
David Alan Bourne

CML: A Meta-Interpreter for Manufacturing

Introduction
The development of advanced robotics brought expectations
of increased productivity and quality control, but to every-
one’s disappointment, these expectations still have not been
realized. Advanced stand-alone machines have not greatly
improved productivity, and integrating large systems has
been prohibitively expensive. What is worse, the few inte-
gration projects that have been undertaken took inordinate
amounts of engineering time. Several projects took more
than 50 man-years to complete, and engineers spent most of
this time trying to put round plugs into square sockets. Some
machines were not designed to allow for any communica-
tion, and while others provided only partial communications
that presume a person is operating the front panel. The few
machines that were designed to be integrated into a system
were rarely compatible, even within a single vendor.

At least one dream for factory automation should be
simple: Roll a computer onto a factory floor; plug it into a set
of machines from different manufacturers; start a program;
and then with absolutely no traditional programming, begin
the task of integrating the machines into a cooperative cell.
CML brings us within reach of this dream. The pursuit of
this dream demands that CML cope with a range of ap-
proaches that are encountered in manufacturing:

Mixed versus Standardized: What makes our approach
different from most others is that we are building sys-
tems which work with existing equipment, making only
a few minimal assumptions for example, about nominal
communication abilities (Fussell, Wright, and Bourne
1984). This contrasts sharply with a scheme that forces
every piece of equipment to fit within a standardized
network.
Intelligent versus Hard Coded: The final system should
be autonomous and should be able to make its own deci-
sions about the actions it takes under both normal and
abnormal conditions (Bourne and Fox 1984). For exam-
ple, it is not sufficient to have hard-coded responses to
fixed situations because there is always some new unan-
ticipated event or situation. A vision system for locating
parts is an architectural solution for removing hard con-
stants, and inference rules that can be used to deduce the
reason for a machine’s failure are a software solution to
removing hard coded procedures.

In addition to satisfying these more abstract goals, CML (the
control language) must provide an environment in which
programming manufacturing systems is drastically easier

l Generic versus Custom: The software tools for building
flexible manufacturing systems must be generic, so that
the same tools can be used over and over again to solve
new system integration problems. Also, these tools
must be powerful enough to drastically reduce the de-
velopment time of the overall system. As a rule of
thumb, our lab has set a goal of increasing productivity
for building automation software by a factor of 30 over
the existing approach of customizing new applications.*

David Alan Bourne is a research scientist at The Robotics Institute,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

*The magic number 30 is in recognition of the fact that it usually takes about
30 days to implement an idea which takes one day to develop In other
words, the ideal situation would be to eliminate all of the time that is nor-
mally spent programming an idea rather than to eliminate coming up with
the idea

Abstract A new computer language for manufacturing is being
used to link complex systems of equipment whose components are
supplied by multiple vendors. The Cell Management Language
(CML) combines computational tools from rule-based data sys-
tems, object-oriented languages, and new tools that facilitate lan-
guage processing These language tools, combined with rule pro-
cessing, make it convenient to build new interpreters for interfacing
and understanding a range of computer and natural languages;
hence, CML is being used primarily to define other languages in an
interpretive environment, that is, as a meta-interpreter. For exam-
ple, in CML it is quite easy to build an interpreter for machine tool
languages that can understand and generate new part programs
Once interpreters for different machine and human languages have
been constructed, they can be linked together into a system of inter-
preters These interpreters can be used to make intelligent decisions
for systemwide action planning and diagnostic error recovery.
CML is being used in the factory environment to make turbine
blade preforms and has proven to greatly simplify the task of build-
ing complex control systems.

86 AI MAGAZINE

AI Magazine Volume 7 Number 4 (1986) (© AAAI)

<TableName> 1 <FieldName-1> <FieldName-N>

<EntryName-l> <DataItem-l-l or Instruction-l> . . . <DataItem-l-N>
. . .

<EntryName-M> <DataItem-M-l or-Instruction-M> . . . <DataItem-M-N>

Figure 1. The Table and Its Parts.

than it is today. To accomplish this, CML provides tools for
automatic programming in different target languages (for ex-
ample, a vision machine language and a robot language) and
facilitates the teaching of rules for controlling multiple ma-
chine interactions. These tools include a parser driven by a
grammatical description (syntax), rule primitives (seman-
tics), and database manipulation primitives (pragmatics) .
These are the most basic elements for defining, interpreting,
and generating text in different languages.

CML also provides a table-oriented environment for
both instructions and data. This environment has proven to
be a natural way to represent most of the information found
in manufacturing. In addition, instructions that manipulate
tables are easily “pictured” by people who are not accus-
tomed to the abstractions forced by other languages. The
CML table oriented programming environment is not unlike
the Lisp environment, which represents everything as lists of
lists but which has proven to be quite difficult for nonpro-
grammers to learn.

The two-dimensional structures in CML provide direct
access to each cell within the structure so that both programs
and data can be transformed and generated with traditional
database operations. The structure of a table and the names
of its parts are shown in figure 1.

Once this choice of primary representation is made, the
solutions to many otherwise difficult programming prob-
lems are straight forward. For example, a grammar descrip-
tion language can be embedded within a table and used to
drive a general parser. In fact, this parser became a standard
CML operation.

The table is such a generic data representation that it can
easily be viewed in a number of ways. For example, it is both
convenient to use as an artificial intelligence (AI) frame and
as a relation in a relational database. All that change are the
rules of operation; for example, relations are constrained so
that no two entries can have the same value for a primary
key.

AI languages advertise the fact that they are rule based,
frame based, or some other language type. CML attempts to
provide the tools necessary to build any one of these lan-
guage types or some combination of them. In this regard,
CML is a bit of a computational chameleon. It gives you the
facilities to quickly define a grammar, semantic rules, and
data operations so that you can build your own language.
This article concentrates on how this language flexibility can
be used to solve some of the hardest problems in manufactur-
ing.

Background

CML is designed to integrate systems by using software to
overcome the many incompatibilities that are found in the
factory environment. Other research groups use different
methods to integrate factory systems; the most innovative of
which are General Motors Corporation and the National Bu-
reau of Standards (NBS).

General Motors and the Manufacturing Automation
Protocol
The manufacturing automation protocol (MAP) is a GM lead
multivendor initiative to standardize the communications
protocols among the computational components in the manu-
facturing environment (Adler 1984). The overall scope of
the project is to standardize the interconnections of equip-
ment from the level of the communication medium all the
way to a complex message-passing scheme. The goal is to
allow for file transfers and other application-dependent tasks
within a multivendor network. The automation of industry
today depends on this kind of standardization effort.

CML enters the manufacturing arena with solutions be-
yond the scope of the MAP initiative. MAP offers a stand-
ardized approach for getting digital information from one
place to another, and CML offers the intelligent understand-
ing and generation of these messages. The problem is that
machine tools, robots, vision systems, and people all use
different languages to express their ideas and actions, and
understanding the content of a message often involves mak-
ing sense of a computer program. CML allows users to eas-
ily build a number of “program understanders” and “pro-
gram generators” that can be integrated into a system to
control the whole cell.

NBS and the Advanced Manufacturing Research
Facility
The advanced manufacturing research facility (AMRF) proj-
ect also has the goal of standardizing multivendor communi-
cations (Simpson, Hocken, and Albus 1984). This proposed
communication model is similar to MAP. The AMRF com-
munications proposal has not been finalized, but it is only a
matter of time before a consensus is reached between the
MAP and AMRF proposals.

NBS is also developing a general architecture for fac-
tory automation. Briefly, it proposes a hierarchical control
system with finite-state machines representing the actions of
each node in the hierarchy. In addition, there is a systemwide

FALL 1986 87

clock that causes the nodes of the hierarchy to update their
state on a regular basis. Even though NBS has developed a
strategy for contrpl problems in manufacturing, it has not
developed a wide base of generic computational tools.

Although CML is a general-purpose language that can
be used to implement the NBS control strategy, it is better
used to implement other control strategies. Principally,
CML is built to perform transaction-based processing rather
than to poll for state changes. This allows the system to be
responsive to demanding situations because the central pro-
cessing unit (CPU) cycles are not wasted on polling and are
only used on an as-needed basis. In any event, the actual
control is only one small responsibility taken on by CML.
The primary emphases of CML solutions involve the auto-
matic planning and generation of part programs.

The History behind CML

In 1981 Carnegie-Mellon University (CMU) and Wes-
tinghouse Electric Corporation started working on a large
project to automate the production of turbine blade preforms
for steam generators (Wright et al. 1982). This system inte-
gration problem presented several challenges unlike those
encountered in flexible machining systems.

The machines required for the basic forging process
were manufactured by companies that were not yet involved
in the modernization of controls; an open die forge, a large
rotary furnace, and heavy-duty robots with a long arm exten-
sion are examples of the machines that had to be reworked.
Therefore, most of the effort in the first phase of the project
went into the development of the controls at the machine
level. In one case, we had to rewrite the controls from
scratch. By the time we were ready to integrate the system,
most of the allotted project time (through March 1983) had
been exhausted. Making matters worse, a 16-bit computer
had been selected as the cell host. As a result, a dispropor-
tionate amount of our time and effort had to be spent solving
memory management problems. Under these circum-
stances, we were only able to make the cell host into a gen-
eral node for message passing with rudimentary logical con-
trol. The messages that were passed in the system were hard
coded, and the cell host had no real understanding of their
content.

Forging hot (1200 degrees centigrade) billets into tur-
bine blades, is a hazardous application. Open flames at the
furnace door, fast moving robots to avoid excessive cooling
of the parts, powerful machinery (that is, hammers in the
open die forge striking with 600 tons of force) is adequate
reason to keep humans out of the active environment. These
hazards are further exasperated by the inevitable machine
breakdowns and other unexpected anomalies; hence the
need for timely and intelligent machine actions.

At first, we were forced to run the machines in strict
sequence so that a human could intervene if necessary. This
precaution was a direct result of the host not having enough

88 AI MAGAZINE

Office Floor
I I I I I

f CMLCfFICE ’
b WORKSTATION .

k. /
0 0

FACTORY WIDE DATABASES
0 0

Factory Floor
-

Figure 2. CML’s Role in the Manufacturing Environment.

intelligence to understand what was happening in an unfore-
seen situation. By 1983 everyone involved had agreed that a
new approach to the project would be required to satisfy our
goal of automating an unmanned cell in a dangerous work
environment.

Work began in April 1983 to design a programming lan-
guage that could both understand multiple languages and
communication protocols and provide a simple and extensi-
ble approach to system coordination. This language became
CML (Wallstein 1985). Figure 2 shows how CML can be
positioned in the factory environment to solve many system
integration problems. At the bottom of the figure is an early
picture of the forging cell (circa 1982). This cell has since
grown to include nine machines that work simultaneously
whenever possible.

This cell control system in CML performs the following
manufacturing system functions:

l Dynamically uploads and downloads part programs
l Automatically builds vision programs based on part def-

initions
l Dynamically sequences machine operations
l Performs interface and support functions

Figure 2 also shows that CML is going to be used to integrate
all factory systems, including those found in the plant office.
This article, however, concentrates on using CML to solve
the integration problems found on the factory floor.

Machine Specialists
The first step in building a control system for a multivendor
manufacturing cell involves developing interpreters, or ma-
chine specialists, for each device. This requirement is just
one of the reasons why it is drastically more difficult to inte-
grate a multivendor system than it is to integrate a single-
vendor system. CML provides standard tools for developing
these machine specialists, whose job it is to interpret pro-
grams and command messages and to generate programs and
command messages. Normally, an interpreter is represented
by the following relation:

A program in the language 01 (for example, CML) can be
translated into a set of possible actions /3 (for example, the
result of executing a CML program).

CML further augments this idea by allowing the user to
set up a number of interpreters within the CML environ-
ment. One of these interpreters defines the language 01’ used
by an external device:

Cl!- (01’ - 0’1
To define a new interpreter, the grammar of this language
must be specified as well as a function that selectively maps
these programs into actions 0 (for example, database opera-
tions). Within CML there is one command that binds the
grammar and the semantic function into one unit. This com-
mand loops over each input sentence; applies the grammar
that results in a parse table; and then applies the semantic
function to the parser’s output, resulting in a final action.

The grammar of 01’ is defined in a table that is, in turn,
input for the parser. Figure 3 shows a grammar that defines
simple declarative and interrogative English sentences. The
parser starts on the first entry of the grammar (that is, “Sen-
tence”) and works its way across the items. The first item in
this row directs the parser to the row labeled “Question,”
where it attempts to find a series of words, separated by
spaces, that fit within the appropriate lexical categories de-
fined in figure 4. If this path in the parsing succeeds, then the
parser returns to the top entry and usually skips over all of the
remaining optional items; this abrupt termination assumes
that there is no more input to parse. If the parse fails, then
parsing is directed to the entry named “Declare,” and the
same procedure is followed.

The grammar refers to lexical tables (figure 4) that de-
fine the legal words for each syntactic slot. This example
does not check for grammatical attributes, such as matching
the number of a verb with the number of its corresponding
noun. To perform these checks, it is necessary to multiply
the number of lexical categories; or to provide an additional
level of semantic attachment; or, in this case, to check. We

prefer to use rather weak grammars, with additional check-
ing performed by a set of rules. This approach has the advan-
tage of accepting and making sense out of a wide range of
sentences that would otherwise be deemed syntactically in-
valid.

Each time the parser is given input, it uses the grammar
description to help it produce an output table. This parser de-
viates from most other parsers by producing a linear repre-
sentation of the parse tree; these table items are essentially
the names of the leaves in the tree. In order to keep these
leaves unambiguously ordered, special labels (in quotes in
figure 3) are attached to the node names to identify the loca-
tion in the tree. Notice that the entry names in figure 5 are
composites of the lexical type and the parse tree’s label.

Once the input has been satisfactorily parsed (see figure
5)) a function is automatically executed to attach meaning to
it. Typically, this function conditionally fires a set of rules
based on the input. For example, in figure 6 there are two
rules (or pattern-directed&n&on calls) that fire only when
there is a value in the parse output for each argument in the
function call.

After it has been determined that the function “update’ ’
should be executed, a substitution table (see figure 7) is built
that binds the formal types to their corresponding values. In
this way, the function’s arguments are also in table format
and can be manipulated using the common database mecha-
nisms.

At this point, control would be passed to the function
“update.” This function replaces the value “baking” in the
database table “Parts” by the part’s new status “ready,”
which is found in the substitution table (see figure 8) .*

Most machine specialists and their parsers are not de-
signed for input produced by a person but rather are designed
to handle intermachine communications. This means that the
CML parser must offer a rather unusual set of options to cope
with the different technologies offered by multiple vendors.
These options include scanning input in different radices,
representations, byte orders, and other data configurations.

We have used this tool to understand programs that con-
trol robots, vision systems, machine tools, and people. We
have also found that it is a useful approach to building new
tools. For example, the CML assembler is a CML program
that converts a text representation of CML into its internal
representation. This would have been a major project in
other languages but was a one-day project in CML.

Program Generation

An interpreter is usually expected to “understand” pro-
grams and then to take some appropriate action based on that

*Notice that the addtess of an item is represented as the triplet [tablename,en-
tryname,fieldname] separated by colons and that numeric indices can be
used optionally instead of names.

FALL 1986 89

Grammar 1 Field1 Field2 Field3 Field4

Sentence Grammar:Question Grammar:Declare
Question verb/label=l’-questtf art noun/label=“-subj I’ adj
Declare art/label= “-declare noun/label=“-subj” verb adj

Figure 3. Grammar for simple declarative and interrogative sentences.

Figure 4. Lexical Tables Named in the Grammar Description.

understanding. However, in a limited way, the interpreters
described in the last section must also be able to ‘ ‘speak’ ’ the
language. This usually involves three additions to an inter-
preter, making it a complete machine specialist:

1. Specification Language: This language is the internal
representation for specifying an external machine’s
problems.

2. Algorithm: This algorithm converts the problem speci-
fication into the appropriate program structure.

3. Grammar: This grammar describes the surface repre-
sentation of the message that will finally be sent to the
external device.

Conveniently, these three additions are the same mecha-
nisms that are used for program understanding; however,
they are now used to generate programs instead. It is usually
difficult, though, to make the input and output language
mechanisms identical.

CML facilitates automatic program generation in sev-
eral key ways. Because all programs and specifications are
represented in the database, new programs can be built using
inter-table operations and modified using intra-table opera-
tions. The inter-table operations provide a convenient ab-
straction of an otherwise detailed program so that a simple
formula can be used to describe how the program segments
should be pieced together. An example of such a formula is :

program :: = header + repeating-body -t trailer

This formula, together with a part description, can be used to
generate an algorithm to either machine or inspect the part.

In this case, the program is accumulated by pasting the
header onto the table that represents the final program.
Then, given a skeletal version of the repeating body, the
intra-table operations can be used to update the key values.
These updated program segments can be accumulated on the
final program within a control loop. Finally, the trailer can
be appended, completing the program. The constructive ap-
proach illustrated by this formula has been successfully used

90 AI MAGAZINE

Input > is the part titanium
Answer > Yes
Input > the part is ready

$Parse Value

art-declare the

---I-

noun-sub j part
verb is
adj ready

Figure 5 Parser Input and its Output.

to generate part programs for machine centers and inspection
devices. As a result, these programs no longer have to be
written by hand for every part style.

Once a program has been built, it usually has to be trans-
formed into a final surface structure that is acceptable to the
external machine. For example, the MCL program shown in
figure 9 has to be compacted, blocked into fixed block size,
and preceded by a partial program command (notated
“C,TPP”). *

This final “grammatical” transformation is accom-
plished by two commands. The first step compacts the entire
table (figure 9 into one string), and the second command
blocks the strings and attaches the required syntactic mark-
ers. The result is shown in figure 10; and this is sent entry by
entry to the receiving machine controller.

Now that we have developed a machine specialist which
can both understand and generate programs, it is possible to
inter-translate between multiple languages. This is an impor-
tant feature in manufacturing because even when machines
use the same control language, the machines themselves are
usually different enough to require minor translations. For
example, two virtually identical machine tools might have
their axes labeled differently, and cutter offsets almost al-
ways vary from machine to machine. This is the same prob-
lem that two English speakers can have. For example, gener-
ational and geographical differences can change the
language enough to require translation.

System of Interpreters
Once machine specialists have been built for each machine,
their performances must be orchestrated into a coherent sys-

* Machine control language (MCL) is a standardized language for controlling
paper tape driven numerically controlled (NC) and computer driven numer-
ically controlled (CNC) machine tools It is slowly being replaced by
higher-level languages because of its lack of control structures.

Rules Eva1 Func Argl Vail Arg2 Va12 Arg3 Va13

Rl eval lookup verb-quest x noun-sub j y adj z
R2 eval update art-declare x noun-sub j y adj z

Figure 6. Simple Rule Set for Semantic Attachment.

$Sub Value

-----I- art-declare the
noun-sub j part
adj ready

Figure 7 Substitution Table Produced by Rule Execution.

tern. This system must be responsive to the external environ-
ment, and it must be cautious about its choice of action.

Each machine specialist is responsible for synthesizing
complex messages into atomic units (state names). These
atomic units then become the lexical names for a new lan-
guage: one for the whole cell. In this new language, a pro-
cess plan can be written for each machine in the cell. In order
to accomplish this, however, each logical state must be de-
composed into three substates:

l state-R: The machine is “ready” to execute an action.
l state-W: The machine was asked to execute an action,

and we are “waiting.”
l state-C: The machine told us that it “completed” the

execution of an action.

Each machine has its own process plan, and as this process
pldn is executed the current state of each machine is recorded
in a global table of Cell-States (see figure 11).

The messages from single machines are parsed and a set
of rules is “expanded” to assign and execute the message’s
meaning. In fact, the output of the parser and the cell-state
table can be represented in isomorphic structures (see figure
12). The entry names of the tables are the general categories:
syntactic categories and machine-state categories, and the
first item in each entry must be a valid member of its cate-
gory. The legal values of these categories can be any value
that properly belongs as its member. Once a table is in this
format, it can then be used as the data set of information that
is matched with a rule set.

The expand command, shown in figure 13 associates a
data set with a rule set and then “fires ’ ’ the appropriate rules.

Figure 14 illustrates the internal arrangement of the soft-
ware making up the system of interpreters. In a typical CML
system, there are several active processes: CML itself and
processes that manage data from external lines at an interrupt
level. In addition to these processes, others can be added that
perform application-dependent functions. For example, an
emulation package that allows us to replace any number of
real machines with a program which returns the expected
machine tool response was implemented.

Update Command Argument1 Argument2

Cl 1 update $sub:adj:value parts:orderl:status

Parts Status Material Batch

Order1 baking titanium 101
Order2 ready steel 93

Figure 8. Update Function and Simple Databasefor Part Descrip-
tions.

Figure 14 schematically shows interprocess communi-
cation by way of mailboxes. These mailboxes are located in
shared memory and are supported by background proce-
dures that provide features similar to those expected of a
human-oriented mail system, for example, sending a mes-
sage to a named process, forwarding, making carbon copies,
and logging.

A message (Ml) enters the system at interrupt level and
is placed directly in a CML device mailbox. After the mes-
sage is completely received, it is automatically transferred
(becoming M2) to the protocol’s agenda box. In this way, the
procedure can read all of its mail from one point in the pro-
gram; otherwise, the procedure could easily get hung up
waiting for mail from one source while it is receiving new
mail from another. The protocol handler strips off the proto-
col information and decides whether the message is valid. If
it is not, the handler informs the sender; otherwise, it for-
wards the data portion (M3) of the packet to the CML agenda
mailbox.

At this point, all of the data processing is done within a
CML application program. The application program reads
the next task on its agenda and determines how it should be
processed by looking at routing information in the “system
dispatch” workspace.*

In the dispatch area, there is a table called “$Lang” that
provides appropriate information, including the workspace
which specializes in this kind of message, the name of the
grammar table to parse it, and the function to evaluate after
parsing is completed. The message (M3) then pursues this
course (see Figure 1.5); getting parsed and processed by the

* CML provides a mechanism for grouping functions into private work-
spaces, similar to IBM’s programming language(APL) workspaces How-
ever, in CML there are formal mechanisms for interworkspace communica-
tions, so that in fact the workspaces act more like objects in SMALLTALK
At the same time, these workspaces give structure to a large program similar
to that given by modules in structured languages

FALL 1986 91

Program) Block Al A2 A3 A4

$Parse

el
e2
e3
e4
e5

el
e2
e3
e4
e5
e6
e7
e8

Nl GO0
N2 Q03
N3 G90
N4 Q03
N5 G90
N6 M2
N7 GO0
N8 M30

G90 B-31. Header
Body-l

X2.75 ~23. B-45.
Body-2

X2.75 Y27. B-45.
Trailer

G90 Y30. BO
M40

Figure 9 Final Program Structure.

fl f2

C,TPP $NlGOOGSOB-3l.*N2&03*
C,TPP NjG9OX2.75Y23.B-&5.*N
C,TPP 4QOj*N5G9OX2.75Y27.B-
C,TPP 45.*N6M2*N7GOOG90YJO.
C,TPP BO*N8MjOM40

Robot-Process-Plan

Load-Furnace-W
Load-Furnace-C
Load-Tool-R
Load-Tool-W
Load-Tool-C

Cell-States

Robot
Furnace
Tool

Value

Load-Furnace-R
Open-Door-C
Machining-W

Figure IO. Final Surface Structure
Figure 11. Process Plan and Cell-State Summary.

appropriate specialist. Finally, the specialist sends back its message is received from a device specialist, the state of
new state information (M4) to the “cell manager. ” the specialist is updated, and the rules are scanned.

As a result, new rules are fired, and new command mes-
sages (M5) are generated for the next step in the cell’s opera-
tion. These messages also are directed through the system
dispatcher and the final result is an action taken by a machine
specialist. The machine specialist builds a command suitable
for an external device and sends it out (M6). Finally, the
protocol handler encodes it for transmission and sends it over
the serial line for execution. In this example, the message
(M 1) could have come from a vision system providing coor-
dinate information destined for the robot. The intervening
messages are internal status messages and intermediate and
final translations.

This software architecture has proven to be very robust and
seems to be flexible enough to handle all sorts of situations.
The next section concentrates on how a system of this sort
can be built with a minimum amount of effort in CML.

Teaching Cooperative Actions

This array of activity utilizes three principal ideas so
that the flexibility of the resulting control system is maxi-
mized:

Teaching sequences of fixed actions to robots has been stand-
ard fare since the robot revolution of the late 1970s. How-
ever, this approach of “teaching by doing” has never been
successfully extended to complex conditional sequences,
that is, programs which are necessary to represent complete
robot programs, and multiple machine interactions. The so-
lution to this problem is apparent within the context of a
CML environment.

l Events: CML is event driven. Commands and messages
can be sent at any time without fear of them being lost or
mishandled. They are processed in a priority-ordered
first-in, first-out scheme.

l Agenda System: CML maintains a list of its activities
and it can make decisions about when and where these
activities should be processed. For example, in critical
periods it is important to not start a job that requires too
much effort; during a manufacturing run, it is wise not
to start preventive maintenance.

l Rules of Interaction: The cell specialist is primarily con-
cerned with the interaction of the machines. When a

Robots cannot move inside a furnace without opening
the door. Furnace doors must be closed as robots depart, or
hydraulic hoses will melt. To avert potential catastrophes
such as these, the machines must be carefully interlocked.
This interlocking is accomplished in CML by using rules that
limit the conditions under which actions can occur.

There are several approaches to the generation of new
rules. The first approach is the obvious one: think of and
write all the necessary conditions for each action. Although
this approach is tedious and often quite difficult, it does have
two advantages: (1) the rules can be concisely constructed to
be logically minimal and (2) the rules are not temporally or-
dered and fire whenever an action is possible. Unfortu-
nately, manufacturing cells are often assembled by nonpro-

92 AI MAGAZINE

$Parse 1 Value Cell-States 1 Value

Art-l The
Noun-l catalog
Verb has
Adj-2 four
Noun-2 programs

Robot
Furnace
Tool
Vision

Loaded-Part-C
Door-Open-C
Machining-W
Finding-Part-R

Figure 12. Comparison between Message Parse Table and Cell-
State Table.

grammers who are not accustomed to building logic-based
assertions. To avoid catastrophic errors, CML provides a
second, automatic approach to the development of these
rules.

This second approach allows the rules to be “taught,”
using simple graphics and pointing, for example, by using
“mouse” technology. Each machine is represented by an
icon that can be referred to by a pointing action. When there
is a place in execution where no rules are found to execute,
then a person is given the chance to add a new rule for the
situation. The rule is constructed from the current system’s
state (see figure 11) and can be paraphrased as follows:

if the-cell-is-in-this-state
then proceed-with-indicated-action

When written out as a pattern-directed function call (see fig-
ure 16)) it is apparent that the rule is just a simple transforma-
tion of the state table (see figure 12). This rule is then auto-
matically added to the rule set. This rule set is matched to the
cell-state table, and if no rules are fired, then the otherwise
clause is executed (Build-NewRule in figure 17). However,
because a rule was just added to explicitly match the current
state configuration, it fires. This function results in the ma-
chine advancing to its next state, and the rules are checked
again. This time if a rule is found, the cell continues execu-
tion, and if not, the operator points, a new rule is built, and
execution continues.

If each state of the cell were equally likely, then this
approach would not be very effective because the number of
rules would explode exponentially. Fortunately, this simple
algorithm generates the key rules after only a few cycles. In
our experience, it took about 4 cycles in a cell making 1 part
style with 9 machines and 1 bottleneck. If the number of part
styles is increased, then the timing variations of each manu-
facturing step start to drastically increase the number of situ-
ations that haven’t been previously encountered, thus in-
creasing the number of necessary rules.

Because it is our goal to use this approach in small ma-
chine cells as well as in large flexible systems, it is useful to
automatically reduce and sometimes weaken the generated
rules. The process of rule reduction turns out to be simple
because it usually involves striking conditions from rules
when the states in a machine’s process plan have been cov-
ered. For example, suppose that a robot can be in two possi-

ble states (is-working, is-waiting), and suppose that there are
the following two rules:

if the-robot is-working then start-gage,
if the robot is-waiting then start-gage

These two rules can be reduced to one rule without condi-
tions. Michalski (1980) reviews this inference rule and four
others that effectively reduce the rule set, and Hayes-Roth
and McDermott (1978) suggest the similar approach of rule
abstraction. This example presents the weakest form of in-
duction and amounts to nothing more than logical equiva-
lence. However, there are other less stringent ways of reduc-
ing rule sets. For example, meta-rules can be added to the
system that determine when rule conditions can be stricken,
thus weakening the rules and broadening the conditions un-
der which they apply. We experimented with a number of
these meta-rules. The simplest one removes conditions and
reduces rules when the majority of a state domain has been
covered. For example, if we extend the state domain for the
robot to three states (is-waiting, is-working, is-idle), then
this meta-rule allows the same inference we already made
from the given rule set, thus assuming that it is safe to gage
when the robot is idle. Unfortunately, this rule can be quite
risky because the inferred rules cannot be considered safe for
critical machine interactions.

There are safer heuristics for inductive inference. In
physical systems, such as in manufacturing, there are physi-
cal spheres of influence; in other words, machines that are in
reach of one another must collectively be programmed more
conservatively than machines which are geographically far
apart. This forms a rather natural two-tier rule system,
where the first layer of rules considers the geographical rea-
chability between machines and only then does the second
layer of rules consider the relative machine behaviors.

Teaching these reachability rules can also be accom-
plished within a graphics-oriented system. A simple ap-
proach would be to draw concentric circles around a machine
until the scope of each machine’s influence is circumscribed.
This data also provides information about other aspects of
the system; for example, it can be deduced that machines
with a broad reach are probably being used for material
transport.

We are continuing research in this area, extending these
ideas to larger flexible manufacturing and assembly systems.
In order to avoid the exponential rule explosion, these larger
systems demand heuristics for selecting and combining
rules. Fortunately, many of the required heuristics are not
needed for machine interactions but are needed for planning
factory schedules.

Installation of Al in the Factory

It is difficult to install any advanced technology in the factory
today unless there is at least one trained specialist. These
advanced technologies pose problems just because they are
advanced and rarely, if ever, can be purchased as turnkey

FALL 1986 93

MAIN >expand,cell-states,rules

Rules Eva1 Func Argl Vail Arg2 Va12

Rl eval act Furnace =Door-Open-C Robot =Loaded-Part-C

R2 eval act Robot =Loaded-Part-W Furnace =Door-Open-C

Figure 13. Rules of interaction.

CML Workspaces 0

M2 L-l
Ml 4-J Interrupt

Level

/Machine \

/Q ‘“.,;:$

7 L
Serial Lines

Figure 14. Data Flow in a CIVIL System.

systems. This has led us to introduce to the factory AI tools
that are designed to increase the productivity of system
builders. The long-term goal is to make it possible for non-
programmers to manage large software projects.

Figure 18 illustrates an array of these tools that have
made it possible for nonprogrammers to develop the control
system for a complex manufacturing cell. The ‘ ‘y axis” of
figure 18 describes how the CML tools are used. The auto-
matic tools can “generate” and “understand” programs that
fit within a defined family (the definition of this program
family still has to be produced “by hand”). On the other end
of the y axis are tools that aid the engineer in the remaining
programming tasks. First, some of the programs can be
“taught” instead of programmed. Second, a special tool has
been built that is itself an expert in CML.

The “CML expert” takes a CML program as input and
then writes a letter to the programmer. This letter gives rec-

Figure 15 Some of the information in the system dispatch work-
space

ommendations for program optimization, comments on pro-
gram style, warnings about obsolete functions, and advice
about program structure. This kind of tool is important in the
manufacturing environment, because it cannot be assumed
that the users are proficient in programming.

Figure 19 (see page 96) is an example of a letter written
by the CML expert. This letter is made from a series of pre-
programmed paragraphs. These paragraphs are invoked us-
ing a rule-based system in CML and are accumulated in an
outline. Once the first selection of paragraphs is made, the
outline is scanned and modified so that redundant paragraphs
are removed and appropriate concluding paragraphs added.
Hopefully, the final letter can then be used by the program-
mer as a guide for improving the program. This simple ap-
proach to letter generation is being extended to independent
sentence and sub-sentence generation so that the criticisms
of a CML program can be uniquely tailored to pinpoint its
most basic problems. In addition, the very strong similarity
between this approach to letter writing, and the program gen-
eration in figures 9 and 10 should be noted.

Current Status
The first CML application was in production for several
months during the fall of 1984. During the winter of 1985,
the two robots in the cell were replaced with two new robots
and two new controllers. The new CML software was writ-
ten and tested before the cement that glued the robots to the
floor had dried.*

Recently, we added two more machines to the cell, and
only a handful of additions to the CML control program were
necessary. These new machines used a controller which was

* Messages that are normally sent to machines can also be sent to an emulation
package, which sends back a meaningful response in a timely way. This
allows us to test the control program before the actual machines are ready
for testing

94 AI MAGAZINE

Rule eval func Fl Vl F2 v2 F3 Vr,

Rl eval act Robot =Load-Furnace-R Furnace =Open-Door-C Tool=Machining-W

Figure 16. New rule constructed fioorn current cell state

;+f-Loop i”‘,‘- r;;itLoop Arts2 Arg3

expand Cell-States Rules Build-NewRule

Figure 17. Top level evaluation loop.

the same as another already in the system, and all that was
necessary was to define the process plan for the machines
and the name of their external serial-line part.

CML is now being used as the basis for several new
projects. Some of the projects are being done at CMU and
others are beginning at Westinghouse. One project at CMU,
called the machinist expert, has the goal of capturing the
“sensory” knowledge-in this case, the “feel” that is re-
quired to make a part. Machining parts accurately and with-
out error will involve automatic tool and fixture selection,
machine path planning, and in-process inspection. Most im-
portantly, though, the expert will have to make the decisions
that are necessary when there are machine failures, pro-
gramming errors, and tolerance errors in parts. These prob-
lems require intricate strategies for collecting and reasoning
about sensory information.

CML continues to develop as it meets new challenges in
AI and manufacturing. Already it has made the integration of
multivendor systems significantly easier, and Westinghouse
is commercializing it.

Summary
CML provides a group of computational tools that facilitate
building a system of interpreters, automatically program-
ming solutions to manufacturing problems, and coping with
the communications problems that are prevalent in manufac-
turing systems.

We set the goal of integrating new factory systems with-
out using any traditional programming that is, typewritten
logic. This remains an ideal, but we have successfully real-
ized a significant reduction in the programming time for
these systems. The programming that remains will be further
reduced as we accumulate a large library of device inter-
preters. Much of the traditional programming is alleviated
by a convenient teaching environment, written in CML, and
the ability to automatically reprogram new solutions for con-
trolling irregular situations.

a+

Automatic
Program
Understanding

Manufacturing
Engineer

Input output

Figure 18. AI Tools for Increasing Software Productivity

Acknowledgments
This project has only been possible because of generous
grants and support from the Westinghouse Electric Corpora-
tion. At Westinghouse, I would especially like to thank Jerry
Colyer for his long-term efforts. I would also like to thank
Mark Fox for the opportunity to write this paper and Richard
Wallstein for his editing advice.

References

Adler, M B 1984 GM Manufacturing Automation Protocol In CAM
Symposium, Univ of Cincinnati, 159-170

Bourne, D A., and Fox M S 1984 Autonomous Manufacturing:
Automating the Job Shop. Computer 59(243):76-88.

Fussel, P ; Wright, P K ; and Bourne, D A 1984 A Design of a
Controller as a Component of a Robotic Manufacturing System Jownal
ofManufacturing Systems 3(l): l-l 1.

Hayes-Roth, F., and McDermott, J. 1978. An Interference Matching
Technique for Inducing Abstractions Communications of the ACM
21(5):401-410.

Michalski, R. S 1980 Pattern Recognition as a Rule-Guided Inductive
Inference IEEE Pattern Analysis and Machine hztelligence
(4):349-361

Simpson, J A ; Hocken, R K.; and Albus, J. S. 1984. The Automated
Manufacturing Research Facility of the National Bureau of
Standards.Jounnzl of Manufacturing Systems l(1): 17-32

Wallstein, R S., ed. 1985. CML Reference Gztide, The Robotics Institute,
Carnegie-Mellon Univ

Wright, P K.; Bourne, D A.; Colyer, 3. C ; Schatz, G C ; and Isasi, J
1982 A Flexible Manufacturing Cell for Swaging Mechanical
Engineering 104(10):76-83.

FALL 1986 95

Jun 10, 1985

Dear David:

I have spent some time analyzing the functions you have used in CML, and have come to
a number of conclusions. Nothing I say here should be taken as absolute, since the
analysis is only performed at a surface level.

A huge portion of your program is devoted to input and output operations. Perhaps you
should try to centralize some of these activities in one module.

You have used quite a few of the control features, which indicates to me that you
have spent quite a bit of time refining the program.

You have used a number of database oriented operations, which tells me that you have
appreciated at least this aspect of CML. .~~

I have noticed that you tend to use quite a few begin conditions. It is usually quite
easy to bring these together into a set of rules, that will show the logical
structure of a program at a glance. The other advantages of using rules is that they
tend to run faster than their beginccounterparts, it is often easier to change the
program to manage more situations, and to include parameters that allows the overall
function to be much smaller.

Input statements are often convenient to use if you are writing a testprogram, but
they should not be part of any production software. The problem with using inputsis
that they do not verify that the input-string is in fact in the range of appropriate
responses. Try to use the connect statement instead.

I noticed that you are using a printcommand. These are often convenient in test
programs, just as a quick way to write out some sort of message. However, you should
seriously consider switching these to generate commands, since the output of a
generatecommand can be easily redirected to external processes and files.

Thank you for trying the CML expert system, I hope my comments about your program
have proven to be helpful.

Sincerely,

The CML Wizard

Figure 19. Letter Automatically Written by CML Expert.

96 AI MAGAZINE

