-site help from 
or delete cases as well as their associational links to other AI specialists. Acquiring knowledge directly from domain 
cases at the same or adjacent levels in the causal chain. For experts has several advantages in practice: (1) it relieves AI 
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Knowledge about a case of physical structure defect: 
BASE DISTRIBUTION deep 

Possible effects at measurement level- 
1: ((parametric-measurement WElOBETA low) very-likely) 
2: ((parametric-measurement RBl low) probably) 
3: ((parametric-measurement RB2 low) very-likely) 
4: ((parametric-measurement WElO-CBO low) probably) 
5: ((parametric-measurement SOTZCBO low) probabl;) 
6: ((parametric-measurement SOT-B-SU very-low) probably) 
7: ((parametric-measurement SOTBETAF low) probably) 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$~SSS~~~~~SSSS~~~~~~~~~~~~~$ 
MULTI-LEVEL CASE EDITOR <SPAR PIES-l.O> 

last updated: February 1985 
$$$$$$$$$$$$$$$$$$$$$$$$$$$%$$$$$$$$S$$$$$$$$$$$$S$$$$$$$$$$$SSS$SS$ 

Welcome to Fairchild/Schlumberger Parametric Interpretation Expert System 

Available Commands are: 
<HELP> show new-perspective up tops Mark-Case fill edit write 
write-and-quit exit abort expert beginner reset reset! 
display-highlight-on display-highlight-off 

Enter Command (<CR> for listing of Case-Path) =>> newp 
1: measurement 2: physical-structure 3: process 4: rOOt-CauseS 

Enter selection (0 for redisplay, <CR> for physical-structure) => 2 

Case-Library last modified on Wed Jun 12 11:07:18 1985 
Total of 82 cases from file <physical cas> loaded!! 

Possible causes at process level- 
1: ((BASE-IMPLANT ENERGY high) likely) 
2: ((BASE-DRIVE FURNACE-TEMPERATURE high) likely) 
3: ((BASE-DRIVE DIFFUSION-TIME long) likely) 

Possible causes at SAME physical-structure level- 

You are now referring to the TOP of physical-structure 
1: COLLECTOR 2: EPI 3: ETCHED-SILICON 4: ISO-OX 5: SINK 
6: EMITTER 7: BASE 8: FIELD 9: SILICON lo: METAL-l 
11: ISO-ISLAND 12: VIA 13: BASE-OXIDE 14: LVCEO-RESISTOR 
15: GROUND-TAP 16: GUARD-RING 17: SIDEWALL 18: METAL-2 

1: ((BASE-OXIDE THICKNESS low) likely) 
Enter Command (<CR> for listing of Case-Path) =>> 7 

You are. now referring to (BASE) of physical-structure 
1: EXTRINSIC-Q 2: DISTRIBUTION 3: INTRINSIC-Q 

Enter Command (<CR> for listing of Case-Path) =>> 2 

Figure 3. A Pretty Print of the Contents of the Knowledge Base You are now referring to (BASE DISTRIBUTION) of physical-structure 
about BASE DISTRIBUTION deep. 1: deep 2: shallow 

specialists from on-site visits and lengthy knowledge engi- 
neering sessions with domain experts, (2) it avoids misun- 
derstanding and thus mistranslation of knowledge from do- 
main experts to AI specialists, and (3) it allows domain 
experts to quickly incorporate new experience into the 
knowledge base. This last feature makes the system more 
suitable than the traditional expert system approach for deal- 
ing with a changing domain. 

The primary function of the knowledge editor is to guide 
domain experts in codifying their knowledge and expertise in 
a form consistent with the PIES knowledge base. During a 
knowledge engineering session, the knowledge editor first 
allows the domain expert to focus attention on one of the 
PIES causal levels. Within that particular level, the knowl- 
edge editor lets the user maintain the user’s own hierarchy of 
failure concepts. For example, at the physical-structure 
level, the user might wish to group failures by wafer layer 
and within any one layer by type of failure, such as, doping 
problems. This support of concept hierarchies helps the ex- 
pert to organize the many failure types known to the knowl- 
edge base. The knowledge editor provides the user with easy 
commands to create and traverse the user’s hierarchy, to de- 
fine new failure cases, and subsequently to fill in or modify 
the contents (slots) of a failure case. In summary, the PIES 
knowledge editor guides a domain expert to decompose the 
user’s failure-related expertise into the structure required by 
the PIES knowledge base. It ensures that the knowledge 
which is codified is both syntactically and semantically cor- 
rect. 

For example, in a knowledge engineering session to 
build the knowledge base for diagnosing failures in Fair- 
child’s ISO-Z bipolar process, our collaborator at the Fair- 

Enter Command (<CR> for listing of Case-Path) =>> 1 
You are now referring to (BASE DISTRIBUTION deep) of physical-structure 

CASE-NAME: BASE-DISTRIBUTION-deep at physical-srmcture level 

Following symptoms at measurement level are to be resulted from this case: 
1: ((uarametric-measurement WElOBETA low) verv-lkelv) 
2: &.mmehic-measurement RB 1 low) probably) _ . 
3: ((parameaic-measurement RB2 low) very-likely) 
4: ((parametric-measurement WElO-CBO low) probably) 
5: ((parametric-measurement SOT?.-CBO low) probably) 
6: ((paramenic-measurement SOT-B-SU very-low) probably) 
7: ((parametric-measurement SOTBETAF low) probably) 

______ 
Following causes at process level is to result in this case: 

1: ((BASE-IMPLANT ENERGY high) likely) 
2: ((BASE-DRIVE FURNACE-TEMPERATURE high) likely) 
3: ((BASE-DRIVE DIFFUSION-TIME long) likely) 

______ 
Following causes at CURRENT physical-structure level can result in this case: 

1: ((BASE-OXIDE THICKNESS low) likely) 

Figure 4. A Sample Knowledge Engineering Session under the 
PIES Knowledge Editor. 

child Puyallup site chose to focus his attention on the 
physical-structure level. The PIES editor helped him to orga- 
nize known cases of physical-structure failures into a hierar- 
chy and allowed him to traverse the hierarchy to a particular 
case of interest: BASE DISTRIBUTION deep, as shown in 
figure 4. 

To organize what our collaborator knew about the fail- 
ure, he conceptualized relevant causalities centered around 
BASE DISTRIBUTION deep, as shown in figure 5. The 
knowledge editor allowed him to establish associational 
links from BASE DISTRIBUTION deep to other known fail- 
ure cases at effect level (measurement level), cause level 
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Figure 5. Organization of Concepts Causally Related to BASE DISTRIBUTION deep. 

(process level), and self level (physical- structure level). The 
editor allowed our colaborator to add, delete, or replace as- 
sociational links as necessary. Our experience showed that 
failure-analysis engineers with no AI background were capa- 
ble of mastering the PIES knowledge editor after a brief (less 
than an hour) tutorial session. 

Diagnostic Reasoner 
The PIES diagnostic-reasoning mechanism exploits the mul- 
tiple causal-level structure of the knowledge base to diag- 
nose the root cause of failure from a given set of parametric 
test data. Before actually starting the diagnostic process, 
symbolic “symptoms” have to be abstracted from raw test 
data (in this experiment, the raw data were recorded by Fair- 
child’s Keithley tester). The symptom abstraction process 
follows two steps: first, noisy data points (due to bad test- 
probe contact or random failure) are removed from the data 
set by a statistical method; then, a statistical average and a 
standard deviation are computed for each parametric mea- 
surement over all wafers in a given lot. This information is 
compared with expert-provided limits to produce a qualita- 
tive estimation of the measurement, for example, EPI-R 
very-low. The resulting qualitized measurements form the 
initial symptom set. 

The diagnostic process is performed by progressing 
level by level through a sequence of hypothesization and 
confirmation steps, as explained in the overview. At each 
level, a set of probable failures is filtered from initial hypoth- 

eses suggested by the likely faults isolated at the previous 
stage of reasoning (or the initial symptom set). The level-to- 
level isolation cycle repeats itself, following the inverted 
causal chain, until it reaches a final diagnostic conclusion at 
the root cause level. 

Let us follow through an example of this reasoning 
chain. EPI-R is a measurement of electric resistivity from a 
test structure within a layer of epitaxial material. (It is de- 
signed to monitor the result of the epitaxial process.) One 
possible explanation for an observed low EPI-R measure- 
ment, which readily follows a basic principle of semiconduc- 
tor physics, is that the EPI layer was too thick-a physical- 
structure failure directly confirmable by other expensive, 
time-consuming material-analysis techniques, Tracing fur- 
ther back along the causal chain, we find a thick EPI layer 
can result from, among other factors, an abnormally high 
temperature during the EPI process. The final step is to iden- 
tify possible root causes of this failure, which leads to, 
among others, a faulty thermostat-an equipment failure- 
that resulted in a higher than normal EPI process tempera- 
ture. 

At each stage of the level-to-level diagnosis, the isola- 
tion of failures from hypotheses at the previous level is 
achieved in four steps: hypothesization, implication, confir- 
mation, and thresholding. 

The hypothesization step is designed to heuristically re- 
trieve from among all known types of failures a suspect set 
that includes only those failure cases which are “reasona- 
bly” implicated by given symptoms. The sensitivity, that is, 
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how strong the evidence has to be for a hypothesis to be 
included in the suspect set, is an adjustable threshold. 

The suspect set so derived is by no means exhaustive; a 
potential failure might not be included because the symptoms 
stipulated for hypothesizing the failure are not observable 
from the given test circuit. A reasoning step, known as impli- 
cation, expands the original suspect set by including addi- 
tional hypotheses that are implicated by any failure case al- 
ready included in the suspect set. Such implication is based 
on the intralevel causalities coded in the knowledge base. 
For example, one intralevel causal link coded in the ISO-Z 
knowledge base indicates that the physical-structure failure 
BASE-OXIDE THICKNESS low is a potential cause of an- 
other physical structure failure, BASE DISTRIBUTION 
deep (as shown in figure 5). However, base-oxide thickness 
is not directly monitored by any ISO-Z test structure; there- 
fore, BASE-OXIDE THICKNESS low can only be included 
in the suspect set through the implication step after a failure it 
might cause, (for example, BASE DISTRIBUTION deep) 
has been hypothesized. 

In the confirmation step, expected symptoms of each 
failure case in the suspect set are matched against the failure 
hypotheses concluded thus far in the diagnostic process. The 
matching process computes a “score” for each failure case, 
indicating how close the case’s expected symptoms match 
the conclusion derived from the given measurement data. 

Following the confirmation step, the failure cases in the 
suspect set are sorted according to their matching scores. 
Thresholding is done to exclude those failure cases which 
have relatively low scores. The remaining suspect set serves 
as the system’s diagnostic conclusion for the current level 
and is passed on to the next stage of reasoning. 

Results of the PIES Experiment 
The PIES experiment was conducted in three stages: knowl- 
edge base construction, system tuning, and performance 
evaluation. 

With the PIES knowledge editor installed in the Fair- 
child Puyallup production environment, a knowledge base 
for diagnosing the Fairchild ISO-Z bipolar process was con- 
structed by failure-analysis engineers on site. In the resulting 
ISO-Z knowledge base, 342 types of failure cases were iden- 
tified: 101 failure types are associated with the measurement 
level, 82 with the physical-structure level, and 159 with the 
process level. The knowledge base also encodes about 600 
associational links among the identified cases. Today, the 
knowledge base is competently maintained by Fairchild’s 
failure-analysis engineers. 

The performance of PIES was evaluated by analyzing 
parametric test data from problem lots that represent a fair 
sample of challenging cases encountered and recorded dur- 
ing the production history of the ISO-Z process. For each 
case of lot data tested, the PIES diagnostic result was com- 
pared with the recorded conclusion reached by failure- 
analysis engineers at the time of its occurrence. 

Initially, diagnostic results from only 10 of the 25 cases 
tested were judged to be satisfactory by experts. The major 
reason for these unsuccessful diagnoses was, not surpris- 
ingly, missing knowledge in the PIES knowledge base. The 
problems were subsequently corrected by Fairchild engi- 
neers with a modification of the knowledge base using the 
PIES knowledge editor. After this initial system tuning, cor- 
rect diagnosis was achieved on each of the 25 cases in the 
original set. At the next phase, our Fairchild collaborators 
tested the updated system against test data from another 18 
randomly selected problem lots. Twelve achieved satisfac- 
tory diagnostic results, and according to the process engi- 
neers, some of these were more objective (that is, contained 
a more exhaustive set of possible causes) than the original 
diagnoses. Again, missing knowledge accounted for the mis- 
diagnoses. 

Conclusions and Future Research 
The experience at Puyallup with the Fairchild ISO-Z process 
suggests that with continued tuning PIES can become an ef- 
fective productivity enhancement tool for failure-analysis 
engineers. More importantly, the Puyallup experiment dem- 
onstrates the feasibility of transferring responsibility for 
building and maintaining the knowledge base of an expert 
system from AI specialists to the people who possess first- 
hand knowledge of a domain. We believe that this transfer is 
inevitable if expert systems are to become practical in contin- 
ually evolving domains such as engineering and manufactur- 
ing. The experiment also confirms the expected weakness of 
any shallow-level approach; that is, a system which relies 
solely on coded experiential knowledge must be expected to 
fail when encountering a processing failure not previously 
seen. 

In addition to its primary role in process diagnosis, the 
PIES knowledge base is also valuable as a knowledge carrier 
to document, propagate, and replicate engineering experi- 
ence. In the semiconductor industry, a new process is usually 
developed in an R&D environment and then transferred to 
manufacturing facilities in different geographical locations. 
In the transfer, precious operating experience is lost, and it is 
often necessary to physically transfer personnel along with 
the process to regain acceptable yields. PIES can be used to 
document the diagnostic experience acquired during a 
process-development phase and then pass that experience to 
manufacturing engineers at remote sites without the need to 
move people. 

Generalizations 
The same multilevel knowledge structure discussed in this 
article can be used to interpret parametric test data for any 
semiconductor fabrication process. Currently, Fairchild en- 
gineers at several sites are building PIES knowledge bases 
for their latest processes. In a broader sense, PIES can be 
applied to many other diagnostic problems in which a se- 
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quence of causal levels can clearly be identified. Underlying 
PIES is an explictly defined “shell” that can easily be recon- 
figured to reflect the appropriate causal structure. The exten- 
sibility of PIES has already been demonstrated by applying it 
to diagnose problems in a photolithographic process. This 
knowledge base, constructed by a photolithographic expert 
at Fairchild’s Research Center, encodes causal connections 
between visually acquired symptoms-for example, the ex- 
posed pattern on a wafer is out of focus along only one axis- 
and its causes-for example, the stepper stage control gain is 
too high. Many other applications to in-process monitoring 
and controlling are under consideration. The ability to do 
one’s own knowledge engineering is a very powerful incen- 
tive, luring engineers to try new applications. 

Toward a Deeper Knowledge System 

We argued previously that in engineering applications there 
is a continuing need to update the knowledge base to reflect 
changes in the domain. PIES addresses this problem by 
transferring responsibility for knowledge base maintenance 
to the domain experts. An alternative, which is based on cur- 
rent AI research at SPAR and other laboratories, is to pro- 
vide the computer with “deeper” models that enable it to 
account for observed symptoms using fundamental engi- 
neering theories of the domain. In the case of semiconductor 
fabrication, knowledge of device physics and process tech- 
nology can be used to create models that show how fabrica- 
tion processes affect wafer structure and how changes in 
structure affect the electrical behavior of test circuits. These 
models can be used to derive explanations for fabrication 
problems not previously encountered (Mohammed and Sim- 
mons 1986). They can also be used to automatically update 
the knowledge base when the process recipe or a test circuit 
changes. Finally, the models can be used to validate the com- 
pleteness and correctness of knowledge contributed by do- 
main experts; for example, are there any alternative explana- 
tions that could account for an observed symptom. In the 
near future, we hope to integrate PIES with a system based 
on causal process models to realize these advantages. 
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