
A fundamental goal of computer vision is
the development of systems capable of
carrying out scene interpretation while

taking into account all the available
knowledge In this article, we focus on

how the interpretation task can be aided
by the expected scene information (such

as map knowledge), which, in most cases,
would not be in registration with the per-

ceived scene The proposed approach is
applicable to the interpretation of scenes

with three-dimensional structuxes as long
as it is possible to generate the equivalent

two-dimensional orthogonal or perspec-
tive projections of the structures in the

expected scene The system is implement-
ed as a two-panel, six-level blackboard

and uses the Dempster-Shafer formalism
to accomplish inexact reasoning in a
hierarchical space Inexact reasoning

involves exploiting, at different levels of
abstraction, any internal geometric con-

sistencies in the data and between the
data and the expected scene As they are

discovered, these consistencies are used to
update the system’s belief in associating a
data element with a particular entity from

the expected scene

Evidence Accumulation &
Flow of Control in a Hierarchi-
cal Spatial Reasoning System
K. M. Andress and A. C. Kak

A fundamental goal of computer
vision is the development of

systems that are capable of carrying
out scene interpretations with the aid
of all available knowledge. To elabo-
rate, suppose a helicopter-based com-
puter vision system is looking at a
snow-covered terrain; this terrain
knowledge must then be explicitly
taken into account in a target recogni-
tion procedure. Clearly, the processing
required for a snow-covered back-
ground is different from that for, say, a
wooded area in spring.

As a simpler example of knowledge-
based processing, consider the prob-
lem of self-location for a vehicle-
mounted vision system (Kak et al.
1987). Let’s say the vehicle’s where-
abouts are approximately known from
the position encoders mounted on the
wheels, the precision of this informa-
tion limited by the extent of slippage
in the wheels, and so on. Given this
approximate information, is it possi-
ble to make a more precise fix on the
location of the vehicle by integrating
the vision data with the map knowl-
edge while the two are out of registra-
tion? This problem of robot self-loca-
tion was the original goal of the Pro-
duction System Environment for Inte-
grating Knowledge with Images (PSEI-
KI), a system currently under develop-
ment in the Robot Vision Lab at Pur-
due University. We felt this simple
exercise in knowledge-based process-
ing would give us the expertise to set
up more complex reasoning structures
for incorporating other kinds of
knowledge sources in an image inter-
pretation task. (To digress briefly, the
reader interested in robot self-location
might want to know that in contrast
with the quantitative approach typi-
fied by PSEIKI, it is also possible to
design qualitative reasoning systems

for navigation and self-location using
visual landmarks to represent envi-
ronmental location [Kuipers 1977;
Levitt et al. 19871.)

As it now stands, PSEIKI, a produc-
tion system in OPS83, requires that
the world knowledge be presented to
it as a line drawing of the expected
scene. For applications such as auto-
matic target recognition, the line
drawing can include environmental
effects, such as the attenuation of
infrared energy through the atmo-
sphere. The PSEIKI system is imple-
mented as a two-panel, six-level
blackboard and uses the Dempster-
Shafer (D-S) formalism to accomplish
inexact reasoning in a hierarchical
space. Our use of the D-S theory
should not be construed to imply the
inappropriateness of the other avail-
able formalisms. Using the Bayes-net
methodology developed by Pearl
(1986), one could also employ a
Bayesian formalism, as Binford,
Levitt, and Mann (1987) do in the
SUCCESSOR system for model-based
machine vision

Although PSEIKI was originally
developed for carrying out knowledge-
based experiments in robot self-loca-
tion, the current implementation is
general enough to be used in any
application where a good estimate of
the expected scene is available to the
vision system. The system can be
used as a general vision verification
module either in a robotics context or
for automatic target recognition. PSEI-
KI contains two features that keep it
domain independent.1 First, the
knowledge used by PSEIKI consists of
a line drawing of the expected scene
(which in most applications would
not be in registration with the
observed image). For example, for
robot navigation applications, line

SUMMER 1988 75

AI Magazine Volume 9 Number 2 (1988) (© AAAI)

Figure 1. Typical Images Used by
PSEIKI

(a) An example of a line drawing of an
expected scene with edges labeled;

(b) A simple example of the output of an
edge-based preprocessor that PSEIKI

could use as input data
(c) The final output of PSEIKI, with

labeled edges and associated belief values.

drawings can easily be generated from
road maps. For verification vision, a
line drawing of the object whose iden-
tity, location, and orientation need to
be verified can be generated from a
three-dimensional model of the object.
In industrial two-dimensional vision
applications, computer graphics or
computer-aided design systems can be
used directly to generate the line
drawings. The other feature that pro-
vides the system domain indepen-
dence concerns how the system pre-
sents its results. The output of PSEIKI
consists of a mapping from elements
detected in the input image to ele-
ments in the expected scene.2

The mapping generated by PSEIKI is
expressed by labeling the detected
edges with the names of the corre-
sponding lines in the expected scene; a
belief value is also attached to each
label, indicating the confidence of the
mapping found. Furthermore, a belief
value is estimated for the entire map-
ping process. If this overall belief
value does not exceed a threshold, the
entire mapping is rejected. TO illus-
trate what PSEIKI does, refer to figure
I. If figure Ia is a line drawing of an
expected scene and figure lb a depic-
tion of the edges that might be found
in the vision data collected for the
scene, then PSEIKI produces an output
similar to that in figure lc, where
labels attached to some of the edges
found in figure lb and the correspond-
ing belief values are shown For exam-
ple, the label right:35% means that
PSEIKI has found the expected scene
edge labeled right in figure la to be
compatible with the lower right edge
in figure lb with a belief of 35 percent.
In this case, the rest of the belief, 65
percent, would be apportioned to
either this particular label being incor-
rect or the system professing igno-
rance on the subject of assigning the
label right to this edge in the vision
data. The reader might note that the
edge labeled top:38% actually corre-
sponds to two edge segments in figure
lb. This merger of nearly compatible
edges in the vision data is one conse-
quence of the various tests PSEIKI
makes for internal geometric consis-
tencies in the vision data. Because
PSEIKI only generates a mapping from
the edges in the input image to the
expected scene, it is left to a higher-

level system to make global interpre-
tations based on the mapping found

PSEIKI is also a test bed for carrying
out experiments in how inexact rea-
soning can be achieved on hierarchical
representations of scenes. Gordon and
Shortliffe (1985) discuss the problem
of diagnostic reasoning in medicine
and present a technique that allows
the D-S formalism (Shafer 1976) to be
used in a system which groups
hypotheses into strict hierarchies.
Shafer and Logan (1987) also discuss
the problem of combining hierarchical
evidence; they look at the problem in
a more formal manner and are able to
do without some of the approxima-
tions used in Gordon and Shortliffe
(1985) We can not use the methods
presented in Gordon and Shortliffe
(1985) and Shafer and Logan (1987)
directly because PSEIKI does not
employ strict hierarchies (an edge can
be a member of two faces if it is a part
of the border between them). In the
current implementation of PSEIKI, the
blackboard architecture is exploited to
permit exact and inexact reasoning in
a tangled hierarchy The D-S formal-
ism is used for pooling uncertain evi-
dence in the hierarchy.

PSEIKI is able to handle significant
perspective effects Many previous
systems, again most notably aerial
interpretation systems, were able to
assume that the images were obtained
by an orthographic imaging system.
Although perspective distortions
make image interpretation difficult
because metric properties, such as
length and orientation, depend on the
object’s position in the image, they
also provide clues to the structure of
objects in the image.

A brief report on PSEIKI was pre-
sented in Andress and Kak (1987).
This article is more of a tutorial and
discusses in greater detail the evi-
dence accumulation mechanisms and
the control structures in PSEIKI.

Related Image-
Understanding Systems

ACRONYM by Brooks (1981) is a
model-based image-understanding sys-
tem. The system’s task cons’ists of
finding instances of known objects in
the image. To perform object identifi-
cation, the system first builds a pic-

76 AI MAGAZINE

ture graph of the image and an observ-
ability graph that specifies informa-
tion about objects which could be in
the image. The system identifies
instances of objects in the image by
matching nodes of the observability
graph with sets of nodes in the picture
graph. The objects in the observability
graph are represented in slot, filler
structures where any slot that can
accept numeric values can also accept
algebraic constraints expressed as
inequalities. The system can then
manipulate these constraints and
determine if properties of objects
detected in the image meet these con-
straints. The objects used to generate
the observability graph are represent-
ed as generalized cones. Inexact rea-
soning is not used, and the system
utilizes backward chaining to arrive
at an interpretation.

Davis and Hwang (1985) describe
the SIGMA image-understanding sys-
tem for aerial image interpretation.
The system uses both forward and
backward chaining to arrive at an
interpretation and represents its
object classes hierarchically using
frames Furthermore, the system is
able to integrate hypotheses about
specific objects in the scene. The sys-
tem does not use uncertain reasoning
but instead is able to control its focus
of attention based on the strength of a
situation.

Another aerial interpretation sys-
tem is described by Nagao and Mat-
suyama (1980); the system is based on
the blackboard architecture and uses
multispectral images in the interpre-
tation process. To accomplish the
interpretation task, the system first
performs a global survey of the entire
image and labels regions without
using any domain-specific knowledge.
The characteristic regions that it
finds, such as water, vegetation, and
roads, are then used to generate con-
text information for further process-
ing. This processing consists of a
detailed analysis of local areas in the
scene using context information pro-
vided by the characteristic regions and
applying context-specific object-detec-
tion subsystems.

SPAM, a system designed by McKe-
own, Harvey, and McDermott (1985),
is also an aerial image interpretation
system. The system was originally

Model
Panel

Input Image

Lpyqh
Convertor

Data
Panel

Figure 2 PSEIKI’s Architecture

constructed to interpret airport scenes
but has been expanded with a rule
generator; so, it can now interpret
scenes from other domains. SPAM
uses confidence values to aid labeling
and can manipulate these values based
on the consistency of the various
labelings.

VISIONS, first reported on by Han-
son and Riseman (1978), is a black-
board expert system designed to ana-
lyze color images. The system uses a
flexible control scheme, hierarchical
scene representation, and a number of
knowledge sources to accomplish the
scene interpretation. VISIONS is
domain independent but uses schemas
to tune the system for a particular
application.

The image segmentation expert sys-
tem developed by Nazif and Levine
(1984) contains two global memories.
The global long-term memory con-
tains rules that are applied to the data
stored in its short-term memory. The
system is rule based and uses modules
to update lines, regions, and areas in
the image. The expert system also
contains a set of metarules and can
control its focus of attention.

Barnard (1983) describes a system
that deals with perspective images.
The system is able to use the Gaus-

sian sphere to determine the vanish-
ing points of the scene being analyzed.
The back projection of angles and cur-
vatures is also used to aid the interpre-
tation task.

Barrow and Tenenbaum (1981) dis-
cuss the problem of interpreting line
drawings. They are able to use junc-
tion libraries and knowledge of differ-
ential geometry to discriminate
between different kinds of boundaries.
This knowledge is then used to deter-
mine how the surfaces should be con-
strained.

PSEIKI differs from these systems in
three main areas. First, PSEIKI’s task
differs from those of previous systems.
Most of the other systems were
designed to find object instances in
the image and, through such discover-
ies, to arrive at a global interpretation
of the image. PSEIKI’s task is limited
to integrating expected scene informa-
tion with the observed image, the
result being a set of consistent labels,
with associated belief values, for the
edge elements in the image.

PSEIKI differs from SPAM and
SIGMA and, to a certain extent,
VISIONS in that it does not rely on
domain-dependent information. For
example, SPAM uses airport design
knowledge when interpreting airport

SUMMER 1988 77

Objects

Faces B C

Edges

OA
OB

Vertices
OC

OE
‘D o

F
0

G

OA ={FA,FB,FcI

FA =b%rEe,Ec,E~l

FB =i&.EErE~t&l

Fc={ED,EF,EG,EII

EA =lv,*vB}

Es =iv,>v,}

EC =PB,VDI

ED = iv,* vD}

EE =iv,,v,l

EF =iv,,vc}

EC = iv, 9 vF}

EH = iv, 3 vG}

4 = iv, 9 vG}

Figure 3 Example of Information in Different Levels of the
Model Panel for a Simple Object

scenes. Context cues have also been
used extensively in past computer
vision systems. For example, if
SIGMA detects a driveway in an
image, it searches for a house and for
roads connected to the driveway.
Because PSEIKI is provided with a
good estimate of the expected scene,
it does not have to perform inferences
of this type. Although it might be said
that context cues are indispensable for
scene interpretation because they
make deductions more powerful, their
use necessarily introduces some
domain dependence. Therefore, it is
our philosophy to separate the genera-
tion of the mapping from the forma-
tion of an overall scene interpretation.
If context cues are desired by a system
using PSEIKI, then it is up to the high-
er-level system to provide PSEIKI
with a line drawing incorporating the
information contained in the cues.

PSEIKI also differs from previous
systems in its method of performing
inexact reasoning. Many systems,

including ACRONYM, SIGMA, and
the system by Nazif and Levine, use
no uncertain reasoning in the image
interpretation process. Because of the
overwhelming amount of data in an
image, most of the inexact reasoning
schemes used in the past have been
fairly simple to avoid becoming
bogged down in certainty value com-
putations. However, inexact reasoning
in PSEIKI is based on the D-S formal-
ism in a tangled hierarchical space.
The use of a hierarchy curtails the
number of uncertainty calculations
and is made possible by the black-
board architecture.

Overview of PSEIKI
PSEIKI’s architecture is shown in fig-
ure 2. The system has been imple-
mented in OPS83 as a two-panel, six-
level blackboard. One panel is
reserved for the expected scene; we
frequently refer to it as the model
panel. The other panel initially con-

tains data derived from the image and
eventually the abstraction hierarchies
derived from these data; this panel is
the data panel.3

The input to PSEIKI is provided by
an image preprocessor, also shown in
figure 2. The preprocessor converts
the pixel data in the input image to a
symbolic form that is deposited on the
first two levels of the blackboard data
panel. In our current implementation,
we use an edge-based preprocessor, the
output of which is a collection of
piecewise linear segments detected in
the image. Currently, the information
that is deposited on the model panel
does not change during the processing
of a given image frame. However, our
hope is that at some future time this
model information will be made
dynamic, allowing the system to auto-
matically invoke a different expected
scene if the current scene cannot be
matched with the data at a sufficient-
ly high degree of overall belief.

Each blackboard panel contains the
following levels to represent the
images: scenes, objects, faces, edges,
segments, and vertices. Each element
in a level is defined by a finite collec-
tion of elements on lower levels. For
example, a scene is made of a union of
objects, and a face is defined by the
group of edges that form its borders.
Figure 3 shows the data on the model
panel for a trivial expected scene, a
simple block. It shows each element’s
label and the subelements from which
it is composed (note that the segment
level does not exist for the model
panel).

On level 6 are stored the scenes.
The entire scene (expected or
observed) is represented on this level.
The scene is defined as the union of
all objects in level 5 of the hierarchy.
It provides a way of labeling multiple
objects that otherwise would not be
possible. On level 5 are the objects.
Each element on this level corre-
sponds to a distinct physical object.
The objects are defined as the union of
all boundary faces from level 4. Level
4 contains the faces. The elements on
this level represent the polygonal
faces that form a boundary representa-
tion of the observable portion of the
objects. A face is defined by the edges
from level 3 that form its border.

On level 3 are the edges. These ele-

78 AI MAGAZINE

ments form the boundaries of the
faces in level 4 of the hierarchy. This
level is included to provide a way to
compensate for segmentation defi-
ciencies. Highly collinear segments
from level 2 are grouped to produce an
edge in this level. Level 2 stores the
segments. The piecewise linear seg-
ments produced by the image prepro-
cessor are represented on this level.
Note that this level is not necessary
on the model panel and is not provid-
ed. Finally, on level 1 are the vertices.
The vertices are the end points of the
segments and edges from the next two
higher levels. On the data panel, the
vertices are provided by the low-level
vision system, the preprocessor

PSEIKI has three main knowledge
sources (KSs) that it uses to establish
a mapping from the observed to the
expected scene: Data-Reduction,
Labeler, and Grouper (see figure 2).
The data-reduction KS cleans up the
segments deposited by the image pre-
processor on the lowest level of the
blackboard data panel. The grouper
KS determines which data elements
in the lower levels of the hierarchy
should be grouped to form a data ele-
ment on a higher level The third
activity, the labeling of data elements,
is done by the labeler KS.

In the next section, we focus on the
evidence accumulation mechanisms
in the labeler and the grouper KSs.
This information is followed by a
brief discussion of some of the data
structures used; we believe the reader
needs to appreciate the structure of
the knowledge source activation
record (KSARJ to understand the flow
of control achieved by the scheduler
and the monitor, both discussed in
Scheduler and Monitor for Blackboard
Control.

We do not discuss the image prepro-
cessor that converts pixels into binary
edges, represented as piecewise linear
segments; for preprocessing steps, see
Andress and Kak (1988). We also do
not discuss the methods used to gen-
erate of the expected scene that
resides on the model panel. The key
to handling perspective effects in
PSEIKI lies in generating the perspec-
tive projections of world scenes;
methods used for this process are also
discussed in Andress and Kak (1988).

Evidence Accumulation
Mechanisms in KSs

As mentioned previously, there are
three knowledge sources in PSEIKI:
Data-Reduction, Grouper, and Labeler
The data-reduction KS is not dis-
cussed here in any detail except to
mention that its purpose is to carry
out chores, such as the elimination of
small dangling edges and small edges
generated mostly by noise. In short,
the data-reduction KS helps us reduce
the complexity of the problem by
retaining only those edges which are
either strong or long.

We now detail the other KSs, which
accumulate evidences for various pos-
sible labels for the elements on the
data side of the blackboard. We show
how the labeler KS updates the belief
value of a particular label for a data
element if it finds the data element to
be geometrically compatible with the
neighboring data elements. Of course,
before such belief revision can take
place, the labeler KS must also com-
pute its initial belief in associating a
particular label with a data element.
Techniques for transforming feature
measurements in vision data into
belief values are still in their infancy;
the reader is referred to Reynolds et al.
(1986) for some earlier work on this
subject.

Labeler KS

This KS performs element labeling
and confidence estimation for differ-
ent possible hypotheses using the D-S
formalism. The combinatorial explo-
sion of uncertainty calculations usual-
ly associated with the D-S scheme is
avoided with the use of a hierarchical
reasoning space

The hierarchical structure of the
blackboard data provides a natural
basis for a hierarchical reasoning
space. The levels of this space corre-
spond naturally with the levels of the
data elements on the blackboard. For
example, assume that in figure 3 FA on
the model panel is composed of edges
{EA, E,, E,, ED).4 Also, assume that
edge E, on the data panel is part of the
group which constitutes face F,. If F,
is labeled F,, then Ei can be labeled
only as one of {EA,..., En}. If the data
were not arranged hierarchically, it

L

Figure 4 Geometry Used
in the Definition of Collinearity

EE

E A I:
A

I M

ua Panel
L--

Figure 5.
Information on the Model
and Data Panels at the
Edge Level of the Blackboard

SUMMER 1988 79

would be necessary to consider every
element on the model panel when
assigning labels and performing con-
sistency checks. To curtail the num-
ber of uncertainty calculations, con-
sistency checks are not made directly
between two elements at the same
level of the hierarchy if they do not
have a common parent. In the previ-
ous example, edge E, would only be
checked for consistency with edges
that are children of face F, Consisten-
cy checks between two nonsiblings
can be made indirectly by propagating
an element’s confidence value up
through the hierarchy until a com-
mon ancestor is reached and then
back down to the second element.

The frame of discernment (FOD) for
any element is defined by the labels
that can be given to the element.5 In
our example, because F, is under con-
sideration as a label for the face F, the
FOD for edge E, is

@= PA, Es, EC, Ed
A data element’s label is defined as

the element from its FOD that has the
greatest belief value attached to it. If
the belief value of an element on an
upper level of the hierarchy is
changed, then all of its descendants
must change their FOD. Thus, it is
advantageous to first perform compat-
ibility checks between elements on
upper levels of the hierarchy to avoid
performing unnecessary calculations
on lower levels when FODs are
changed. This necessity for checking
global consistency before local consis-
tency seems reasonable and is a part
of the control strategy discussed in
Scheduler and Monitor for Blackboard
Control.

Two metrics are required when
updating the label belief values at any
level of the hierarchy, one for measur-
ing compatibility and the other for
measuring incompatibility between
two given elements on the data panel.
When initially assigning belief values
to data elements, these two metrics
must also measure compatibility
between a data element and a model
element. To facilitate the correspon-
dence between them and certainty
values, both metrics should range
between 0.0 and 1.0. Obviously, the
metrics need not be the same for all
levels of the hierarchy.

To show what these metrics look
like, consider the following: At the
segment and edge levels of the black-
board when two data segments (or
edges], E, and E,, are thought of as
belonging to the same model element,
the compatibility between the two is
measured by the following collineari-
ty measure:

collinearity (E,, E,) = (D,, - D,,,) / D,,
x cos(ty

where e is the acute angle between the
two edges, and Dperp is the distance
from the middle of E, to the line
defining E, (see figure 4). D,,,, the
maximum allowable value for Dperp, is
a user-specified heuristic parameter or
function. In our current implementa-
tion, D,,, is set equal to the length of
E,; the justification is that for two
data elements to belong together in
some sense, the maximum allowable
distance between them should not be
measured in an absolute manner but
relative to the sizes of the data ele-
ments

Likewise, the incompatibility be-
tween the same two edges, E, and.E,,
can be measured by calculating the
noncollinearity (E,, E&

noncollinearity (E,, E2) = D,,, / D,,,
x scale(E,) x sin(e)

where scale(E,) depends on the length
of E, 6

Because the (in)compatibility mea-
sures are defined heuristically, it is
usually advantageous to limit the
amount of evidence that they can pro-
vide. This limit can be achieved by
scaling the measures by a level-specif-
ic scale factor SF, 0 5 SF 5 1. Thus, the
(in)compatibility measures for the seg-
ment and the edge levels can be
defined as

compatibility [E,, Ei) = collinearity (E,, E,)
X SFedge ill

and
incompatibility (E,, E,)=

noncoEiiWaiity (Ei, E,) x Sledge (2)
Note that in computing both these

measures, the elements Ei and Ej on
the data panel must correspond to the
same element on the model panel,
unless, of course, the system is com-
puting the initial belief values by
comparing the data and the model
information; in this case, the argu-
ment Ei can refer to a model element
and Ej to a data element The compu-

tation of initial belief values is dis-
cussed in greater detail in the follow-
ing subsection.

The compatibility and incompatibili-
ty metrics must, of necessity, be differ-
ent at the various levels of the black-
board. At the face level, for example, a
metric that is used to compute the
incompatibility between two faces on
the data panel measures the overlap
between them normalized by the aver-
age area of the two faces. To understand
how this metric is used, consider the
following example. Suppose for two
faces F1 and F, on the data panel, the
normalized overlap, as measured by the
function overlap ($ FJ, returns 10 per-
cent. If the maximum-belief model
labels for F, and F, are F, and F,, respec-
tively, and if it is known that there is no
overlap between F, and F,, then the
incompatibility between F, and F, can
be measured by incompatibility (F,, F2)
= overlap(F,, F,) = 0.1

Going back to the segment and edge
levels of the blackboard, if two seg-
ments (or edges) on the data panel cor-
respond to different model elements, a
rigid motion transform is applied to
one of them before the computation
of the (in)compatibility metrics,
which has the effect of enforcing rela-
tional constraints between the two
data elements. For example, if edges
E, and Es are thought to correspond to
model edges E, and E, respectively,
then the measure of compatibility
between E, and Es is defined as

compatibility(E,, E3) =

collinearityi E,, TE,+E, (E3) J,

where TE~+E* is the rigid motion
transformation that makes model
edge E, collinear with model edge E,
in the following sense: First, for a
given pair of nonparallel edges, we
distinguish between the vertices on
the convergent and the divergent
sides; by convergent side, we mean
the side on which the edges would
meet if extended. For the transforma-
tion TE~+E*, the edge E, is rotated
about its convergent vertex through
an angle which makes the edges paral-
lel; subsequently, E, is translated SO
that the two convergent vertices are
coincident. For further details on this
transformation, see Andress and Kak
(1988). Performing this transforma-
tion forces model elements to be com-

80 AI MAGAZINE

patible; in other words,
coIIinearity(E,, TE~+E* (E,) j = 1 .O

Computing Initial Belief Values for
Elements in a Group. To fully de-
scribe how we compute the initial
belief values for, say, the edge ele-
ments at the edge level on the data
panel in figure 2, consider the follow-
ing example. Let’s say that at this
level, the information in the model
panel and the data panel is as shown
in figure 5.

The grouper KS hypothesizes that
the edges (E,, . . ., E,] be grouped togeth-
er; let this grouping be designated by
the face F,. In order to label the edges
in the data, the labeler KS constructs
the following FOD for each edge in
the group: e = (EA, E,, E,, En}.

Let’s now focus on the labeling pro-
cess for edge E,. The labeler KS com-
putes a basic probability assignment
(bpa) (see appendix) over o by applying
a collinearitylike measure to the pairs
h, 61, 1% &I, k, El), and (ED, El).
The collinearity measure used here
differs from the collinearity metric of
the preceding subsection in that it
also constrains the maximum permis-
sible misregistration between a data
edge and a model edge. The following
formula shows the form of the mea-
sure when applied to the data edge E,
and the model edge E,

ES-compatibility(E,, E,) =
D,-D,, D,-“, X x cos 0

unmx urnax
with the same geometric visualization
as in figure 4, Dperp is the distance
from the middle of E, to E,, Dpar the
misregistration along the direction E,,
D max the maximum allowable value
for both misregistrations, and e the
acute angle between the segments.
The prefix ES in the name of the mea-
sure stands for expected scene.

For the computation of initial belief
values, D,, is set differently from the
manner described earlier; its value is
set by the user and reflects the maxi-
mum expected mis-registration
between the data and the expected
scene. Note that although E, and E,
exist in different frames, it is possible
to speak of distances and angles
between them because for the purpos-
es of blackboard processing, they are
both projected into the same world
coordinate system. For a mobile robot

navigating on a flat ground plane, all
the edges are transformed onto the
ground plane.

Let’s assume, for the sake of discus-

mE,(0) = 0 0 for all other subsets of o

sion, the compatibility calculation
produces the following results for E,:

Note that we have now assigned
0.15 belief to o; 0.15 is what remains

ES-compatibility(E,, E,) = 0 7
ES-compatibility(E,, E,) = 0 1

after we subtract the sum of ES-corn-

ES-compatibility(E,, El) = 0 4

patibility measures from 1. Assigning

ES-compatibility(E,, E,) = 0 05

Note that although E, is approxi-
mately parallel to both E, and Ec, the
ES-compatibility calculation yields a
larger result for E, because of the dis-
tance dependence of the calculation If
the sum of the ES-compatibility mea-
sures exceeds unity, as is the case in
our example, the measures are nor-
malized by the summed value. There-
fore, in our example,

ES-compatibility(E, E,) = 0 56
ES-compatibility(E,, E,) = 0 08
ES-compatibility(E,, E,) = 0.32
ES-compatibility(E,, E,) = 0.04

These ES-compatibility measures
define a bpa over o for our example, as
given by

mE1((EAJJ = 0 56
mEI([EB]) = 0 08
mEi((Ec)) = 0.32
mEl[(En]) = 0 04
mE,() = 0 0 for all other subsets of 0

A slightly different approach is taken
when the sum of ES-compatibility mea-
sures is less than 1. Assume for a
moment that because of the distance
cutoff, D,, the ES-compatibility mea-
sure of (E,, E,) is zero; that is,

ES-compatibility(E,, E,) = 0 7
ES-compatibility(E,, E,) = 0 1
ES-compatibility(E,, E,) = 0.0
ES-compatibility(E,, E,) = 0 05

Because the measures now sum to
less than unity, there is no reason to
normalize Instead, we now convert
them directly into bpa’s in the follow-
ing manner:

I’IIE1((EA]) = 0.7
mdI%J) = 0 1
mEI([Ec]) = 0.0
mE,((E,)) = 0 05
mE,(o) = 0.15

a part of our belief to 0 seems intu-
itively plausible for the simple reason
that ES-compatibility is a good mea-
sure of “El is a part of E, .” Clearly, if
E, does not match with E,, Es, E,, or
E, to a sufficiently high degree, then
we can leave some belief uncommit-
ted In this assignment, mEI = 0.15
represents the uncommitted portion
of our belief.

Let’s say that the procedure just
described yields the following bpa’s
for all the data edges.

mEl(ht) = 0 7 m%&t) = 0 8
mE,@,tl = 0 1 m%@d = 0 1
mEdE,lj = 0 0 m%(&t~ = 0 0
mq((E,]) = 0 05 mEZ([ED]) = 0 00
mEI = 0 15 rnE,(@) = 0.1

. .

(3)

m%iht) = 0 2
mE9(Ml = 0 1
mE9([E,)) = 0.1
mE9([ED]) = 0.60
mE&) = 0 0

These bpa’s then constitute the ini-
tial bpa’s for the data edges.

Revising Belief by Enforcing Mutual
Consistency Constraints. From the
set of initial bpa’s, the labeler KS then
seeks those observed edges which have
maximum bpa for the same model edge.
To illustrate, in the example here, El
and E, exhibit maximal beliefs for the
same model edge, E, .

The edge labeler now applies a local
consistency enforcer to the belief val-
ues. Let’s say that because E, and E,
have maximal similarities with E, ,
we wish to use E, to revise our beliefs
regarding E,. To do so, the labeler
measures the collinearity of E, and E,
and then the noncollinearity of the
same two edges. Let’s say that by
using equations 1 and 2 we get

compatibility/E,,E,) = 0.8, and
incompatibility(E,,E,) = 0.1.
We now construct an “updating”

bpa for E,, as follows:

mudatez.l (I-Ed) = mE j1E d X incompatibility (E 2 E 1J

= 0.08

mu+tc2.1 (0) = 02

mupdatez.l i1E.d = m,AiE.d X compatibility (Es E ,j

= 0.64

SUMMER 1988 81

where, again, the bpa for the FOD was
set to the uncommitted portion of
belief. The 1 symbol as used in this con-
text, denotes set negation, that is, TE,
To find the new bpa over o for E,, we
use Dempster’s rule, (see appendix), to
combine mE1 with mupdate: 2+1 to obtain
a new mEl, given by

mE,([E,}) = 0 87
I-IlE,((E,}) = 0 04

m~~~~Ecll = 0 0
mE1[{E,,]) = 0 02
mE,([-EA)) = 0.02
mEi = 0 05 (4)

Revising Belief Values by Enforcing
Relational Constraints. The labeler
KS also contains procedures for
enforcing relational constraints with-
in each grouping which is done in the
following manner. Consider the bpa’s
over Q for the edges E, and E,, as illus-
trated in figure 5 Although the bpa
for E, takes its maximum value for
the label E, , the bpa for E, is a maxi-
mum at En. Let’s say we wish to com-
pute, using relational constraints, the
ha mupdate: 9-111 which is the addition-
al belief generated by Eg for E,‘s label.
To find mup&te: 9+1, we note that the
geometric relationship between E,
and E, is already known because their
positions in the world coordinate sys-
tem are known Let TEA+E~ be the
transform that makes the model edges
E, and En coincident To get a mea-
sure of the extent to which the geo-
metric relationship between E, and E,
is the same as the one that exists
between E, and Eo, the labeler carries
out the following (in)compatibility
computations:

compatibility(E,, E,)
= collinearity(E9, TE~+E~(E~))

and
incompatibility(E,, E,)
= noncollinearity(E9, TEA+E~(E~))

Clearly, if compatibility (E,, E,) =
1 0 (when such happens, we also have
incompatibility (E,, E,) = O.O), the geo-
metric relationship between E, and E,
in the data is exactly the same as
between E, and E, in the model To
explain how the relational informa-
tion is used to update the bpa distri-
bution for, say, E,, we go back to our
figure 5 example Let’s say that the
compatibility calculations yielded the
following results:

compatibility(E,, E,) = 0.7
and
incompatibility(E,, E,) = 0 4

Becausethesemeasuressumtomorethan
I, they are normalized by their sum to
yield the final (in)compatibility measures:

compatibility(E,, E,) = 0 64
and
incompatibility(E,, E,) = 0.36

We now construct another bpa for
E,, as follows

= mEg([Ed) x compatibility(E, E 3

= 0.6 x 0.64
= 0.38

m.pdate: 941 ((‘Ed)
= m E 9 j {Ed) x incompatibility(E 9 E 1)

= 0.6 x 0.36
= 0 22

where the value of mE,((E,])was
obtained from the table of values in
equation 3. By using Dempster’s rule
to combine this update bpa with that
in equation 4, we obtain a further
revision of the belief values over the
FOD for E,.

Combining Belief Revisions from
Relational Constraints and Mutual
Collinearity Constraints. Actually, a
single procedure is used for enforcing
both the mutual and the relational
constraints within a group. Note that
the (in)compatibility calculations for
relational constraints in the previous
subsection reduce to the computa-
tions required for (in)compatibility
calculations for mutual consistency in
the subsection Revising Belief by
Enforcing Mutual Consistency Con-
straints if we use an identity transfor-
mation for TEPEE.

Therefore, we can use the following
integrated algorithm for enforcing the
relational constraints and the local
collinearity constraints. Suppose n
edges-E,, Ez, E,-have been
grouped together in the data panel and
are hypothesized to belong to a single
face. Also, suppose that the edges in
one of the possible corresponding
faces in the model panel are E,, E,, . ,
E,. Clearly, the FOD, e, for each data
edge is

e = (EA, . ., E,}
Let’s further say that as described in

Computing Initial Belief Values for

Elements in a Group, measuring local
collinearities of the data edges against
those of the model edges yields the
following initial bpa distribution for
each data edge:

with the assumption that initially

m,+) = 1 - 2
CX=A

m,>((E,J)

and mEi = 0.0 for all other nonsingle-
ton subsets of o

For each data edge Ei, let E%,, be
the model edge for which the bpa
takes a maximum value; that is,

mEi(FhJ) 1 m%(b))
for u = A Z
For each edge Ei, a single model

edge, ES,,,, exists for which the bpa
value is maximum; we denote this
maximum belief model edge by
hnxx(i~ In case of a tie because of two
or more model edges yielding the
same value for bpa, we arbitrarily
select one of them

When incorporating new evidence
for an element’s label, we can ease the
computational load by using the prop-
erty that when using Dempster’s rule
of combination, the order in which
evidences are combined does not mat-
ter. To elaborate, if we update an ele-
ment’s bpa incrementally with every
piece of new evidence from the ele-
ment’s siblings, then the new bpa is
computed as

m new =
(((mold @ mupdate: l&j @ mupdate: 2-j I 1

@ . . . @ mupdate: n+, -1

where 8 denotes that Dempster’s
rule of combination is being used for
combining evidence, and mup&te:j+l is
the updating bpa for the new evidence
that element j is providing for element
i. Because Dempster’s rule of combi-
nation is invariant with respect to the
order of combination, the new bpa can
be expressed as

m new = moId @ mupdate

where

mupdate = hmupdate: 1-j @ mupdate: Z+j)

.@ . . @ mupdate: ,+j)

Now we can take advantage of the
fact that the updating bpa’s use binary
FODs (if element E, is labeled E,, then
in each updating bpa, the belief is

82 AI MAGAZINE

nonzero for only the proposition E,,
-E, and o itself). Barnett (1981)
describes how Dempster’s rule can
be implemented in linear time if all
focal elements of the belief functions
are either singletons or their com-
plements. Currently, we do not use
Barnett’s formulas because FODs
for the elements on the blackboard
are fairly small. However, we do take
advantage of the fact that with the
formulation presented here, we only
have to deal with three elements in
the power set of the updating FOD
instead of all the 2101 elements.

tent (compatible) labels, then these
child elements should provide evi-
dence that the label given to the par-
ent element is correct. Likewise, chil-
dren with inconsistent labels provide
evidence that an element’s label is
incorrect. Thus, by passing the
updating bpa’s to each parent ele-
ment on a higher level of the hierar-
chy, we are providing new evidence
for these elements based on the con-
sistency or the inconsistency of its
descendants.

that the model panel is as shown in
figure 3 and that edge E, on the data
panel is a child of face F,. Further-
more, assume that E, is labeled E,,
and F, has label F,. Because the bpa
for edge El, as given by mupdate: E~(PAI)

arises from the consistency of Ei’s
label with its sibling’s labels, it can be
considered a weighted vote of confi-
dence that face Fi’s label is correct.
Likewise, because mupdare: rl ((lE,J)
arises from the inconsistency of E,‘s
label with its sibling’s labels, it can be

Evidence from an element cannot considered a (weighted] vote of no
be directly applied to its parent confidence in the correctness of face

A function, update-belief, that pro-
vides an updating bpa for an arbi-
trary element, E, using compatibili-
ty and incompatibility measures is
shown in figure 6. It takes the ele-
ment being updated as a parameter,
and it returns the updating bpa for
this element. Thus, the bpa for E+
could be updated with the following
function call:

because FdDs-of an element and its F,‘s label. Thus, mupdate: r](s) can be
parent are composed of different considered to be the amount of igno-
types of data elements. However, we rance about Fi’s label. Using this
show that it is possible to build a rationale, we can define an updating
FOD that can be used to update the bpa for face F, with the following
belief functions of elements on a nonzero basic probability numbers:
higher level of the hierarchy Assume

mEi = mEi d update-belief(Ei)
Evidence Propagation between Levels
in the Hierarchy. Mutual consisten-
cy constraints and geometric con-
straint relations are not the only
sources of knowledge used to update
an element’s belief function. A
mechanism is also provided for pass-
ing belief values between different
levels of the hierarchy. This passing
is done to satisfy the intuitive argu-
ment which says any evidence con-
firming an element’s label should
also provide evidence that its paren-
t’s label is correct. We also require
that disconfirming evidence be
passed to the lower levels of the hier-
archy (for example, if we think that a
face is mislabeled, then all its con-
stituent edges are also most likely
mislabeled).

fllllction updale44ieF (Ci)
;; initifilize updating bpa as H vacuous belief function

ml;pdar.“,w = 1 .o
mL’plalo(.) - 0.0 ; all other subsets
;; use all n elements in rhc data panel with the same parent group
;; when updating iii
Forcachj=1,2,...,n

begin
Cj = compatibility(E;, E$
dj = incompatibility(Ei. 14)
;: normalize (in)compatibility measures if needed
if(c,+d,> 1.0)

begin

5
? = ~ cj + dj

dj= 3
J J

end

We use the updating bpa, mupdate,
as computed by the update-belief
function, when passing evidence up
the hierarchy. We combine mupdate
not only with the bpa for the ele-
ment in question but also with this
element’s parent Combining the
updating bpa with an element’s par-
ent makes intuitive sense because all
new evidence generated on a level
comes from the (in)compatibility
between elements on this level. If the
children of an element have consis-

;; create updating bpa corresponding IO element Ej

J+da~+,i((~~(i)J) = cj x In&t{ b&i)l)

m,pib:,:j.-ri((~E~(i)l) =dj X rne.((-4&,&)

4ipbre:j.4(@) = 1 0 - mupds~*:j.-,i((E~(i))) - %plptc:j .bi((+&(i)))

;; accumulate into upclrting bps

Mupdh = mupdala @ mupd3wj--~i

end ; (for loop)
;; return the accumulated sum of new evidence
return (mUpdPte)

End. ; update-belief

________________________________ ___.________________-----------
Figure 6 Algorithm Used to Generate an Updating bpa

SUMMER 1988 83

Model Fancl Data Panel (Segment Lewl)

21 22 23 24

Figure 7
Left The Expected Scene Information on the Blackboard Model Panel;
Right. The Data at the Segment Level of the Data Panel

21 22 23 24

_-___-_ ---

_-__________________-------------
Figure 8 Initial Labels for Data Segments

B A I ’ E/C

4
I:

’ I’

C

4 G
I & M _

-.-----

I I
N IK

I L

I
----I

w-e L - -
Q Q P Q

Initial Lab&

2 G__

r

3
1 2..

7
6

8 -2. --- ------ ,

4

10

----I II

9
12

I ’
14

15 - -_I --__1_
16 17

.__-___-___

‘K
N

----T--
--T

C

I 1
--

Lab& -_
fgure 9.

Data Edges

Edges with Initial Labels Derived from Data Segments. (Note the numeric
labels for the data edges on the left are independent of the numeric labels
used for the data segments in figure 8)

bpa for F,. As described in the last
subsection, after initial belief values
are assigned, the FOD for an element’s
updating bpa is really binary in
nature. Thus, the only nonzero ele-
ments of the updating bpa for E, are
m update: ~,(h.lL mupdate: EI(bE~lL and

mupdate:E1(o]. Because these elements
are the only nonzero basic probability
numbers from Eis updating bpa, they
sum to 1 Given this fact, it is trivial
to show that mup&: El +rI is also a bpa.
We can now express the total accumu-
lated new belief for face F, from its
children E,, E,, E, as

mupdate: FI = (imupdate: El ‘F1

@ mupdate: E?. ‘Fi I

@ . @mupdate: En-F1)

Information is passed down the
hierarchy only if it is disconfirmatory.
Currently, this downward propagation
of information takes the form of the
reassignment of FODs caused by the
ancestor of an element having its label
changed. In the previous example, this
form of downward propagation could
happen if the label for face F, were
changed to F,. Using information from
the model panel (as shown in figure 3),
we note that the FOD for E, would
then be changed to

0 = EC, EE, EF, &I

Grouper KS
The grouper KS builds data elements
on the upper levels of the hierarchy
from the segments and vertices
deposited by the low-level vision sys-
tem. It does this building in a data-
driven manner by first grouping seg-
ments into edges and then grouping
the edges into faces, and so on. The KS
is activated (by mechanisms described
in Scheduler and Monitor for Black-
board Control) by a request to find the
parent of an ungrouped data element,
called the seed element. In response to
such a request, the KS first creates a
dummy parent element one level up
on the blackboard from the seed ele-
ment and then tries to find all the data
elements compatible with the seed
element. These compatible data ele-
ments are found by first determining
the most probable model label for the
data element and then finding the sib-
lings of this model label and the data
elements that correspond to these
model siblings. The set of compatible

84 AI MAGAZINE

data elements thus found form the
seed element’s siblings on the data
side. It is the job of the labeler KS to
eventually give a label to the dummy
parent element of the data group so
formed.

In general, two data elements on
the same level must satisfy two
requirements if they are to be grouped
together. First, the elements must sat-
isfy a level-specific adjacency con-
straint. These constraints usually
force the KS to consider only ele-
ments that are physically close when
it forms groups. The other require-
ment is obtained from the compatibil-
ity metric used by the labeler KS; that
is, the elements must be highly con-
sistent in order to be grouped. For
example, at the segment level of the
blackboard, two segments must be
highly collinear, and, similarly at the
edge level, two edges must lie on a
common plane to be grouped.
Although the KS should be able to
group elements based solely on their
geometry, it must also be able to take
advantage of any label information
that the labeler KS has provided. For
example, suppose the labels for a set
of data edges are known to belong to a
single face on the model panel, the
grouper KS should group the data
edges together.

Although eventually the grouper
and labeler KSs work in concert on an
opportunistic basis, some initial
groupings must be formed for the
labeler KS to act at all. In other words,
the grouper KS must be able to gener-
ate some initial groupings. To illus-
trate how this function is performed,
consider the example in which the
image preprocessor has deposited the
data, shown on the right in figure 7,
on the segment level of the data
panel. Information about the expected
scene on the model panel is shown on
the left.

Again, remember that the informa-
tion in both the model and the data
panels is in the same world coordinate
frame. (For a mobile robot with cam-
eras slanted downward, this coordi-
nate frame corresponds to the flat
ground plane.) For generating initial
groupings, every segment in the data
panel is compared with all the model
edges that are in the vicinity of the
segment, the basis of comparison

being collinearity. For each data seg-
ment, we retain that model edge label
which yields the highest value for
collinearity In figure 8, the left frame
shows the data segments and the right
frame a possible label for each seg-
ment. All the adjoining segments that
have the same initial labels are now
joined together into edges, as shown
in the left plate in figure 9.7 Note that
the numeric labels assigned to the
data edges in figure 9 are independent
of the numeric labels of the data seg-
ments in figure 8.

Using the labeling shown on the
right in figure 9, the grouper con-
structs the following initial groupings
from the data edges shown in the fig-
ure’

FI initial = W,,E,l

It is not uncommon for an initial
grouping to be contaminated by multi-
ple renditions of the same edge in a

scene. Suppose the gray-level varia-
tions corresponding to a scene edge do
not exhibit a monotonic variation in
directions perpendicular to the edgej
depending on the size of the edge
detection operator, the result can be
multiple parallel edges in close prox-
imity to one another For example,
segments 1 and 25 in figure 7 could be
examples of such an artifact. An
important job assigned to the grouper
is the detection of such parallel edges.
The grouper does this detecting by
measuring the angle between the ele-
ments that have the same label in an
initial group and the extent of the
overlap between the two edges, the
overlap being measured by projecting
the smaller edge on the longer one.
When such competing parallel edges
are found, multiple groupings are
formed from an initial group by
retaining only one competing parallel
edge at a time.

To illustrate, in the initial group-
ings shown in equation 3, edges 8 and
9 in FBinitial are found to be competing;

ype Data=eIement
(

id: integer; -- Unique id number
panel: integer; -- Panel in the blackboard
type: symbol; -- Type of data (two-d, three--d, model:
level: symbol; -- Level in the pnnel
children: childJist; -- Element ids of children of element

-- Genera1 Parameters
value: integer; -- Edge strength, etc.
size: integer; -- #of pixels in edge, etc.

-- Parameters valid only for vertex elements
image-.coord: coord; “- (vertex) coordinate of vertex
world-coord: vector; -_ (vertex) coordinate of vertex

-- Parameters used far uncertainty management
frame: fod; -” Frame of discernment
bpa: bpas; -- Basic probability assignments
positive: renl; -- Update bpa - belief
negative: real; -- Updnte bpn - disbelief
label: integer; -- Label of element
belief: real; -- Belief in label

>;

_______--_------------~
Figure 10 WME Class Definition for Data Elements

SUMMER 1988 85

/ye KSAR=elernent

KS:
action:

data-element:
lCVCl:
panel:

id:
slalus:

trigger-cycle:
trigger_KSAR:
activc_cycle:
priority:

);

symbol;
symbol;

-- Knowledge source being triggered
_- action KS is to perform

integer;
symbol;
integer;

-- Data Element being focused on
-- Level being focused on
-- Panel Being focused on

integer;
symlwl;

-- KSAR id #
-- KSAR status

integer;
integer;
integer;
integet;

-- cycle KSAR was fonned
-- KSAR which triggered this one
.* cycle during which this KSAR was active
-- KSAR priority.

Figure 11 WME Class Definition for KSAK

--

-- RULE: select-mnx,benefit,KS
__ IF: PSElKI is “running” and the current strategy is to maximize benefit
I- THEN: select the KS such that no other KS has greater benefit.
__ Mark the KS as “active.”
.-
rule select-~tt~ax-.bcne~~t.-KS (

(Context cunent=run-pseiki);
(Strategy cunent=maximizebenefit);

Rrks (KS statusoactive);
- (KS statosOaclive: benefit > &ks.benelit);

-->
modify &ks (status=active);

1;
-

Figure 12 Rule Used to Select Active (KS, action) Pair.

the same is the case with edges 2 and
3 in Ftminitial. Thus, the initial group-
ings lead to the following groups:

J-5 = h,%W
F'2 = hE,,E,l

F”, = hW,l
F'3 = h,Eu,,E&&,~

F”, = hA,,Ed&,)
F4 = h+mEdbl

Some Data Structures
Used by PSEIKI

Fundamentally, a blackboard is a data
structure that is operated on by a
number of KSs in an opportunistic
manner (Hayes-Roth 1985; Nii 1986a,
1986b). The PSEIKI system uses the
working memory of OPS83 for this

data structure; each working memory
element (WME) corresponding to the
blackboard data structure describes a
data element at some level of the
blackboard.8 In addition to being a
host for the blackboard data structure,
the working memory is also used for
storing the knowledge source activa-
tion records (KSARs); a KSAR is creat-
ed by the monitor when the trigger
conditions for a KS are satisfied by
some data element. (It is the job of the
monitor to keep track of the data on
the blackboard and constantly check
whether a newly created data element
satisfies the triggering conditions for a
KS) KSARs can also be created by
KSs, allowing KSs to trigger other KSs
explicitly Each KSAR holds the iden-

tity of the data element that meets the
triggering conditions of a KS; the rele-
vant KS; and other pertinent informa-
tion, such as the cycle during which
the KSAR was created. This informa-
tion indicates to the KS which object
should be worked on and is used by
the scheduler when it chooses a KSAR
to activate.

In the rest of this article, we
describe the data structures used for
representing the data elements and
KSARs. Subsequently, we discuss
some of the productions used by the
scheduler, the monitor, and the
grouper KS.

WMEs for Representing Data

As mentioned earlier, a single WME
class is used for all the data elements
regardless of the blackboard level at
which the data element might reside.
In other words, the same WME class is
used for edges, faces, objects, and so
on. The distinctions between different
types of data elements are introduced
by using appropriate values for the
attribute “level.” Using the same
WME class allows generic functions to
be freely applied to all the data levels.

Figure 10 shows the definition of
the WME class for representing data.
Most of the WME fields are self-
explanatory. The element’s id number
is a unique identifier used to keep
track of individual data elements; data
elements are always referenced by
their id numbers. The panel and level
fields specify the element’s location
on the blackboard The type field is
used to specify the type of data from
which the element is derived; the val-
ues that it can assume are two-d,
three-d, and model. The next few
fields are parameters of the data ele-
ment. The value field is a generic
attribute used to specify a level-specif-
ic value. For example, it is used to
specify the strength of an edge or the
average gray level associated with a
face. The size parameter is also gener-
ic; this parameter is used to specify
the degree, length, area, or volume if
an element is a vertex, edge, face, or
object, respectively. The next two
parameters specify the data element’s
location if it is a vertex. The
image-coord attribute indicates a ver-
tex’s coordinate on the image plane if

86 AI MAGAZINE

it was obtained from 2-D data. Like-
wise, the world-coord attribute speci-
fies a vertex’s location in the world
coordinate frame.

The remaining fields shown in fig-
ure 10 hold the uncertainty informa-
tion about a data element and are
used by the labeler KS. The frame
attribute holds the element’s FOD,
and the bpa attribute holds the ele-
ment’s basic probability assignment.
An element’s updating bpa is stored in
the positive and negative attributes:
these values indicate the new belief
and disbelief in the element’s label.
This new evidence is obtained from
the compatibility of the element with
its siblings and its children’s compati-
bility, as discussed in Evidence Accu-
mulation Mechanisms in Knowledge
Sources. Finally, the element’s label
and belief in this label are indicated
by the next two attributes.

The WME Class for
Representing KSARs

Figure 11 shows the WME class defi-
nition for representing a KSAR. The
data-element, level, and panel fields
specify the focal element of the
KSAR. Using these three fields, we
can focus on the following kinds of
entities: the entire blackboard, a
blackboard panel, a level of the black-
board, a level of a specific panel of the
blackboard, or a specific data element
on the blackboard. The KS and action
fields of the KSAR specify what action
is to be performed on its focal ele-
ment. PSEIKI’s scheduler uses the
trigger-cycle, trigger_KSAR, and the
priority fields when ranking KSARs
for firing. The id field is used to keep
track of the KSARs, and the state of
any KSAR is determined by its status
field.

A KSAR is originally created with
its status marked pending, which
means that the KS has been triggered
but has not been run yet. When the
scheduler decides to fire on a KSAR, it
changes the KSAR’s status to active.
The KS’s precondition and poisoning
productions are now allowed to fire; it
is their job to mark the KSAR’s status
as running if the preconditions are
met or as poisoned if they aren’t If
the KSAR is determined to be poi-
soned, the KS’s body productions are

not allowed to fire, and control passes
back to the scheduler. Otherwise, if
the status has been set to running, the
KS’s body productions will be allowed
to fire. After the KS has accomplished
its goal, it marks the KSAR’s status
field as finished and returns control to
the scheduler.

Scheduler and Monitor for
Blackboard Control

In this section, we first describe the
operation of the schedule and moni-
tor. Subsequently, we comment on
how the KSs interact with the sched-
ule and monitor. Finally, we detail the
operation of the grouper KS as an
example of KS processing.

Scheduler Operation

It can reasonably be stated that the
scheduler is the heart of any black-
board. It is the scheduler’s job to
choose what action to perform at any
cycle of the blackboard operation; it
carries out this job by selecting one of
the pending KSARs and activating the
corresponding KS. PSEIKI’s scheduler,
which consists of a set of metarules,
runs by default; that is, it runs auto-
matically when no KSs are active. Ini-
tially, when the data, in the form of
edge segments, are deposited on the
blackboard, the scheduler is invoked
to get the entire process started.

The strategy used by PSEIKI’s
scheduler for selecting one of the
pending KSARs is patterned after the
Hearsay system (Erman et al. 1980)
The scheduler first forms a set of (KS,
action) pairs for all the KSs. Note that
each KS can be used to accomplish
different actions; for example, the
labeler KS can both initialize and
update labels. Thus, the priority
accorded a KS should depend on
which action is desired. The pairs are
then ranked, and one is selected and
marked as active on the basis of the
costs and benefits associated with the
different KSs, the cost being a mea-
sure of the computational difficulty of
running a KS and the benefit a mea-
sure of a heuristic estimate of the
power of a KS to accomplish the over-
all goal. After selecting a (KS, action)
pair, the scheduler ranks all the pend-
ing KSARs that seek to invoke the
pair. If the selected (KS, action) pair

has no pending KSARs, the scheduler
selects the next most highly ranked
pair. Ranking of the pending KSARs is
based on a combination of their priori-
ty, focal element, focal element’s
blackboard level, and focal element’s
recency It then selects the top-ranked
KSAR and marks it as active; the cor-
responding KS is then fired. Figure 12
is a sample rule that performs the KS
ranking and selection on the basis of
the KS’s relative benefit.

In this rule, the first two condition
elements (CEs) specify that PSEIKI
must be running and that the current
KS selection strategy is based on max-
imizing KS benefit The next two CEs
perform the work of the rule. The
third CE matches any nonactive (KS,
action) pair; the WME corresponding
to this (KS, action) pair is marked
active by the scheduler. The last CE
prevents the rule from firing if there is
an available inactive (KS, action] pair
with greater benefit. Thus, the overall
action of this rule is to find the inac-
tive (KS, action) pair with the greatest
benefit and to mark its status as
active

After a [KS, action) pair is chosen, a
particular KSAR must be selected
from the group of pending KSARs that
use it. Associated with every KS is a
different method of choosing the best
KSAR For example, if the labeler KS
is active, the scheduler tries to choose
a KSAR that focuses on the highest-
level data element possible. As we
mentioned previously, the strategy of
focusing on the highest-level data ele-
ment is equivalent to checking global
consistency before local consistency.
Conversely, the scheduler forces the
grouper to group data elements on the
bottom levels of the hierarchy first
and then work its way up Figure 13
shows a rule that selects a labeler
KSAR.

Once again, the first CE specifies
that PSEIKI must be running in order
for the rule to fire. The next two CEs
find a pending KSAR that focuses on
the active (KS, action) pair The third
CE matches the WME that is the
focus of the KSAR The structure on
the next line uses a feature of OPS83
to choose a data element at the high-
est possible level on the blackboard.
OPS83 uses the value in the square
brackets to rank rule instantiations in

SUMMER 1988 87

^_
-- RULE: selectJabe$-KSAR
-I IF: PSEIKI is running and a KS and action have been selected.
-7 THEN: select the KSAR that focuses on the highest level
-- data element possible and mark the KSAR as “active.”
_^
rule select.Jnb&KSAR (

(Context current-run-pseiki);
&ks (KS name=labcl; status=active);
&ksar (KSAR KS=label; action=&ks.action; status=pending);
&eI (Element id=&ksar.data--element);
[Ievel~no(&el.leve))l; -- choose the highest level possible

-->
modify &ksar (status=active; active-cyclc=¤t-cycle);
make (Context current=reset-KS-status);

1; I

Figure 13 Rule Used to Select a KSAR that Seeks to Invoke the Labeler KS

_-
-- RULE: group-trigger-J
..* 1F: An orphaned and labeled data element is found
-- AND there is no KSAR to group that element.
“_ THEN: Create a new KSAR to group that element and find its parent.
_-
rule group-trigger-1 {

&el (Element typeomodel; level<>vertex; IabeloO);
(Element child(&el.id, @.childrcn));
(KSAR K&group; action=initialize;

(@.status=pendingV @.status=poisoned);
data-element=&el.id);

-->
make (KSAR KS=group; action=initislize;

triggef~cycle=¤t~cycle;
id-&next-KSAR-id; statuszpending;
data--element=&el.id; priority4.5);

&next.-KSARjd = &next-KSAR--id -+ 1;

Figure 14 Monitor Demon Used to Create a KSAR for the Grouper KS.

the conflict set; everything else
remaining equal, OPS83 selects the
rule instantiation for firing that yields
the greatest value for the expression
inside the brackets. Thus, if the func-
tion level-no() returns numbers that
increase in value for higher levels on
the blackboard, this rule chooses a
data element on the highest level pos-
sible.

The strategy used by the scheduler
to rank the (KS, action) pairs is con-
trolled by the fields of a special WMEj
these fields determine which (KS,
action) selection rules are allowed to
fire. At this time, this WME is speci-
fied before the processing begins and
remains fixed thereafter. However, our
plan is to institute a set of metarules
that will dynamically alter the fields
of this WME in response to diminish-
ing returns for a given strategy.

Monitor Operation

The monitor is the watchdog for the
blackboard; it is the monitor’s job to
keep track of the data on the black-
board and trigger KSs when specific
conditions are met. After the monitor
triggers a KS by building a pending
KSAR, it can also execute some
immediate code. It is also up to the
blackboard monitor to watch the
blackboard and determine if the status
of any poisoned KSARs should be
reset to pending This resetting of the
status happens if the KS action on the
specified data element has once again
become valid. It is also up to the mon-
itor to determine if any poisoned
KSARs should be deleted; deletion
occurs if there is no chance that the
KSAR could once again become valid.

The blackboard monitor makes
extensive use of OPS83 demons. A
demon in OPS83 is a rule whose first
CE is not a context, goal, or KSAR.
Because of the OILS83 rule selection
strategy, these rules take precedence
over ordinary rules (for example, rules
inside of KSs or scheduler rules) and
fire as soon as they become complete-
ly instantiated. Thus, a demon in
OpS83 can be thought to operate out-
side of any context, KS, or goal search.

For example, a monitor rule used to
trigger the grouper KS is shown in fig-
ure 14. This rule fires when it finds
any data elements without any par-

88 AI MAGAZINE

ents (orphan elements). The rule then
creates a KSAR that directs the
grouper KS to find the element’s par-
ents. This rule works as follows: The
first CE matches any new data ele-
ment if it is not a model element and
has a label; this data element is the
focus element of the rule. The second
CE allows the rule to fire only if its
focus element is an orphan. This CE
uses the function child0 to match any
WME that has the first CE’s id num-
ber in its list of children. The tilde in
front of the CE acts as a negation
symbol; that is, it allows the rule to
fire onlv if no WME matches the CE.
Thus, the tilde in front of the second
CE of this rule keeps the rule from fir-
ing if the focus element has a parent
The last CE keeps the rule from firing
if the grouper KS has already been
triggered on this data element; the
rule is only fired if a pending grouper
KSAR focused on the same element
can not be found. Notice that this rule
simply builds a pending KSAR and that
no immediate code is executed.

-_
-- RULE: poison-group-l
_- II? a KSAR indicates that cn element should be put into a group
-v and that element already has a parent (and thus is in a group)
-. THEN: mark the KSAR as poisoned.
_”
rule poison-group-I (

&ksar (KSAR KS=group; action=initialize; status=activc);
(Element child(&ksar.data-element, Q.children));

-->
modify Grksar (status=poisoned);

I --_______._-.-----__~~~~~~~~~~~~~~~~~~~~~~~~-------~..-...-~-~---~

Figure 15. An Example of a Poisoning Rule

--
-- RULE: group--into-element-driver
Se IFI grouper KS is running and the focal element does not yet
-_ have a parent.
-- THEN: create a parent element and a KSAR to label the parent.
--

Operation of the KSs

Even though the various KSs perform
greatly different tasks, many of the
same actions are performed by all of
them during the task-solving process.
These actions start when the sched-
uler marks a KSAR’s status as active.
After a KS becomes active, its poison-
ing rules are allowed to fire; these
rules make sure that the KS’s precon-
ditions have not become invalid since
the KS was triggered. If a poisoning
rule does fire, it sets the KSAR’s status
to poisoned and returns control to the
scheduler If none of the poisoning
rules fire, a rule that marks the KSAR’s
status to running fires by default.

rule group~into~element~driver (
Rtksar (KSAR KS=group; action=initialize; status-running);
&Cl (Element id=&koar.data-element; levelosegment);

(Element children[l]~&ksar.data~element);
&model (Element child(&el.label, @.children));

-->
-- Make dummy parent element
&max,id = &maxjd f 1;
make (Element type=&el.type; panel=&el.panel; level=&model.level;

id=&tnaxjd; size=&el.size; value=&el.vnluc;
labeI=&model.id; positive=&el.belief
childrent I]=&el.id);

write (1 Iinitializing group with I, &el.level, &el.id, Yn’;

-- Make KSAR to requesting that the parent’s belief be initial&d
make (KSAR KS=labeI; action=initializc;

trigger.~.cycle=¤t_cycle;
id=&ncxtWWKSAR.jd; status=pending;
data_ele~~len~~&max_id; priority=OS);

&next-KSAR.jd = &next-KSARjd + 1;
1; .-______------____-- -_________.-----_______________________

After the KS starts running, the
control flow becomes more KS specif-
ic, but it still follows the same pat-
tern. Usually, the first few rules that
fire after the KS starts running are Figure 16 An Example of a Driver Rule
driver rules These rules don’t con-
tribute directly to the solution of the
KS’s task; instead, they initialize ele-
ments in the working memory that
the KS needs to solve the task. These
driver rules can generate contexts that
are needed by the KS in its problem-
solving activity. They can also put
dummy data elements on the black-

SUMMER 1988 89

_-

-- RULX group~inlo.jacw
__ It? Edges arc being grouped into a face
_- AND: Thcrc is an edge whose label clcmcnl is a child of
_- the parcnl’s labct clc.mcnt
__ AND: That cdgc is not in a group Hal has the wnc label as the parent
_- THEN: compu(e tic cotincarity of that edge and a transformed version of
-- lhc focus ctcmcnt. If this cxcccds a thrcshotd, add the edge
-- LO the face’s child lisl
.-
rutc grollp-jn~o~faccs (

&ksar (KSAR KS=group; acdon=initiatizc; s(atus=running);
& fact (Element chil~~en[l]=&ksar.data_clcmcn~);
&modcl (Etcmen~ id=&facc.label);
&cdgct (Elcmcnt id~9rk~u.data-clcmcnO:
&cdgc2 (Elcmcnt ~ypc<>tnodct; tevcl=cdgc; ido&cdget.id;

child(@.tahet, Rrrr~ociet.cllildr~i~);
(-chitd(@.id, &lacc.childrcn)));

RtXfiYll (Model-xfrm from=&cdget.labct; m=&cdgc2.lahcl);
-- get paramcw nccdwt in rhs computations
&$I (Etcmcm id=&c~gct.chitdrc.nllI);
&et (t3cmen~ id=&cdgcLchitdrcn[2]);
as2 (Etcmem id=&cdgc2.childrcn[I]);
&2 (Elcmcnt id=&cdgc2.chitdrcn[2]);
Btdisl (Constant lypc=group-lhrcshotd);

-->
local &cotlin: scat;
local &st-xfrm, &cl-xfrm: sector;
local &i, &ncx?_child: integer;

call apply-xf’rrn(&st-xfrm, &xfrm.xfrm, &st.rvortd~ccwd);
call ayply.~xfrrn(&ct~x~rtn~, &xfnn.xfrm. &cl.wotld~coord);
Gtcotlin - find..cottincarily(lst-xfrlo, &et-xfrm,

&s2.wor1dVcoord, &c2.world-.coord,
&grouy~stot~);

if (&disr.rcat..,valuc i &cotlin) (
&ncxl-child = 0;
for Rei - (I to &max-children)

if ((Ptncxlchild = 0) l\(RLfacc.chitdrcnI&il = 0))
cutncxt-child = &i:

I;

modit’y &face (childrcn[&nexr-childj = &cdgc2.id;
updatc-bclicf(&face., RLcotlin * &cdgc2bclicf, 0.0));

write () I grouping cdgc I. &cdgc2.id, “VI’;

Figure 17 Rule Used to Group Edges into Faces

board that are “fleshed out” during
the course of the KS’s processing.
After the KS’s driver rules are fired,
the control flow becomes KS specific
In the next subsection, we show an
example of KS processing to demon-
strate the control flow inside a KS.

Grouper KS Operation

To illustrate the flow of control inside
a KS, we examine the operation of the
grouper KS as it initializes a collec-
tion of edges into a face, using the

example from figures 7, 8, and 9
Assume that a KSAR focused on the
element E, of figure 9 has just been
activated with (KS, action] pair set
equal to (grouper, initialize). As we
described previously, when the KS is
first activated, the poisoning rules are
allowed to fire. Figure 15 is an exam-
ple of a poisoning rule used by the
grouper KS This rule is meant to poi-
son a KSAR if it tells the grouper that
a nonorphaned element should be put
into a group.9 The rule works in the

following manner: The first CE
matches the active KSAR if its action
is to initialize a group. The second ele-
ment uses the same child0 function as
the monitor rule discussed previously.
If this CE matches a WME, then the
focus element already has a parent;
the rule then fires, and the KSAR is
marked poisoned. If no poisoning
rules fire, another rule fires by default
and marks the KSAR’s status running
Thus, if we assume that element E, is
an orphan at this point, then the
active KSAR’s status is set to running.

The grouper KS uses driver rules to
initialize internal processing; these
rules fire immediately after the KS
starts running. When the KS is initial-
izing a group, the driver rule builds a
dummy data element, the parent ele-
ment, on the blackboard. This ele-
ment is the parent of the focus ele-
ment of this KS activation. It is the
job of the grouper KS to group the
focus element and its siblings into
this element. Figure 16 shows the
driver rule for group initialization.

The rule in figure 16 works as fol-
lows: The first two CEs match the
running KSAR and the focus element.
The purpose of the third CE is to pre-
vent the rule from firing more than
once during any KS activation by
allowing the rule to fire only if no par-
ent of the seed element is already in
the working memory. It would be able
to find the parent element because a
parent element always has the focus
element of the KS as its first child.
The last CE is designed to find an ele-
ment that could possibly be the model
panel counterpart of the parent ele-
ment by finding the parent of the
focus element’s label element.

The rule performs two actions
when it fires. First, it builds the parent
element. As we mentioned previously,
the KS’s focus element and its siblings
are grouped into this element The
parent element is initialized with
appropriate parameters: panel, data
type, level, id number, size, and so on.
Furthermore, the parent element’s
first child is set as the focus element
to prevent the driver rule from firing
twice and allow the remaining KS
body rules to easily find both the
focus and parent elements. The rule
also builds a KSAR that requests the
parent element be labeled.

90 AI MAGAZINE

Because edge E, is an orphan in our
example, this driver rule will fire.
When the firing happens, a new ele-
ment, say, element Faa, is created and
deposited on the blackboard. This
new element is on the face level of
the data panel with label Fc and ini-
tially has element E, as its only child.
Now it is up to the rest of the KS body
rules to find element E,‘s siblings and
group them into the face F,,

After the driver rule initializes the
parent element, the remaining KS
body rules can fire. Just one KS body
rule needs to fire to group edge ele-
ments into a face element. This rule
is nontrivial and fires at least one
time for every edge that can be
grouped into the face This rule is
shown in figure 17; as one can see, it
is fairly complex.

The first four CEs of the rule in fig-
ure 17 find the active KSAR, the par-
ent element, the model label of the
parent element, and the focus ele-
ment, respectively. The fifth CE finds
a candidate to group into the parent
This CE makes sure that the candi-
date is on the same level and panel as
the focus element and that it has not
been grouped into the parent already.
The rest of the CEs are present just to
get data that is needed in the right
side of the rule. This CE group
includes the sixth CE that matches a
WME which holds a homogeneous
transformation matrix. The transfor-
mation matrix is defined to transform
the focus element’s label element so
that it is compatible with the candi-
date’s label element.

When the rule fires, the collinearity
between the candidate and a trans-
formed version of the focus element is
computed. If this value is greater than
a threshold, the candidate is grouped
into the parent element. This group-
ing is done by finding the next empty
slot of the parent’s child list and
inserting the candidate’s id number.
The new edge also contributes evi-
dence that the parent’s label is cor-
rect. Notice that if the candidate ele-
ment doesn’t meet the criteria to be
grouped, then nothing in the working
memory is changed, and refraction
prevents the rule from firing again
with the same instantiation.

In our example, any edge that has
one of the labels I, J, K, or Q is a can-

loft tap

-- -.-I/
tap left

\
t-ight tap

L- ------
tap riqht

c \

bat right -----_--_--
1 riqht hot.

‘t

Figure 18 (Above) Line Drawing of the Expected Scene with Edges Labeled
Figure 19 (Below). A Sidewalk Image Used for Illustrating PSEIKI Processing.

SUMMER 1988 91

-- -4

/

/zY- _I--
-?I

\ --
I

- I --.-.-4

L-

Figure 20 (Above) Input to PSEIKI from the Preprocessor.
Figure 21 (Below) Output of PSEIKI Displaying Detected
EdgesJheir Labels, and Associated Belief Values.

left 86;:

&----

tap

,

tr3p t-iqht 42’4

bat, right 62%
.___-__

\

\
1

right. bat. 53%

\

didate to be grouped with edge E, into
face Fzo Edges h, h, b, ana El7
meet this criterion. Thus, any edge
that is collinear with the transformed
version of the focus element is
grouped into the parent. If all but E,,
were collinear with the transformed
E,, then the children of F,, would be
the edges E,, Eis, EIG, and E,,.

Experimental Results
PSEIKI was run on a number of
images typical of what would be seen
by a sidewalk-navigating mobile robot
with downward-slanted cameras. For
one such run, figure 18 shows the
edges representing the expected scene
and figure 19 the actual observed
image. Note that there is significant
misregistration between the expected
scene and the observed image; two of
the major edges in the expected scene,
in the lower left, are missing entirely
in the observed image. The reader
should also note the presence of shad-
ow edges in figure 19. The output of
the preprocessor is shown in figure 20.

The final result produced by PSEIKI
consists of labels, with associated
belief values, attached to entities at
the edge and higher levels on the data
panel of the blackboard. For the exam-
ple in figures 18-20, if we select from
the scene level (the highest blackboard
level) the entity with the maximum
belief and then retain from the lower
blackboard levels only those groups
which correspond to this scene entity,
at the edge level we obtain the result
shown in figure 21. This figure shows
the edges and their associated labels in
the scene interpretation that PSEIKI
found most plausible. In line with the
earlier discussion, the percentage val-
ues associated with a label indicate
the belief that PSEIKI has in the cor-
rectness of the label. For example,
PSEIKI has a belief of .53 that the
lower right edge is the right-bottom
edge from the expected scene, imply-
ing that at a belief level of .47, PSEIKI
either believes that the label is not
right-bottom or that PSEIKI is simply
ignorant about the matter of labeling
the edge in question.

Concluding Remarks
If our aim was limited to labeling the
edges in simple-looking images, such

92 AI MAGAZINE

as the one in figure 18, the reader
might accuse us of creating the AI
equivalent of the Monty Python skit
where the characters hunt sparrows
with rocket launchers However, note
that what we have accomplished so
far is only a stepping stone and is
intended to give us the expertise for
incorporating more complex spa-
tiotemporal context in solving image-
understanding problems. Of course,
the following question remains: Does
our solution scale up for more com-
plex images? We believe that by rea-
soning in a hierarchical space, we
have gained substantial leverage over
the computational complexity
involved. Admittedly, we are not yet
in a position to present any formal
expressions for the time complexity
functions associated with PSEIKI, but
then we are not aware of any having
been derived previously for black-
board processing in general.

We hope we have provided the read-
er a sense of how evidence is accumu-
lated in PSEIKI from both the expect-
ed scene information and any internal
geometric consistencies that might
exist in the image data. Notwith-
standing the fact that no single large-
scale implementation of any uncer-
tainty formalism exists where
researchers did not have to take mas-
sive liberties with the underlying
assumptions, our use of Dempster’s
rule is not entirely beyond reproach
because we did not address the
requirement that evidence sources be
independent before being combined.
Loosely said, the independence
requirement states that the evidence
from one source not depend on the
evidences from other sources; howev-
er, it is often difficult to formalize
this notion and develop computation-
ally feasible tests for its validity Yet,
given the importance of the issue, this
area is active with research; the reader
is referred to Dubois and Prade (1985,
1986), Huntsberger and Jayarama-
murthy (1987), Kyburg (1987), Smets
(19861, and Yen (1986) for further dis-
cussions on the subject.

Acknowledgments
We would like to thank Lynn Garn, team
chief of the Image Understanding and Arti-
ficial Intelligence Group and member of
the Army Center for Night Vision and

Electra-Optics, and Tim Williams, also of
the Army Center, for many fruitful discus-
sions that educated us on the limitations of
the existing methodologies for automatic
target recognition. We would also like to
thank Richard Coe for his work on the
design and development of PSEIKI’s debug-
ging software

Appendix
In this appendix, we give a short review of
some relevant terms from the D-S theory
of evidence accumulation. For a detailed
presentation, see Shafer (1976)

In a random experiment, the frame of
discernment (FOD], o, is the set of all pos-
sible outcomes For example, if we roll a
die, B is equal to the set of possibilities
“the number showing is i,” where 1 5 i 5 6;
therefore, o can be set equal to the set
{1 2 3 4 5 61 The 2’0’ subsets of o are called , , I , I
propositions, and the set of all the proposi-
tions is denoted by 20 In the die example,
the proposition “the number showing is
even” is represented by the set {2,4,6]

In the D-S theory, probability masses are
assigned to propositions, meaning to some
of the sets in 28; therein lies a major depar-
ture of this theory from the Bayesian for-
malism, in which probability masses must
be assigned to the individual elements of E)
These probability masses must add up to
one, and the probability mass assigned to o
represents ignorance The interpretation to
be given to the probability mass assigned
to a subset of o is that the mass is free to
move to any element of the subset; this
interpretation agrees with the probability
mass assigned to o representing ignorance
because this mass can move to any ele-
ment of the entire FOD When a source of
evidence assigns probability masses to the
propositions discerned by e, the resulting
function is called a basic probability
assignment (bps) Formally, bps is function
m:2o+ [O,l], where

oo<m(*)<IO, m(lZl=Oand C m(X)=10
xg

A belief function, Bel(X), over o is defined by

Bel(X) = C m(Y)
Y&X

In other words, our belief in a proposition
X is the sum of probability masses assigned
to all the propositions implied by X

Dempster’s rule of combination states
that given two bpa’s, ml[*) and ma(*) corre-
sponding to two independent sources of
evidence, we can combine them to yield a
new bpa mj *) using

where

This formula is commonly called Demp-
ster’s rule or Dempster’s orthogonal sum

References

Andress, K M., and Kak, A C 1987 A Pro-
duction System Environment for Integrat-
ing Knowledge with Vision Data In Pro-
ceedings of the 1987 AAAI Workshop on
Spatial Reasoning and Multi-Sensor Inte-
gration, 1-12. Los Altos, Calif.: Morgan
Kaufmann.
Andress, K M, and Kak, A C 1988 The
PSEIKI Report-Version 2, Technical
Report, TR-EE-88-9, School of Electrical
Engineering, Purdue Univ
Barnard, S T 1983 Interpreting Perspec-
tive Images Artificial Intelligence 21: 435-
462
Barnett, J A 1981. Computational Meth-
ods for a Mathematical Theory of Evi-
dence. In Proceedings of the Seventh Inter-
national Joint Conference on Artificial
Intelligence, 868-875. Los Altos, Calif.:
Morgan Kaufmann
Barrow, H G , and Tenenbaum, J M 1981
Interpreting Line Drawings as Three-
Dimensional Surfaces Artificial Intelli-
gence 17: 75-116
Binford, T 0 ; Levitt, T S.; and Mann, W.
B. 1987 Bayesian Inference in Model-Based
Machine Vision. In Proceedings of the
AAAI Workshop on Uncertainty in Artifi-
cial Intelligence, 86-92 Los Altos, Calif.
Morgan Kaufmann
Brooks, R A. 1981 Symbolic Reasoning
among 3-D Models and 2-D Images Artifi-
cial Intelligence 17: 285348

Brownston, L.; Farrell, R j Kant, E ; and
Martin, N 1985 Programming Expert Sys-
tems in OPSS Reading, Mass : Addison-
Wesley
Davis, L. S., and Hwang, S S V 1985. The
SIGMA Image Understanding System. In
Proceedings of the IEEE Workshop on
Computer Vision, Representation, and
Control, 19-26 Washington D C : IEEE
Computer Society
Dubois, D , and Prade, H 1985 Combina-
tion and Propagation of Uncertainty with
Belief Functions In Proceedings of the
Ninth International Joint Conference on
Artificial Intelligence, 11 l-l 13 Los Altos,
Calif.: Morgan Kaufmann
Dubois, D , and Prade, H. 1986 Set-Theo-
retic Operations on Bodies of Disjunctive
or Conjunctive Evidence In Proceedings of
the 1986 Conference of the North Ameri-

SUMMER 1988 93

can Fuzzy Information Processing Society,
107-124 Columbia, S.C.: Univ of South
Carolina
Erman, L D ; Hayes-Roth, F; Lesser, V. R ;
and Reddy, D R 1980 The Hearsay-II
Speech Understanding System: Integrating
Knowledge to Resolve Uncertainty. Com-
puting Surveys 12: 213-253

Gordon, J., and Shortliffe, E H 1985 A
Method for Managing Evidential Reason-
ing in a Hierarchical Hypothesis Space
Artificial Intelligence 26: 323-357

Hanson, A R, and Riseman, E M 1978
VISIONS: A Computer System for Inter-
preting Scenes In Computer Vision Sys-
tems, eds A R Hanson and E M Rise-
man, 303-333 New York: Academic.

Hayes-Roth, B 1985 A Blackboard Archi-
tecture for Control. Artificial Intelligence
26: 251-321

Huntsberger, T. L , and Jayaramamurthy, S
N. 1987 A Framework for Multi-Sensor
Fusion in the Presence of Uncertainty. In
Proceedings of the 1987 AAAI Workshop
on Spatial Reasoning and Multi-Sensor
Fusion, 345-350 Los Altos, Calif : Morgan
Kaufmann.

Kak, A. C ; Roberts, B A ; Andress, K M ;
and Cromwell, R. L. 1987 Experiments in
the Integration of World Knowledge with
Sensory Information for Mobile Robots In
Proceedings of the IEEE International Con-
ference on Robotics Automation, vol 2,
734-741 Washington D C : IEEE Computer
Society

Kuipers, B 1977 Representing Knowledge
of Large-Scale Space, Technical Report, AI-
TR-418, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology.

Kyburg, H E , Jr 1987 Bayesian and Non-
Bayesian Evidential Updating Artificial
Intelligence 31 : 271-293

Levitt, T S ; Lawton, D T; Chelberg, D
M.j and Nelson, PC 1987 Qualitative
Navigation In Proceedings of the DARPA
Image Understanding Workshop, 447-465
Los Altos, Calif : Morgan Kaufmann

McKeown, D. M., Jr; Harvey, W A., Jr;
and McDermott, J 1985 Rule-Based Inter-
pretation of Aerial Imagery In IEEE Trans-
actions on Pattern Analysis and Machine
Intelligence 7[5): 570-585

Nagao, M., and Matsuyama, T 1980 A
Structural Analysis of Complex Aerial
Photographs New York: Plenum

Nazif, A. M , and Levine, M D. 1984 Low-
Level Segmentation: An Expert System. In
IEEE Transactions on Pattern Analysis
and Machine Intelligence 6(5): 555-577
Nii, H. P 1986a Blackboard Systems, Part
One: The Blackboard Model of Problem
Solving and the Evolution of the Blackboard
Architectures. AI Magazine 713): 38-53.

94 AI MAGAZINE

Nii, H P 1986b. Blackboard Systems, Part
Two: Blackboard Application Systems and
a Knowledge Engineering Perspective AI
Magazine 7(4): 82-106

Pearl, J 1986 Fusion, Propagation, and
Structuring in Bayesian Networks Artifi-
cial Intelligence 29: 241-288

Reynolds, G ; Strahman, D ; Lehrer, N ;
and Kitchen, L 1986 Plausible Reasoning
and the Theory of Evidence, Technical
Report, 86-11, Dept of Computer and
Information Science, Univ of Mas-
sachusetts

Shafer, G. 1976 A Mathematical Theory of
Evidence Princeton, N J.: Princeton Uni-
versity Press

Shafer, G , and Logan, R 1987 Implement-
ing Dempster’s Rule for Hierarchical Evi-
dence Artificial Intelligence 33: 271-298

Smets, P 1986 Combining Non-Distinct
Evidences In Proceedings of the 1986 Con-
ference of the North American Fuzzy Infor-
mation Processing Society, 544-548
Columbia, S C.: Univ of South Carolina

Yen, J. 1986 A Reasoning Model Based on
an Extended Dempster-Shafer Theory In
Proceedings of the Fifth National Confer-
ence on Artificial Intelligence, 125-131
Los Altos, Calif.: Morgan Kaufmann

Notes

1 We say a system is domain dependent
when domain-specific knowledge is
embedded in various components of the
inference engine, such as the rules or the
knowledge sources PSEIKI is domain inde-
pendent in this sense; the context informa-
tion that PSEIKI uses is encoded entirely in
the form of a line drawing of the expected
scene
2 We refer to this mapping throughout the
article
3 Note that these two panels correspond
to the observability and picture graphs in
ACRONYM
4. Note that in the following discussion,
the elements on the model panel have capi-
tal letters as subscripts, and the elements
on the data panel have numeric subscripts.

5 In the appendix, we define some of the
relevant terms of the Dempster-Shafer for-
malism for evidence accumulation

6 The scale factor is provided to limit the
amount of disconfirming evidence generat-
ed by small edges that might be the result
of noise
7 The labels shown in figure 9 are intend-
ed only for the purpose of explanation In
actual practice, even for simple imagery,
the initial label map can be much more
chaotic, depending on the extent to which

an image is degraded by noise and other
artifacts.
8 If not already familiar with terms such
as working memory and production memo-
ry, the reader is referred to Brownston et al
(1985) for an exposition on the architecture
of a production system. The OPS83 used
for PSEIKI is a direct descendant of the
OPS5 system described in Brownston et al
(1985). Much more so than OPS5, OPS83
allows functions and procedures to coexist
with rules and working memory elements

9 This does not imply that a data element
can only participate in a single group An
edge element is, for example, allowed to be
in two or more groups if it is on the com-
mon boundary between them However,
any edge element can serve as a seed for
only one group. Therefore, an edge element
that belongs to two or more groups can
trigger the formation of only one of them;
other edges would have to act as seeds for
the other groups.

n Nonmonotonic
n Reasoning
W workshop
Proceedings of the Workshop

Sponsored by
the American Association for
ArtifxciaI Intelligence
17-19 October 1984
Mohonk Mountain House
New PaItz, New York

The Proceedings of this successful AAAI
Workshop on Nonmonotonic Reasoning are
still available in limited quantities Cover-
ing a variety of topics, papers in the pro-
ceedings emphasize formal approaches to
nonmonotonicity, with circumscription, de-
fault and auto-epistemic reasoning, being
the favorite topics

$20.00 postpaid.

To order, send a check or money order
to:

Publications Department
American Association for
Artificial Intelligence
445 Burgess Drive
Menlo Park, California 94025

For free information, circle no. 49

