
A fundamental goal of computer vision is 
the development of systems capable of 
carrying out scene interpretation while 

taking into account all the available 
knowledge In this article, we focus on 

how the interpretation task can be aided 
by the expected scene information (such 

as map knowledge), which, in most cases, 
would not be in registration with the per- 

ceived scene The proposed approach is 
applicable to the interpretation of scenes 

with three-dimensional structuxes as long 
as it is possible to generate the equivalent 

two-dimensional orthogonal or perspec- 
tive projections of the structures in the 

expected scene The system is implement- 
ed as a two-panel, six-level blackboard 

and uses the Dempster-Shafer formalism 
to accomplish inexact reasoning in a 
hierarchical space Inexact reasoning 

involves exploiting, at different levels of 
abstraction, any internal geometric con- 

sistencies in the data and between the 
data and the expected scene As they are 

discovered, these consistencies are used to 
update the system’s belief in associating a 
data element with a particular entity from 

the expected scene 

Evidence Accumulation & 
Flow of Control in a Hierarchi- 
cal Spatial Reasoning System 
K. M. Andress and A. C. Kak 

A fundamental goal of computer 
vision is the development of 

systems that are capable of carrying 
out scene interpretations with the aid 
of all available knowledge. To elabo- 
rate, suppose a helicopter-based com- 
puter vision system is looking at a 
snow-covered terrain; this terrain 
knowledge must then be explicitly 
taken into account in a target recogni- 
tion procedure. Clearly, the processing 
required for a snow-covered back- 
ground is different from that for, say, a 
wooded area in spring. 

As a simpler example of knowledge- 
based processing, consider the prob- 
lem of self-location for a vehicle- 
mounted vision system (Kak et al. 
1987). Let’s say the vehicle’s where- 
abouts are approximately known from 
the position encoders mounted on the 
wheels, the precision of this informa- 
tion limited by the extent of slippage 
in the wheels, and so on. Given this 
approximate information, is it possi- 
ble to make a more precise fix on the 
location of the vehicle by integrating 
the vision data with the map knowl- 
edge while the two are out of registra- 
tion? This problem of robot self-loca- 
tion was the original goal of the Pro- 
duction System Environment for Inte- 
grating Knowledge with Images (PSEI- 
KI), a system currently under develop- 
ment in the Robot Vision Lab at Pur- 
due University. We felt this simple 
exercise in knowledge-based process- 
ing would give us the expertise to set 
up more complex reasoning structures 
for incorporating other kinds of 
knowledge sources in an image inter- 
pretation task. (To digress briefly, the 
reader interested in robot self-location 
might want to know that in contrast 
with the quantitative approach typi- 
fied by PSEIKI, it is also possible to 
design qualitative reasoning systems 

for navigation and self-location using 
visual landmarks to represent envi- 
ronmental location [Kuipers 1977; 
Levitt et al. 19871.) 

As it now stands, PSEIKI, a produc- 
tion system in OPS83, requires that 
the world knowledge be presented to 
it as a line drawing of the expected 
scene. For applications such as auto- 
matic target recognition, the line 
drawing can include environmental 
effects, such as the attenuation of 
infrared energy through the atmo- 
sphere. The PSEIKI system is imple- 
mented as a two-panel, six-level 
blackboard and uses the Dempster- 
Shafer (D-S) formalism to accomplish 
inexact reasoning in a hierarchical 
space. Our use of the D-S theory 
should not be construed to imply the 
inappropriateness of the other avail- 
able formalisms. Using the Bayes-net 
methodology developed by Pearl 
(1986), one could also employ a 
Bayesian formalism, as Binford, 
Levitt, and Mann (1987) do in the 
SUCCESSOR system for model-based 
machine vision 

Although PSEIKI was originally 
developed for carrying out knowledge- 
based experiments in robot self-loca- 
tion, the current implementation is 
general enough to be used in any 
application where a good estimate of 
the expected scene is available to the 
vision system. The system can be 
used as a general vision verification 
module either in a robotics context or 
for automatic target recognition. PSEI- 
KI contains two features that keep it 
domain independent.1 First, the 
knowledge used by PSEIKI consists of 
a line drawing of the expected scene 
(which in most applications would 
not be in registration with the 
observed image). For example, for 
robot navigation applications, line 
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Figure 1. Typical Images Used by 
PSEIKI 

(a) An example of a line drawing of an 
expected scene with edges labeled; 

(b) A simple example of the output of an 
edge-based preprocessor that PSEIKI 

could use as input data 
(c) The final output of PSEIKI, with 

labeled edges and associated belief values. 

drawings can easily be generated from 
road maps. For verification vision, a 
line drawing of the object whose iden- 
tity, location, and orientation need to 
be verified can be generated from a 
three-dimensional model of the object. 
In industrial two-dimensional vision 
applications, computer graphics or 
computer-aided design systems can be 
used directly to generate the line 
drawings. The other feature that pro- 
vides the system domain indepen- 
dence concerns how the system pre- 
sents its results. The output of PSEIKI 
consists of a mapping from elements 
detected in the input image to ele- 
ments in the expected scene.2 

The mapping generated by PSEIKI is 
expressed by labeling the detected 
edges with the names of the corre- 
sponding lines in the expected scene; a 
belief value is also attached to each 
label, indicating the confidence of the 
mapping found. Furthermore, a belief 
value is estimated for the entire map- 
ping process. If this overall belief 
value does not exceed a threshold, the 
entire mapping is rejected. TO illus- 
trate what PSEIKI does, refer to figure 
I. If figure Ia is a line drawing of an 
expected scene and figure lb a depic- 
tion of the edges that might be found 
in the vision data collected for the 
scene, then PSEIKI produces an output 
similar to that in figure lc, where 
labels attached to some of the edges 
found in figure lb and the correspond- 
ing belief values are shown For exam- 
ple, the label right:35% means that 
PSEIKI has found the expected scene 
edge labeled right in figure la to be 
compatible with the lower right edge 
in figure lb with a belief of 35 percent. 
In this case, the rest of the belief, 65 
percent, would be apportioned to 
either this particular label being incor- 
rect or the system professing igno- 
rance on the subject of assigning the 
label right to this edge in the vision 
data. The reader might note that the 
edge labeled top:38% actually corre- 
sponds to two edge segments in figure 
lb. This merger of nearly compatible 
edges in the vision data is one conse- 
quence of the various tests PSEIKI 
makes for internal geometric consis- 
tencies in the vision data. Because 
PSEIKI only generates a mapping from 
the edges in the input image to the 
expected scene, it is left to a higher- 

level system to make global interpre- 
tations based on the mapping found 

PSEIKI is also a test bed for carrying 
out experiments in how inexact rea- 
soning can be achieved on hierarchical 
representations of scenes. Gordon and 
Shortliffe (1985) discuss the problem 
of diagnostic reasoning in medicine 
and present a technique that allows 
the D-S formalism (Shafer 1976) to be 
used in a system which groups 
hypotheses into strict hierarchies. 
Shafer and Logan (1987) also discuss 
the problem of combining hierarchical 
evidence; they look at the problem in 
a more formal manner and are able to 
do without some of the approxima- 
tions used in Gordon and Shortliffe 
(1985) We can not use the methods 
presented in Gordon and Shortliffe 
(1985) and Shafer and Logan (1987) 
directly because PSEIKI does not 
employ strict hierarchies (an edge can 
be a member of two faces if it is a part 
of the border between them). In the 
current implementation of PSEIKI, the 
blackboard architecture is exploited to 
permit exact and inexact reasoning in 
a tangled hierarchy The D-S formal- 
ism is used for pooling uncertain evi- 
dence in the hierarchy. 

PSEIKI is able to handle significant 
perspective effects Many previous 
systems, again most notably aerial 
interpretation systems, were able to 
assume that the images were obtained 
by an orthographic imaging system. 
Although perspective distortions 
make image interpretation difficult 
because metric properties, such as 
length and orientation, depend on the 
object’s position in the image, they 
also provide clues to the structure of 
objects in the image. 

A brief report on PSEIKI was pre- 
sented in Andress and Kak (1987). 
This article is more of a tutorial and 
discusses in greater detail the evi- 
dence accumulation mechanisms and 
the control structures in PSEIKI. 

Related Image- 
Understanding Systems 

ACRONYM by Brooks (1981) is a 
model-based image-understanding sys- 
tem. The system’s task cons’ists of 
finding instances of known objects in 
the image. To perform object identifi- 
cation, the system first builds a pic- 
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ture graph of the image and an observ- 
ability graph that specifies informa- 
tion about objects which could be in 
the image. The system identifies 
instances of objects in the image by 
matching nodes of the observability 
graph with sets of nodes in the picture 
graph. The objects in the observability 
graph are represented in slot, filler 
structures where any slot that can 
accept numeric values can also accept 
algebraic constraints expressed as 
inequalities. The system can then 
manipulate these constraints and 
determine if properties of objects 
detected in the image meet these con- 
straints. The objects used to generate 
the observability graph are represent- 
ed as generalized cones. Inexact rea- 
soning is not used, and the system 
utilizes backward chaining to arrive 
at an interpretation. 

Davis and Hwang (1985) describe 
the SIGMA image-understanding sys- 
tem for aerial image interpretation. 
The system uses both forward and 
backward chaining to arrive at an 
interpretation and represents its 
object classes hierarchically using 
frames Furthermore, the system is 
able to integrate hypotheses about 
specific objects in the scene. The sys- 
tem does not use uncertain reasoning 
but instead is able to control its focus 
of attention based on the strength of a 
situation. 

Another aerial interpretation sys- 
tem is described by Nagao and Mat- 
suyama (1980); the system is based on 
the blackboard architecture and uses 
multispectral images in the interpre- 
tation process. To accomplish the 
interpretation task, the system first 
performs a global survey of the entire 
image and labels regions without 
using any domain-specific knowledge. 
The characteristic regions that it 
finds, such as water, vegetation, and 
roads, are then used to generate con- 
text information for further process- 
ing. This processing consists of a 
detailed analysis of local areas in the 
scene using context information pro- 
vided by the characteristic regions and 
applying context-specific object-detec- 
tion subsystems. 

SPAM, a system designed by McKe- 
own, Harvey, and McDermott (1985), 
is also an aerial image interpretation 
system. The system was originally 

Model 
Panel 

Input Image 

Lpyqh 
Convertor 

Data 
Panel 

Figure 2 PSEIKI’s Architecture 

constructed to interpret airport scenes 
but has been expanded with a rule 
generator; so, it can now interpret 
scenes from other domains. SPAM 
uses confidence values to aid labeling 
and can manipulate these values based 
on the consistency of the various 
labelings. 

VISIONS, first reported on by Han- 
son and Riseman (1978), is a black- 
board expert system designed to ana- 
lyze color images. The system uses a 
flexible control scheme, hierarchical 
scene representation, and a number of 
knowledge sources to accomplish the 
scene interpretation. VISIONS is 
domain independent but uses schemas 
to tune the system for a particular 
application. 

The image segmentation expert sys- 
tem developed by Nazif and Levine 
(1984) contains two global memories. 
The global long-term memory con- 
tains rules that are applied to the data 
stored in its short-term memory. The 
system is rule based and uses modules 
to update lines, regions, and areas in 
the image. The expert system also 
contains a set of metarules and can 
control its focus of attention. 

Barnard (1983) describes a system 
that deals with perspective images. 
The system is able to use the Gaus- 

sian sphere to determine the vanish- 
ing points of the scene being analyzed. 
The back projection of angles and cur- 
vatures is also used to aid the interpre- 
tation task. 

Barrow and Tenenbaum (1981) dis- 
cuss the problem of interpreting line 
drawings. They are able to use junc- 
tion libraries and knowledge of differ- 
ential geometry to discriminate 
between different kinds of boundaries. 
This knowledge is then used to deter- 
mine how the surfaces should be con- 
strained. 

PSEIKI differs from these systems in 
three main areas. First, PSEIKI’s task 
differs from those of previous systems. 
Most of the other systems were 
designed to find object instances in 
the image and, through such discover- 
ies, to arrive at a global interpretation 
of the image. PSEIKI’s task is limited 
to integrating expected scene informa- 
tion with the observed image, the 
result being a set of consistent labels, 
with associated belief values, for the 
edge elements in the image. 

PSEIKI differs from SPAM and 
SIGMA and, to a certain extent, 
VISIONS in that it does not rely on 
domain-dependent information. For 
example, SPAM uses airport design 
knowledge when interpreting airport 
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Figure 3 Example of Information in Different Levels of the 
Model Panel for a Simple Object 

scenes. Context cues have also been 
used extensively in past computer 
vision systems. For example, if 
SIGMA detects a driveway in an 
image, it searches for a house and for 
roads connected to the driveway. 
Because PSEIKI is provided with a 
good estimate of the expected scene, 
it does not have to perform inferences 
of this type. Although it might be said 
that context cues are indispensable for 
scene interpretation because they 
make deductions more powerful, their 
use necessarily introduces some 
domain dependence. Therefore, it is 
our philosophy to separate the genera- 
tion of the mapping from the forma- 
tion of an overall scene interpretation. 
If context cues are desired by a system 
using PSEIKI, then it is up to the high- 
er-level system to provide PSEIKI 
with a line drawing incorporating the 
information contained in the cues. 

PSEIKI also differs from previous 
systems in its method of performing 
inexact reasoning. Many systems, 

including ACRONYM, SIGMA, and 
the system by Nazif and Levine, use 
no uncertain reasoning in the image 
interpretation process. Because of the 
overwhelming amount of data in an 
image, most of the inexact reasoning 
schemes used in the past have been 
fairly simple to avoid becoming 
bogged down in certainty value com- 
putations. However, inexact reasoning 
in PSEIKI is based on the D-S formal- 
ism in a tangled hierarchical space. 
The use of a hierarchy curtails the 
number of uncertainty calculations 
and is made possible by the black- 
board architecture. 

Overview of PSEIKI 
PSEIKI’s architecture is shown in fig- 
ure 2. The system has been imple- 
mented in OPS83 as a two-panel, six- 
level blackboard. One panel is 
reserved for the expected scene; we 
frequently refer to it as the model 
panel. The other panel initially con- 

tains data derived from the image and 
eventually the abstraction hierarchies 
derived from these data; this panel is 
the data panel.3 

The input to PSEIKI is provided by 
an image preprocessor, also shown in 
figure 2. The preprocessor converts 
the pixel data in the input image to a 
symbolic form that is deposited on the 
first two levels of the blackboard data 
panel. In our current implementation, 
we use an edge-based preprocessor, the 
output of which is a collection of 
piecewise linear segments detected in 
the image. Currently, the information 
that is deposited on the model panel 
does not change during the processing 
of a given image frame. However, our 
hope is that at some future time this 
model information will be made 
dynamic, allowing the system to auto- 
matically invoke a different expected 
scene if the current scene cannot be 
matched with the data at a sufficient- 
ly high degree of overall belief. 

Each blackboard panel contains the 
following levels to represent the 
images: scenes, objects, faces, edges, 
segments, and vertices. Each element 
in a level is defined by a finite collec- 
tion of elements on lower levels. For 
example, a scene is made of a union of 
objects, and a face is defined by the 
group of edges that form its borders. 
Figure 3 shows the data on the model 
panel for a trivial expected scene, a 
simple block. It shows each element’s 
label and the subelements from which 
it is composed (note that the segment 
level does not exist for the model 
panel). 

On level 6 are stored the scenes. 
The entire scene (expected or 
observed) is represented on this level. 
The scene is defined as the union of 
all objects in level 5 of the hierarchy. 
It provides a way of labeling multiple 
objects that otherwise would not be 
possible. On level 5 are the objects. 
Each element on this level corre- 
sponds to a distinct physical object. 
The objects are defined as the union of 
all boundary faces from level 4. Level 
4 contains the faces. The elements on 
this level represent the polygonal 
faces that form a boundary representa- 
tion of the observable portion of the 
objects. A face is defined by the edges 
from level 3 that form its border. 

On level 3 are the edges. These ele- 
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ments form the boundaries of the 
faces in level 4 of the hierarchy. This 
level is included to provide a way to 
compensate for segmentation defi- 
ciencies. Highly collinear segments 
from level 2 are grouped to produce an 
edge in this level. Level 2 stores the 
segments. The piecewise linear seg- 
ments produced by the image prepro- 
cessor are represented on this level. 
Note that this level is not necessary 
on the model panel and is not provid- 
ed. Finally, on level 1 are the vertices. 
The vertices are the end points of the 
segments and edges from the next two 
higher levels. On the data panel, the 
vertices are provided by the low-level 
vision system, the preprocessor 

PSEIKI has three main knowledge 
sources (KSs) that it uses to establish 
a mapping from the observed to the 
expected scene: Data-Reduction, 
Labeler, and Grouper (see figure 2). 
The data-reduction KS cleans up the 
segments deposited by the image pre- 
processor on the lowest level of the 
blackboard data panel. The grouper 
KS determines which data elements 
in the lower levels of the hierarchy 
should be grouped to form a data ele- 
ment on a higher level The third 
activity, the labeling of data elements, 
is done by the labeler KS. 

In the next section, we focus on the 
evidence accumulation mechanisms 
in the labeler and the grouper KSs. 
This information is followed by a 
brief discussion of some of the data 
structures used; we believe the reader 
needs to appreciate the structure of 
the knowledge source activation 
record (KSARJ to understand the flow 
of control achieved by the scheduler 
and the monitor, both discussed in 
Scheduler and Monitor for Blackboard 
Control. 

We do not discuss the image prepro- 
cessor that converts pixels into binary 
edges, represented as piecewise linear 
segments; for preprocessing steps, see 
Andress and Kak (1988). We also do 
not discuss the methods used to gen- 
erate of the expected scene that 
resides on the model panel. The key 
to handling perspective effects in 
PSEIKI lies in generating the perspec- 
tive projections of world scenes; 
methods used for this process are also 
discussed in Andress and Kak (1988). 

Evidence Accumulation 
Mechanisms in KSs 

As mentioned previously, there are 
three knowledge sources in PSEIKI: 
Data-Reduction, Grouper, and Labeler 
The data-reduction KS is not dis- 
cussed here in any detail except to 
mention that its purpose is to carry 
out chores, such as the elimination of 
small dangling edges and small edges 
generated mostly by noise. In short, 
the data-reduction KS helps us reduce 
the complexity of the problem by 
retaining only those edges which are 
either strong or long. 

We now detail the other KSs, which 
accumulate evidences for various pos- 
sible labels for the elements on the 
data side of the blackboard. We show 
how the labeler KS updates the belief 
value of a particular label for a data 
element if it finds the data element to 
be geometrically compatible with the 
neighboring data elements. Of course, 
before such belief revision can take 
place, the labeler KS must also com- 
pute its initial belief in associating a 
particular label with a data element. 
Techniques for transforming feature 
measurements in vision data into 
belief values are still in their infancy; 
the reader is referred to Reynolds et al. 
(1986) for some earlier work on this 
subject. 

Labeler KS 

This KS performs element labeling 
and confidence estimation for differ- 
ent possible hypotheses using the D-S 
formalism. The combinatorial explo- 
sion of uncertainty calculations usual- 
ly associated with the D-S scheme is 
avoided with the use of a hierarchical 
reasoning space 

The hierarchical structure of the 
blackboard data provides a natural 
basis for a hierarchical reasoning 
space. The levels of this space corre- 
spond naturally with the levels of the 
data elements on the blackboard. For 
example, assume that in figure 3 FA on 
the model panel is composed of edges 
{EA, E,, E,, ED).4 Also, assume that 
edge E, on the data panel is part of the 
group which constitutes face F,. If F, 
is labeled F,, then Ei can be labeled 
only as one of {EA,..., En}. If the data 
were not arranged hierarchically, it 
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would be necessary to consider every 
element on the model panel when 
assigning labels and performing con- 
sistency checks. To curtail the num- 
ber of uncertainty calculations, con- 
sistency checks are not made directly 
between two elements at the same 
level of the hierarchy if they do not 
have a common parent. In the previ- 
ous example, edge E, would only be 
checked for consistency with edges 
that are children of face F, Consisten- 
cy checks between two nonsiblings 
can be made indirectly by propagating 
an element’s confidence value up 
through the hierarchy until a com- 
mon ancestor is reached and then 
back down to the second element. 

The frame of discernment (FOD) for 
any element is defined by the labels 
that can be given to the element.5 In 
our example, because F, is under con- 
sideration as a label for the face F, the 
FOD for edge E, is 

@= PA, Es, EC, Ed 
A data element’s label is defined as 

the element from its FOD that has the 
greatest belief value attached to it. If 
the belief value of an element on an 
upper level of the hierarchy is 
changed, then all of its descendants 
must change their FOD. Thus, it is 
advantageous to first perform compat- 
ibility checks between elements on 
upper levels of the hierarchy to avoid 
performing unnecessary calculations 
on lower levels when FODs are 
changed. This necessity for checking 
global consistency before local consis- 
tency seems reasonable and is a part 
of the control strategy discussed in 
Scheduler and Monitor for Blackboard 
Control. 

Two metrics are required when 
updating the label belief values at any 
level of the hierarchy, one for measur- 
ing compatibility and the other for 
measuring incompatibility between 
two given elements on the data panel. 
When initially assigning belief values 
to data elements, these two metrics 
must also measure compatibility 
between a data element and a model 
element. To facilitate the correspon- 
dence between them and certainty 
values, both metrics should range 
between 0.0 and 1.0. Obviously, the 
metrics need not be the same for all 
levels of the hierarchy. 

To show what these metrics look 
like, consider the following: At the 
segment and edge levels of the black- 
board when two data segments (or 
edges], E, and E,, are thought of as 
belonging to the same model element, 
the compatibility between the two is 
measured by the following collineari- 
ty measure: 

collinearity (E,, E,) = (D,, - D,,,) / D,, 
x cos(ty 

where e is the acute angle between the 
two edges, and Dperp is the distance 
from the middle of E, to the line 
defining E, (see figure 4). D,,,, the 
maximum allowable value for Dperp, is 
a user-specified heuristic parameter or 
function. In our current implementa- 
tion, D,,, is set equal to the length of 
E,; the justification is that for two 
data elements to belong together in 
some sense, the maximum allowable 
distance between them should not be 
measured in an absolute manner but 
relative to the sizes of the data ele- 
ments 

Likewise, the incompatibility be- 
tween the same two edges, E, and.E,, 
can be measured by calculating the 
noncollinearity (E,, E& 

noncollinearity (E,, E2) = D,,, / D,,, 
x scale(E,) x sin(e) 

where scale( E,) depends on the length 
of E, 6 

Because the (in)compatibility mea- 
sures are defined heuristically, it is 
usually advantageous to limit the 
amount of evidence that they can pro- 
vide. This limit can be achieved by 
scaling the measures by a level-specif- 
ic scale factor SF, 0 5 SF 5 1. Thus, the 
(in)compatibility measures for the seg- 
ment and the edge levels can be 
defined as 

compatibility [E,, Ei) = collinearity (E,, E,) 
X SFedge ill 

and 
incompatibility (E,, E,)= 

noncoEiiWaiity (Ei, E,) x Sledge (2) 
Note that in computing both these 

measures, the elements Ei and Ej on 
the data panel must correspond to the 
same element on the model panel, 
unless, of course, the system is com- 
puting the initial belief values by 
comparing the data and the model 
information; in this case, the argu- 
ment Ei can refer to a model element 
and Ej to a data element The compu- 

tation of initial belief values is dis- 
cussed in greater detail in the follow- 
ing subsection. 

The compatibility and incompatibili- 
ty metrics must, of necessity, be differ- 
ent at the various levels of the black- 
board. At the face level, for example, a 
metric that is used to compute the 
incompatibility between two faces on 
the data panel measures the overlap 
between them normalized by the aver- 
age area of the two faces. To understand 
how this metric is used, consider the 
following example. Suppose for two 
faces F1 and F, on the data panel, the 
normalized overlap, as measured by the 
function overlap ($ FJ, returns 10 per- 
cent. If the maximum-belief model 
labels for F, and F, are F, and F,, respec- 
tively, and if it is known that there is no 
overlap between F, and F,, then the 
incompatibility between F, and F, can 
be measured by incompatibility (F,, F2) 
= overlap(F,, F,) = 0.1 

Going back to the segment and edge 
levels of the blackboard, if two seg- 
ments (or edges) on the data panel cor- 
respond to different model elements, a 
rigid motion transform is applied to 
one of them before the computation 
of the (in)compatibility metrics, 
which has the effect of enforcing rela- 
tional constraints between the two 
data elements. For example, if edges 
E, and Es are thought to correspond to 
model edges E, and E, respectively, 
then the measure of compatibility 
between E, and Es is defined as 

compatibility(E,, E3) = 

collinearityi E,, TE,+E, ( E3) J, 

where TE~+E* is the rigid motion 
transformation that makes model 
edge E, collinear with model edge E, 
in the following sense: First, for a 
given pair of nonparallel edges, we 
distinguish between the vertices on 
the convergent and the divergent 
sides; by convergent side, we mean 
the side on which the edges would 
meet if extended. For the transforma- 
tion TE~+E*, the edge E, is rotated 
about its convergent vertex through 
an angle which makes the edges paral- 
lel; subsequently, E, is translated SO 
that the two convergent vertices are 
coincident. For further details on this 
transformation, see Andress and Kak 
(1988). Performing this transforma- 
tion forces model elements to be com- 
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patible; in other words, 
coIIinearity(E,, TE~+E* (E,) j = 1 .O 

Computing Initial Belief Values for 
Elements in a Group. To fully de- 
scribe how we compute the initial 
belief values for, say, the edge ele- 
ments at the edge level on the data 
panel in figure 2, consider the follow- 
ing example. Let’s say that at this 
level, the information in the model 
panel and the data panel is as shown 
in figure 5. 

The grouper KS hypothesizes that 
the edges (E,, . . ., E,] be grouped togeth- 
er; let this grouping be designated by 
the face F,. In order to label the edges 
in the data, the labeler KS constructs 
the following FOD for each edge in 
the group: e = (EA, E,, E,, En}. 

Let’s now focus on the labeling pro- 
cess for edge E,. The labeler KS com- 
putes a basic probability assignment 
(bpa) (see appendix) over o by applying 
a collinearitylike measure to the pairs 
h, 61, 1% &I, k, El), and (ED, El). 
The collinearity measure used here 
differs from the collinearity metric of 
the preceding subsection in that it 
also constrains the maximum permis- 
sible misregistration between a data 
edge and a model edge. The following 
formula shows the form of the mea- 
sure when applied to the data edge E, 
and the model edge E, 

ES-compatibility(E,, E,) = 
D,-D,, D,-“, X x cos 0 

unmx urnax 
with the same geometric visualization 
as in figure 4, Dperp is the distance 
from the middle of E, to E,, Dpar the 
misregistration along the direction E,, 
D max the maximum allowable value 
for both misregistrations, and e the 
acute angle between the segments. 
The prefix ES in the name of the mea- 
sure stands for expected scene. 

For the computation of initial belief 
values, D,, is set differently from the 
manner described earlier; its value is 
set by the user and reflects the maxi- 
mum expected mis-registration 
between the data and the expected 
scene. Note that although E, and E, 
exist in different frames, it is possible 
to speak of distances and angles 
between them because for the purpos- 
es of blackboard processing, they are 
both projected into the same world 
coordinate system. For a mobile robot 

navigating on a flat ground plane, all 
the edges are transformed onto the 
ground plane. 

Let’s assume, for the sake of discus- 

mE,( 0) = 0 0 for all other subsets of o 

sion, the compatibility calculation 
produces the following results for E,: 

Note that we have now assigned 
0.15 belief to o; 0.15 is what remains 

ES-compatibility(E,, E,) = 0 7 
ES-compatibility(E,, E,) = 0 1 

after we subtract the sum of ES-corn- 

ES-compatibility(E,, El) = 0 4 

patibility measures from 1. Assigning 

ES-compatibility(E,, E,) = 0 05 

Note that although E, is approxi- 
mately parallel to both E, and Ec, the 
ES-compatibility calculation yields a 
larger result for E, because of the dis- 
tance dependence of the calculation If 
the sum of the ES-compatibility mea- 
sures exceeds unity, as is the case in 
our example, the measures are nor- 
malized by the summed value. There- 
fore, in our example, 

ES-compatibility(E, E,) = 0 56 
ES-compatibility(E,, E,) = 0 08 
ES-compatibility(E,, E,) = 0.32 
ES-compatibility(E,, E,) = 0.04 

These ES-compatibility measures 
define a bpa over o for our example, as 
given by 

mE1((EAJJ = 0 56 
mEI([EB]) = 0 08 
mEi((Ec)) = 0.32 
mEl[ (En]) = 0 04 
mE,( ) = 0 0 for all other subsets of 0 

A slightly different approach is taken 
when the sum of ES-compatibility mea- 
sures is less than 1. Assume for a 
moment that because of the distance 
cutoff, D,, the ES-compatibility mea- 
sure of (E,, E,) is zero; that is, 

ES-compatibility(E,, E,) = 0 7 
ES-compatibility(E,, E,) = 0 1 
ES-compatibility(E,, E,) = 0.0 
ES-compatibility(E,, E,) = 0 05 

Because the measures now sum to 
less than unity, there is no reason to 
normalize Instead, we now convert 
them directly into bpa’s in the follow- 
ing manner: 

I’IIE1((EA]) = 0.7 
mdI%J) = 0 1 
mEI([Ec]) = 0.0 
mE,((E,)) = 0 05 
mE,(o) = 0.15 

a part of our belief to 0 seems intu- 
itively plausible for the simple reason 
that ES-compatibility is a good mea- 
sure of “El is a part of E, .” Clearly, if 
E, does not match with E,, Es, E,, or 
E, to a sufficiently high degree, then 
we can leave some belief uncommit- 
ted In this assignment, mEI = 0.15 
represents the uncommitted portion 
of our belief. 

Let’s say that the procedure just 
described yields the following bpa’s 
for all the data edges. 

mEl(ht) = 0 7 m%&t) = 0 8 
mE,@,tl = 0 1 m%@d = 0 1 
mEdE,lj = 0 0 m%(&t~ = 0 0 
mq((E,]) = 0 05 mEZ( [ED]) = 0 00 
mEI = 0 15 rnE,(@) = 0.1 

. . 

(3) 

m%iht) = 0 2 
mE9(Ml = 0 1 
mE9([E,)) = 0.1 
mE9([ED]) = 0.60 
mE&) = 0 0 

These bpa’s then constitute the ini- 
tial bpa’s for the data edges. 

Revising Belief by Enforcing Mutual 
Consistency Constraints. From the 
set of initial bpa’s, the labeler KS then 
seeks those observed edges which have 
maximum bpa for the same model edge. 
To illustrate, in the example here, El 
and E, exhibit maximal beliefs for the 
same model edge, E, . 

The edge labeler now applies a local 
consistency enforcer to the belief val- 
ues. Let’s say that because E, and E, 
have maximal similarities with E, , 
we wish to use E, to revise our beliefs 
regarding E,. To do so, the labeler 
measures the collinearity of E, and E, 
and then the noncollinearity of the 
same two edges. Let’s say that by 
using equations 1 and 2 we get 

compatibility/E,,E,) = 0.8, and 
incompatibility(E,,E,) = 0.1. 
We now construct an “updating” 

bpa for E,, as follows: 

mudatez.l (I-Ed) = mE j1E d X incompatibility (E 2 E 1J 

= 0.08 

mu+tc2.1 (0) = 02 

mupdatez.l i1E.d = m,AiE.d X compatibility (Es E ,j 

= 0.64 
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where, again, the bpa for the FOD was 
set to the uncommitted portion of 
belief. The 1 symbol as used in this con- 
text, denotes set negation, that is, TE, 
To find the new bpa over o for E,, we 
use Dempster’s rule, (see appendix), to 
combine mE1 with mupdate: 2+1 to obtain 
a new mEl, given by 

mE,([E,}) = 0 87 
I-IlE,((E,}) = 0 04 

m~~~~Ecll = 0 0 
mE1[{E,,]) = 0 02 
mE,( [-EA)) = 0.02 
mEi = 0 05 (4) 

Revising Belief Values by Enforcing 
Relational Constraints. The labeler 
KS also contains procedures for 
enforcing relational constraints with- 
in each grouping which is done in the 
following manner. Consider the bpa’s 
over Q for the edges E, and E,, as illus- 
trated in figure 5 Although the bpa 
for E, takes its maximum value for 
the label E, , the bpa for E, is a maxi- 
mum at En. Let’s say we wish to com- 
pute, using relational constraints, the 
ha mupdate: 9-111 which is the addition- 
al belief generated by Eg for E,‘s label. 
To find mup&te: 9+1, we note that the 
geometric relationship between E, 
and E, is already known because their 
positions in the world coordinate sys- 
tem are known Let TEA+E~ be the 
transform that makes the model edges 
E, and En coincident To get a mea- 
sure of the extent to which the geo- 
metric relationship between E, and E, 
is the same as the one that exists 
between E, and Eo, the labeler carries 
out the following (in)compatibility 
computations: 

compatibility(E,, E,) 
= collinearity(E9, TE~+E~(E~)) 

and 
incompatibility(E,, E,) 
= noncollinearity(E9, TEA+E~(E~)) 

Clearly, if compatibility (E,, E,) = 
1 0 (when such happens, we also have 
incompatibility (E,, E,) = O.O), the geo- 
metric relationship between E, and E, 
in the data is exactly the same as 
between E, and E, in the model To 
explain how the relational informa- 
tion is used to update the bpa distri- 
bution for, say, E,, we go back to our 
figure 5 example Let’s say that the 
compatibility calculations yielded the 
following results: 

compatibility(E,, E,) = 0.7 
and 
incompatibility(E,, E,) = 0 4 

Becausethesemeasuressumtomorethan 
I, they are normalized by their sum to 
yield the final (in)compatibility measures: 

compatibility(E,, E,) = 0 64 
and 
incompatibility(E,, E,) = 0.36 

We now construct another bpa for 
E,, as follows 

= mEg( [Ed) x compatibility(E, E 3 

= 0.6 x 0.64 
= 0.38 

m.pdate: 941 ((‘Ed) 
= m E 9 j {Ed ) x incompatibility(E 9 E 1) 

= 0.6 x 0.36 
= 0 22 

where the value of mE,((E,])was 
obtained from the table of values in 
equation 3. By using Dempster’s rule 
to combine this update bpa with that 
in equation 4, we obtain a further 
revision of the belief values over the 
FOD for E,. 

Combining Belief Revisions from 
Relational Constraints and Mutual 
Collinearity Constraints. Actually, a 
single procedure is used for enforcing 
both the mutual and the relational 
constraints within a group. Note that 
the (in)compatibility calculations for 
relational constraints in the previous 
subsection reduce to the computa- 
tions required for (in)compatibility 
calculations for mutual consistency in 
the subsection Revising Belief by 
Enforcing Mutual Consistency Con- 
straints if we use an identity transfor- 
mation for TEPEE. 

Therefore, we can use the following 
integrated algorithm for enforcing the 
relational constraints and the local 
collinearity constraints. Suppose n 
edges-E,, Ez, . . . . E,-have been 
grouped together in the data panel and 
are hypothesized to belong to a single 
face. Also, suppose that the edges in 
one of the possible corresponding 
faces in the model panel are E,, E,, . , 
E,. Clearly, the FOD, e, for each data 
edge is 

e = (EA, . ., E,} 
Let’s further say that as described in 

Computing Initial Belief Values for 

Elements in a Group, measuring local 
collinearities of the data edges against 
those of the model edges yields the 
following initial bpa distribution for 
each data edge: 

with the assumption that initially 

m,+) = 1 - 2 
CX=A 

m,>((E,J) 

and mEi = 0.0 for all other nonsingle- 
ton subsets of o 

For each data edge Ei, let E%,, be 
the model edge for which the bpa 
takes a maximum value; that is, 

mEi(FhJ) 1 m%(b)) 
for u = A . . . . Z 
For each edge Ei, a single model 

edge, ES,,,, exists for which the bpa 
value is maximum; we denote this 
maximum belief model edge by 
hnxx(i~ In case of a tie because of two 
or more model edges yielding the 
same value for bpa, we arbitrarily 
select one of them 

When incorporating new evidence 
for an element’s label, we can ease the 
computational load by using the prop- 
erty that when using Dempster’s rule 
of combination, the order in which 
evidences are combined does not mat- 
ter. To elaborate, if we update an ele- 
ment’s bpa incrementally with every 
piece of new evidence from the ele- 
ment’s siblings, then the new bpa is 
computed as 

m new = 
(((mold @ mupdate: l&j @ mupdate: 2-j I 1 

@ . . . @ mupdate: n+, -1 

where 8 denotes that Dempster’s 
rule of combination is being used for 
combining evidence, and mup&te:j+l is 
the updating bpa for the new evidence 
that element j is providing for element 
i. Because Dempster’s rule of combi- 
nation is invariant with respect to the 
order of combination, the new bpa can 
be expressed as 

m new = moId @ mupdate 

where 

mupdate = hmupdate: 1-j @ mupdate: Z+j) 

.@ . . @ mupdate: ,+j) 

Now we can take advantage of the 
fact that the updating bpa’s use binary 
FODs (if element E, is labeled E,, then 
in each updating bpa, the belief is 
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nonzero for only the proposition E,, 
-E, and o itself). Barnett (1981) 
describes how Dempster’s rule can 
be implemented in linear time if all 
focal elements of the belief functions 
are either singletons or their com- 
plements. Currently, we do not use 
Barnett’s formulas because FODs 
for the elements on the blackboard 
are fairly small. However, we do take 
advantage of the fact that with the 
formulation presented here, we only 
have to deal with three elements in 
the power set of the updating FOD 
instead of all the 2101 elements. 

tent (compatible) labels, then these 
child elements should provide evi- 
dence that the label given to the par- 
ent element is correct. Likewise, chil- 
dren with inconsistent labels provide 
evidence that an element’s label is 
incorrect. Thus, by passing the 
updating bpa’s to each parent ele- 
ment on a higher level of the hierar- 
chy, we are providing new evidence 
for these elements based on the con- 
sistency or the inconsistency of its 
descendants. 

that the model panel is as shown in 
figure 3 and that edge E, on the data 
panel is a child of face F,. Further- 
more, assume that E, is labeled E,, 
and F, has label F,. Because the bpa 
for edge El, as given by mupdate: E~(PAI) 

arises from the consistency of Ei’s 
label with its sibling’s labels, it can be 
considered a weighted vote of confi- 
dence that face Fi’s label is correct. 
Likewise, because mupdare: rl ((lE,J) 
arises from the inconsistency of E,‘s 
label with its sibling’s labels, it can be 

Evidence from an element cannot considered a (weighted] vote of no 
be directly applied to its parent confidence in the correctness of face 

A function, update-belief, that pro- 
vides an updating bpa for an arbi- 
trary element, E, using compatibili- 
ty and incompatibility measures is 
shown in figure 6. It takes the ele- 
ment being updated as a parameter, 
and it returns the updating bpa for 
this element. Thus, the bpa for E+ 
could be updated with the following 
function call: 

because FdDs-of an element and its F,‘s label. Thus, mupdate: r](s) can be 
parent are composed of different considered to be the amount of igno- 
types of data elements. However, we rance about Fi’s label. Using this 
show that it is possible to build a rationale, we can define an updating 
FOD that can be used to update the bpa for face F, with the following 
belief functions of elements on a nonzero basic probability numbers: 
higher level of the hierarchy Assume 

mEi = mEi d update-belief( Ei) 
Evidence Propagation between Levels 
in the Hierarchy. Mutual consisten- 
cy constraints and geometric con- 
straint relations are not the only 
sources of knowledge used to update 
an element’s belief function. A 
mechanism is also provided for pass- 
ing belief values between different 
levels of the hierarchy. This passing 
is done to satisfy the intuitive argu- 
ment which says any evidence con- 
firming an element’s label should 
also provide evidence that its paren- 
t’s label is correct. We also require 
that disconfirming evidence be 
passed to the lower levels of the hier- 
archy (for example, if we think that a 
face is mislabeled, then all its con- 
stituent edges are also most likely 
mislabeled). 

fllllction updale44ieF (Ci) 
;; initifilize updating bpa as H vacuous belief function 

ml;pdar.“,w = 1 .o 
mL’plalo(.) - 0.0 ; all other subsets 
;; use all n elements in rhc data panel with the same parent group 
;; when updating iii 
Forcachj=1,2,...,n 

begin 
Cj = compatibility(E;, E$ 
dj = incompatibility(Ei. 14) 
;: normalize (in)compatibility measures if needed 
if(c,+d,> 1.0) 

begin 

5 
? = ~ cj + dj 

dj= 3 
J J 

end 

We use the updating bpa, mupdate, 
as computed by the update-belief 
function, when passing evidence up 
the hierarchy. We combine mupdate 
not only with the bpa for the ele- 
ment in question but also with this 
element’s parent Combining the 
updating bpa with an element’s par- 
ent makes intuitive sense because all 
new evidence generated on a level 
comes from the (in)compatibility 
between elements on this level. If the 
children of an element have consis- 

;; create updating bpa corresponding IO element Ej 

J+da~+,i((~~(i)J) = cj x In&t{ b&i)l) 

m,pib:,:j.-ri((~E~(i)l) =dj X rne.((-4&,&) 

4ipbre:j.4(@) = 1 0 - mupds~*:j.-,i((E~(i))) - %plptc:j .bi((+&(i))) 

;; accumulate into upclrting bps 

Mupdh = mupdala @ mupd3wj--~i 

end ; (for loop) 
;; return the accumulated sum of new evidence 
return (mUpdPte) 

End. ; update-belief 

________________________________ ___.________________----------- 
Figure 6 Algorithm Used to Generate an Updating bpa 

SUMMER 1988 83 



Model Fancl Data Panel (Segment Lewl) 

21 22 23 24 

Figure 7 
Left The Expected Scene Information on the Blackboard Model Panel; 
Right. The Data at the Segment Level of the Data Panel 

21 22 23 24 
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_-__________________------------- 
Figure 8 Initial Labels for Data Segments 
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Data Edges 

Edges with Initial Labels Derived from Data Segments. (Note the numeric 
labels for the data edges on the left are independent of the numeric labels 
used for the data segments in figure 8 ) 

bpa for F,. As described in the last 
subsection, after initial belief values 
are assigned, the FOD for an element’s 
updating bpa is really binary in 
nature. Thus, the only nonzero ele- 
ments of the updating bpa for E, are 
m update: ~,(h.lL mupdate: EI(bE~lL and 

mupdate:E1(o]. Because these elements 
are the only nonzero basic probability 
numbers from Eis updating bpa, they 
sum to 1 Given this fact, it is trivial 
to show that mup&: El +rI is also a bpa. 
We can now express the total accumu- 
lated new belief for face F, from its 
children E,, E,, . . . . E, as 

mupdate: FI = (imupdate: El ‘F1 

@ mupdate: E?. ‘Fi I 

@ . @mupdate: En-F1 ) 

Information is passed down the 
hierarchy only if it is disconfirmatory. 
Currently, this downward propagation 
of information takes the form of the 
reassignment of FODs caused by the 
ancestor of an element having its label 
changed. In the previous example, this 
form of downward propagation could 
happen if the label for face F, were 
changed to F,. Using information from 
the model panel (as shown in figure 3), 
we note that the FOD for E, would 
then be changed to 

0 = EC, EE, EF, &I 

Grouper KS 
The grouper KS builds data elements 
on the upper levels of the hierarchy 
from the segments and vertices 
deposited by the low-level vision sys- 
tem. It does this building in a data- 
driven manner by first grouping seg- 
ments into edges and then grouping 
the edges into faces, and so on. The KS 
is activated (by mechanisms described 
in Scheduler and Monitor for Black- 
board Control) by a request to find the 
parent of an ungrouped data element, 
called the seed element. In response to 
such a request, the KS first creates a 
dummy parent element one level up 
on the blackboard from the seed ele- 
ment and then tries to find all the data 
elements compatible with the seed 
element. These compatible data ele- 
ments are found by first determining 
the most probable model label for the 
data element and then finding the sib- 
lings of this model label and the data 
elements that correspond to these 
model siblings. The set of compatible 
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data elements thus found form the 
seed element’s siblings on the data 
side. It is the job of the labeler KS to 
eventually give a label to the dummy 
parent element of the data group so 
formed. 

In general, two data elements on 
the same level must satisfy two 
requirements if they are to be grouped 
together. First, the elements must sat- 
isfy a level-specific adjacency con- 
straint. These constraints usually 
force the KS to consider only ele- 
ments that are physically close when 
it forms groups. The other require- 
ment is obtained from the compatibil- 
ity metric used by the labeler KS; that 
is, the elements must be highly con- 
sistent in order to be grouped. For 
example, at the segment level of the 
blackboard, two segments must be 
highly collinear, and, similarly at the 
edge level, two edges must lie on a 
common plane to be grouped. 
Although the KS should be able to 
group elements based solely on their 
geometry, it must also be able to take 
advantage of any label information 
that the labeler KS has provided. For 
example, suppose the labels for a set 
of data edges are known to belong to a 
single face on the model panel, the 
grouper KS should group the data 
edges together. 

Although eventually the grouper 
and labeler KSs work in concert on an 
opportunistic basis, some initial 
groupings must be formed for the 
labeler KS to act at all. In other words, 
the grouper KS must be able to gener- 
ate some initial groupings. To illus- 
trate how this function is performed, 
consider the example in which the 
image preprocessor has deposited the 
data, shown on the right in figure 7, 
on the segment level of the data 
panel. Information about the expected 
scene on the model panel is shown on 
the left. 

Again, remember that the informa- 
tion in both the model and the data 
panels is in the same world coordinate 
frame. (For a mobile robot with cam- 
eras slanted downward, this coordi- 
nate frame corresponds to the flat 
ground plane.) For generating initial 
groupings, every segment in the data 
panel is compared with all the model 
edges that are in the vicinity of the 
segment, the basis of comparison 

being collinearity. For each data seg- 
ment, we retain that model edge label 
which yields the highest value for 
collinearity In figure 8, the left frame 
shows the data segments and the right 
frame a possible label for each seg- 
ment. All the adjoining segments that 
have the same initial labels are now 
joined together into edges, as shown 
in the left plate in figure 9.7 Note that 
the numeric labels assigned to the 
data edges in figure 9 are independent 
of the numeric labels of the data seg- 
ments in figure 8. 

Using the labeling shown on the 
right in figure 9, the grouper con- 
structs the following initial groupings 
from the data edges shown in the fig- 
ure’ 

FI initial = W,,E,l 

It is not uncommon for an initial 
grouping to be contaminated by multi- 
ple renditions of the same edge in a 

scene. Suppose the gray-level varia- 
tions corresponding to a scene edge do 
not exhibit a monotonic variation in 
directions perpendicular to the edgej 
depending on the size of the edge 
detection operator, the result can be 
multiple parallel edges in close prox- 
imity to one another For example, 
segments 1 and 25 in figure 7 could be 
examples of such an artifact. An 
important job assigned to the grouper 
is the detection of such parallel edges. 
The grouper does this detecting by 
measuring the angle between the ele- 
ments that have the same label in an 
initial group and the extent of the 
overlap between the two edges, the 
overlap being measured by projecting 
the smaller edge on the longer one. 
When such competing parallel edges 
are found, multiple groupings are 
formed from an initial group by 
retaining only one competing parallel 
edge at a time. 

To illustrate, in the initial group- 
ings shown in equation 3, edges 8 and 
9 in FBinitial are found to be competing; 

ype Data=eIement 
( 

id: integer; -- Unique id number 
panel: integer; -- Panel in the blackboard 
type: symbol; -- Type of data (two-d, three--d, model: 
level: symbol; -- Level in the pnnel 
children: childJist; -- Element ids of children of element 

-- Genera1 Parameters 
value: integer; -- Edge strength, etc. 
size: integer; -- #of pixels in edge, etc. 

-- Parameters valid only for vertex elements 
image-.coord: coord; “- (vertex) coordinate of vertex 
world-coord: vector; -_ (vertex) coordinate of vertex 

-- Parameters used far uncertainty management 
frame: fod; -” Frame of discernment 
bpa: bpas; -- Basic probability assignments 
positive: renl; -- Update bpa - belief 
negative: real; -- Updnte bpn - disbelief 
label: integer; -- Label of element 
belief: real; -- Belief in label 

>; 

_______--_------------~ 
Figure 10 WME Class Definition for Data Elements 

___ 
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/ye KSAR=elernent 

KS: 
action: 

data-element: 
lCVCl: 
panel: 

id: 
slalus: 

trigger-cycle: 
trigger_KSAR: 
activc_cycle: 
priority: 

); 

symbol; 
symbol; 

-- Knowledge source being triggered 
_- action KS is to perform 

integer; 
symbol; 
integer; 

-- Data Element being focused on 
-- Level being focused on 
-- Panel Being focused on 

integer; 
symlwl; 

-- KSAR id # 
-- KSAR status 

integer; 
integer; 
integer; 
integet; 

-- cycle KSAR was fonned 
-- KSAR which triggered this one 
.* cycle during which this KSAR was active 
-- KSAR priority. 

Figure 11 WME Class Definition for KSAK 

-- 

-- RULE: select-mnx,benefit,KS 
__ IF: PSElKI is “running” and the current strategy is to maximize benefit 
I- THEN: select the KS such that no other KS has greater benefit. 
__ Mark the KS as “active.” 
.- 
rule select-~tt~ax-.bcne~~t.-KS ( 

(Context cunent=run-pseiki); 
(Strategy cunent=maximizebenefit); 

Rrks (KS statusoactive); 
- (KS statosOaclive: benefit > &ks.benelit); 

--> 
modify &ks (status=active); 

1; 
- 

Figure 12 Rule Used to Select Active (KS, action) Pair. 

the same is the case with edges 2 and 
3 in Ftminitial. Thus, the initial group- 
ings lead to the following groups: 

J-5 = h,%W 
F'2 = hE,,E,l 

F”, = hW,l 
F'3 = h,Eu,,E&&,~ 

F”, = hA,,Ed&,) 
F4 = h+mEdbl 

Some Data Structures 
Used by PSEIKI 

Fundamentally, a blackboard is a data 
structure that is operated on by a 
number of KSs in an opportunistic 
manner (Hayes-Roth 1985; Nii 1986a, 
1986b). The PSEIKI system uses the 
working memory of OPS83 for this 

data structure; each working memory 
element (WME) corresponding to the 
blackboard data structure describes a 
data element at some level of the 
blackboard.8 In addition to being a 
host for the blackboard data structure, 
the working memory is also used for 
storing the knowledge source activa- 
tion records (KSARs); a KSAR is creat- 
ed by the monitor when the trigger 
conditions for a KS are satisfied by 
some data element. (It is the job of the 
monitor to keep track of the data on 
the blackboard and constantly check 
whether a newly created data element 
satisfies the triggering conditions for a 
KS ) KSARs can also be created by 
KSs, allowing KSs to trigger other KSs 
explicitly Each KSAR holds the iden- 

tity of the data element that meets the 
triggering conditions of a KS; the rele- 
vant KS; and other pertinent informa- 
tion, such as the cycle during which 
the KSAR was created. This informa- 
tion indicates to the KS which object 
should be worked on and is used by 
the scheduler when it chooses a KSAR 
to activate. 

In the rest of this article, we 
describe the data structures used for 
representing the data elements and 
KSARs. Subsequently, we discuss 
some of the productions used by the 
scheduler, the monitor, and the 
grouper KS. 

WMEs for Representing Data 

As mentioned earlier, a single WME 
class is used for all the data elements 
regardless of the blackboard level at 
which the data element might reside. 
In other words, the same WME class is 
used for edges, faces, objects, and so 
on. The distinctions between different 
types of data elements are introduced 
by using appropriate values for the 
attribute “level.” Using the same 
WME class allows generic functions to 
be freely applied to all the data levels. 

Figure 10 shows the definition of 
the WME class for representing data. 
Most of the WME fields are self- 
explanatory. The element’s id number 
is a unique identifier used to keep 
track of individual data elements; data 
elements are always referenced by 
their id numbers. The panel and level 
fields specify the element’s location 
on the blackboard The type field is 
used to specify the type of data from 
which the element is derived; the val- 
ues that it can assume are two-d, 
three-d, and model. The next few 
fields are parameters of the data ele- 
ment. The value field is a generic 
attribute used to specify a level-specif- 
ic value. For example, it is used to 
specify the strength of an edge or the 
average gray level associated with a 
face. The size parameter is also gener- 
ic; this parameter is used to specify 
the degree, length, area, or volume if 
an element is a vertex, edge, face, or 
object, respectively. The next two 
parameters specify the data element’s 
location if it is a vertex. The 
image-coord attribute indicates a ver- 
tex’s coordinate on the image plane if 
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it was obtained from 2-D data. Like- 
wise, the world-coord attribute speci- 
fies a vertex’s location in the world 
coordinate frame. 

The remaining fields shown in fig- 
ure 10 hold the uncertainty informa- 
tion about a data element and are 
used by the labeler KS. The frame 
attribute holds the element’s FOD, 
and the bpa attribute holds the ele- 
ment’s basic probability assignment. 
An element’s updating bpa is stored in 
the positive and negative attributes: 
these values indicate the new belief 
and disbelief in the element’s label. 
This new evidence is obtained from 
the compatibility of the element with 
its siblings and its children’s compati- 
bility, as discussed in Evidence Accu- 
mulation Mechanisms in Knowledge 
Sources. Finally, the element’s label 
and belief in this label are indicated 
by the next two attributes. 

The WME Class for 
Representing KSARs 

Figure 11 shows the WME class defi- 
nition for representing a KSAR. The 
data-element, level, and panel fields 
specify the focal element of the 
KSAR. Using these three fields, we 
can focus on the following kinds of 
entities: the entire blackboard, a 
blackboard panel, a level of the black- 
board, a level of a specific panel of the 
blackboard, or a specific data element 
on the blackboard. The KS and action 
fields of the KSAR specify what action 
is to be performed on its focal ele- 
ment. PSEIKI’s scheduler uses the 
trigger-cycle, trigger_KSAR, and the 
priority fields when ranking KSARs 
for firing. The id field is used to keep 
track of the KSARs, and the state of 
any KSAR is determined by its status 
field. 

A KSAR is originally created with 
its status marked pending, which 
means that the KS has been triggered 
but has not been run yet. When the 
scheduler decides to fire on a KSAR, it 
changes the KSAR’s status to active. 
The KS’s precondition and poisoning 
productions are now allowed to fire; it 
is their job to mark the KSAR’s status 
as running if the preconditions are 
met or as poisoned if they aren’t If 
the KSAR is determined to be poi- 
soned, the KS’s body productions are 

not allowed to fire, and control passes 
back to the scheduler. Otherwise, if 
the status has been set to running, the 
KS’s body productions will be allowed 
to fire. After the KS has accomplished 
its goal, it marks the KSAR’s status 
field as finished and returns control to 
the scheduler. 

Scheduler and Monitor for 
Blackboard Control 

In this section, we first describe the 
operation of the schedule and moni- 
tor. Subsequently, we comment on 
how the KSs interact with the sched- 
ule and monitor. Finally, we detail the 
operation of the grouper KS as an 
example of KS processing. 

Scheduler Operation 

It can reasonably be stated that the 
scheduler is the heart of any black- 
board. It is the scheduler’s job to 
choose what action to perform at any 
cycle of the blackboard operation; it 
carries out this job by selecting one of 
the pending KSARs and activating the 
corresponding KS. PSEIKI’s scheduler, 
which consists of a set of metarules, 
runs by default; that is, it runs auto- 
matically when no KSs are active. Ini- 
tially, when the data, in the form of 
edge segments, are deposited on the 
blackboard, the scheduler is invoked 
to get the entire process started. 

The strategy used by PSEIKI’s 
scheduler for selecting one of the 
pending KSARs is patterned after the 
Hearsay system (Erman et al. 1980) 
The scheduler first forms a set of (KS, 
action) pairs for all the KSs. Note that 
each KS can be used to accomplish 
different actions; for example, the 
labeler KS can both initialize and 
update labels. Thus, the priority 
accorded a KS should depend on 
which action is desired. The pairs are 
then ranked, and one is selected and 
marked as active on the basis of the 
costs and benefits associated with the 
different KSs, the cost being a mea- 
sure of the computational difficulty of 
running a KS and the benefit a mea- 
sure of a heuristic estimate of the 
power of a KS to accomplish the over- 
all goal. After selecting a (KS, action) 
pair, the scheduler ranks all the pend- 
ing KSARs that seek to invoke the 
pair. If the selected (KS, action) pair 

has no pending KSARs, the scheduler 
selects the next most highly ranked 
pair. Ranking of the pending KSARs is 
based on a combination of their priori- 
ty, focal element, focal element’s 
blackboard level, and focal element’s 
recency It then selects the top-ranked 
KSAR and marks it as active; the cor- 
responding KS is then fired. Figure 12 
is a sample rule that performs the KS 
ranking and selection on the basis of 
the KS’s relative benefit. 

In this rule, the first two condition 
elements (CEs) specify that PSEIKI 
must be running and that the current 
KS selection strategy is based on max- 
imizing KS benefit The next two CEs 
perform the work of the rule. The 
third CE matches any nonactive (KS, 
action) pair; the WME corresponding 
to this (KS, action) pair is marked 
active by the scheduler. The last CE 
prevents the rule from firing if there is 
an available inactive (KS, action] pair 
with greater benefit. Thus, the overall 
action of this rule is to find the inac- 
tive (KS, action) pair with the greatest 
benefit and to mark its status as 
active 

After a [KS, action) pair is chosen, a 
particular KSAR must be selected 
from the group of pending KSARs that 
use it. Associated with every KS is a 
different method of choosing the best 
KSAR For example, if the labeler KS 
is active, the scheduler tries to choose 
a KSAR that focuses on the highest- 
level data element possible. As we 
mentioned previously, the strategy of 
focusing on the highest-level data ele- 
ment is equivalent to checking global 
consistency before local consistency. 
Conversely, the scheduler forces the 
grouper to group data elements on the 
bottom levels of the hierarchy first 
and then work its way up Figure 13 
shows a rule that selects a labeler 
KSAR. 

Once again, the first CE specifies 
that PSEIKI must be running in order 
for the rule to fire. The next two CEs 
find a pending KSAR that focuses on 
the active (KS, action) pair The third 
CE matches the WME that is the 
focus of the KSAR The structure on 
the next line uses a feature of OPS83 
to choose a data element at the high- 
est possible level on the blackboard. 
OPS83 uses the value in the square 
brackets to rank rule instantiations in 
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^_ 
-- RULE: selectJabe$-KSAR 
-I IF: PSEIKI is running and a KS and action have been selected. 
-7 THEN: select the KSAR that focuses on the highest level 
-- data element possible and mark the KSAR as “active.” 
_^ 
rule select.Jnb&KSAR ( 

(Context current-run-pseiki); 
&ks (KS name=labcl; status=active); 
&ksar (KSAR KS=label; action=&ks.action; status=pending); 
&eI (Element id=&ksar.data--element); 
[Ievel~no(&el.leve))l; -- choose the highest level possible 

--> 
modify &ksar (status=active; active-cyclc=&current-cycle); 
make (Context current=reset-KS-status); 

1; I 

Figure 13 Rule Used to Select a KSAR that Seeks to Invoke the Labeler KS 

_- 
-- RULE: group-trigger-J 
..* 1F: An orphaned and labeled data element is found 
-- AND there is no KSAR to group that element. 
“_ THEN: Create a new KSAR to group that element and find its parent. 
_- 
rule group-trigger-1 { 

&el (Element typeomodel; level<>vertex; IabeloO); 
(Element child(&el.id, @.childrcn)); 
(KSAR K&group; action=initialize; 

(@.status=pendingV @.status=poisoned); 
data-element=&el.id); 

--> 
make (KSAR KS=group; action=initislize; 

triggef~cycle=&current~cycle; 
id-&next-KSAR-id; statuszpending; 
data--element=&el.id; priority4.5); 

&next.-KSARjd = &next-KSAR--id -+ 1; 

Figure 14 Monitor Demon Used to Create a KSAR for the Grouper KS. 

the conflict set; everything else 
remaining equal, OPS83 selects the 
rule instantiation for firing that yields 
the greatest value for the expression 
inside the brackets. Thus, if the func- 
tion level-no() returns numbers that 
increase in value for higher levels on 
the blackboard, this rule chooses a 
data element on the highest level pos- 
sible. 

The strategy used by the scheduler 
to rank the (KS, action) pairs is con- 
trolled by the fields of a special WMEj 
these fields determine which (KS, 
action) selection rules are allowed to 
fire. At this time, this WME is speci- 
fied before the processing begins and 
remains fixed thereafter. However, our 
plan is to institute a set of metarules 
that will dynamically alter the fields 
of this WME in response to diminish- 
ing returns for a given strategy. 

Monitor Operation 

The monitor is the watchdog for the 
blackboard; it is the monitor’s job to 
keep track of the data on the black- 
board and trigger KSs when specific 
conditions are met. After the monitor 
triggers a KS by building a pending 
KSAR, it can also execute some 
immediate code. It is also up to the 
blackboard monitor to watch the 
blackboard and determine if the status 
of any poisoned KSARs should be 
reset to pending This resetting of the 
status happens if the KS action on the 
specified data element has once again 
become valid. It is also up to the mon- 
itor to determine if any poisoned 
KSARs should be deleted; deletion 
occurs if there is no chance that the 
KSAR could once again become valid. 

The blackboard monitor makes 
extensive use of OPS83 demons. A 
demon in OPS83 is a rule whose first 
CE is not a context, goal, or KSAR. 
Because of the OILS83 rule selection 
strategy, these rules take precedence 
over ordinary rules (for example, rules 
inside of KSs or scheduler rules) and 
fire as soon as they become complete- 
ly instantiated. Thus, a demon in 
OpS83 can be thought to operate out- 
side of any context, KS, or goal search. 

For example, a monitor rule used to 
trigger the grouper KS is shown in fig- 
ure 14. This rule fires when it finds 
any data elements without any par- 
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ents (orphan elements). The rule then 
creates a KSAR that directs the 
grouper KS to find the element’s par- 
ents. This rule works as follows: The 
first CE matches any new data ele- 
ment if it is not a model element and 
has a label; this data element is the 
focus element of the rule. The second 
CE allows the rule to fire only if its 
focus element is an orphan. This CE 
uses the function child0 to match any 
WME that has the first CE’s id num- 
ber in its list of children. The tilde in 
front of the CE acts as a negation 
symbol; that is, it allows the rule to 
fire onlv if no WME matches the CE. 
Thus, the tilde in front of the second 
CE of this rule keeps the rule from fir- 
ing if the focus element has a parent 
The last CE keeps the rule from firing 
if the grouper KS has already been 
triggered on this data element; the 
rule is only fired if a pending grouper 
KSAR focused on the same element 
can not be found. Notice that this rule 
simply builds a pending KSAR and that 
no immediate code is executed. 

-_ 
-- RULE: poison-group-l 
_- II? a KSAR indicates that cn element should be put into a group 
-v and that element already has a parent (and thus is in a group) 
-. THEN: mark the KSAR as poisoned. 
_” 
rule poison-group-I ( 

&ksar (KSAR KS=group; action=initialize; status=activc); 
(Element child(&ksar.data-element, Q.children)); 

--> 
modify Grksar (status=poisoned); 

I --_______._-.-----__~~~~~~~~~~~~~~~~~~~~~~~~-------~..-...-~-~---~ 

Figure 15. An Example of a Poisoning Rule 

-- 
-- RULE: group--into-element-driver 
Se IFI grouper KS is running and the focal element does not yet 
-_ have a parent. 
-- THEN: create a parent element and a KSAR to label the parent. 
-- 

Operation of the KSs 

Even though the various KSs perform 
greatly different tasks, many of the 
same actions are performed by all of 
them during the task-solving process. 
These actions start when the sched- 
uler marks a KSAR’s status as active. 
After a KS becomes active, its poison- 
ing rules are allowed to fire; these 
rules make sure that the KS’s precon- 
ditions have not become invalid since 
the KS was triggered. If a poisoning 
rule does fire, it sets the KSAR’s status 
to poisoned and returns control to the 
scheduler If none of the poisoning 
rules fire, a rule that marks the KSAR’s 
status to running fires by default. 

rule group~into~element~driver ( 
Rtksar (KSAR KS=group; action=initialize; status-running); 
&Cl (Element id=&koar.data-element; levelosegment); 

(Element children[ l]~&ksar.data~element); 
&model (Element child(&el.label, @.children)); 

--> 
-- Make dummy parent element 
&max,id = &maxjd f 1; 
make (Element type=&el.type; panel=&el.panel; level=&model.level; 

id=&tnaxjd; size=&el.size; value=&el.vnluc; 
labeI=&model.id; positive=&el.belief 
childrent I]=&el.id); 

write (1 Iinitializing group with I, &el.level, &el.id, Yn’; 

-- Make KSAR to requesting that the parent’s belief be initial&d 
make (KSAR KS=labeI; action=initializc; 

trigger.~.cycle=&current_cycle; 
id=&ncxtWWKSAR.jd; status=pending; 
data_ele~~len~~&max_id; priority=OS); 

&next-KSAR.jd = &next-KSARjd + 1; 
1; .-______------____-- -_________.-----_______________________ 

After the KS starts running, the 
control flow becomes more KS specif- 
ic, but it still follows the same pat- 
tern. Usually, the first few rules that 
fire after the KS starts running are Figure 16 An Example of a Driver Rule 
driver rules These rules don’t con- 
tribute directly to the solution of the 
KS’s task; instead, they initialize ele- 
ments in the working memory that 
the KS needs to solve the task. These 
driver rules can generate contexts that 
are needed by the KS in its problem- 
solving activity. They can also put 
dummy data elements on the black- 
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_- 

-- RULX group~inlo.jacw 
__ It? Edges arc being grouped into a face 
_- AND: Thcrc is an edge whose label clcmcnl is a child of 
_- the parcnl’s labct clc.mcnt 
__ AND: That cdgc is not in a group Hal has the wnc label as the parent 
_- THEN: compu(e tic cotincarity of that edge and a transformed version of 
-- lhc focus ctcmcnt. If this cxcccds a thrcshotd, add the edge 
-- LO the face’s child lisl 
.- 
rutc grollp-jn~o~faccs ( 

&ksar (KSAR KS=group; acdon=initiatizc; s(atus=running); 
& fact (Element chil~~en[l]=&ksar.data_clcmcn~); 
&modcl (Etcmen~ id=&facc.label); 
&cdgct (Elcmcnt id~9rk~u.data-clcmcnO: 
&cdgc2 (Elcmcnt ~ypc<>tnodct; tevcl=cdgc; ido&cdget.id; 

child(@.tahet, Rrrr~ociet.cllildr~i~); 
(-chitd(@.id, &lacc.childrcn))); 

RtXfiYll (Model-xfrm from=&cdget.labct; m=&cdgc2.lahcl); 
-- get paramcw nccdwt in rhs computations 
&$I (Etcmcm id=&c~gct.chitdrc.nllI); 
&et (t3cmen~ id=&cdgcLchitdrcn[2]); 
as2 (Etcmem id=&cdgc2.childrcn[ I]); 
&2 (Elcmcnt id=&cdgc2.chitdrcn[2]); 
Btdisl (Constant lypc=group-lhrcshotd); 

--> 
local &cotlin: scat; 
local &st-xfrm, &cl-xfrm: sector; 
local &i, &ncx?_child: integer; 

call apply-xf’rrn(&st-xfrm, &xfrm.xfrm, &st.rvortd~ccwd); 
call ayply.~xfrrn(&ct~x~rtn~, &xfnn.xfrm. &cl.wotld~coord); 
Gtcotlin - find..cottincarily(lst-xfrlo, &et-xfrm, 

&s2.wor1dVcoord, &c2.world-.coord, 
&grouy~stot~); 

if (&disr.rcat..,valuc i &cotlin) ( 
&ncxl-child = 0; 
for Rei - (I to &max-children) 

if ((Ptncxlchild = 0) l\(RLfacc.chitdrcnI&il = 0)) 
cutncxt-child = &i: 

I; 

modit’y &face (childrcn[&nexr-childj = &cdgc2.id; 
updatc-bclicf(&face., RLcotlin * &cdgc2bclicf, 0.0)); 

write () I grouping cdgc I. &cdgc2.id, “VI’; 

Figure 17 Rule Used to Group Edges into Faces 

board that are “fleshed out” during 
the course of the KS’s processing. 
After the KS’s driver rules are fired, 
the control flow becomes KS specific 
In the next subsection, we show an 
example of KS processing to demon- 
strate the control flow inside a KS. 

Grouper KS Operation 

To illustrate the flow of control inside 
a KS, we examine the operation of the 
grouper KS as it initializes a collec- 
tion of edges into a face, using the 

example from figures 7, 8, and 9 
Assume that a KSAR focused on the 
element E, of figure 9 has just been 
activated with (KS, action] pair set 
equal to (grouper, initialize). As we 
described previously, when the KS is 
first activated, the poisoning rules are 
allowed to fire. Figure 15 is an exam- 
ple of a poisoning rule used by the 
grouper KS This rule is meant to poi- 
son a KSAR if it tells the grouper that 
a nonorphaned element should be put 
into a group.9 The rule works in the 

following manner: The first CE 
matches the active KSAR if its action 
is to initialize a group. The second ele- 
ment uses the same child0 function as 
the monitor rule discussed previously. 
If this CE matches a WME, then the 
focus element already has a parent; 
the rule then fires, and the KSAR is 
marked poisoned. If no poisoning 
rules fire, another rule fires by default 
and marks the KSAR’s status running 
Thus, if we assume that element E, is 
an orphan at this point, then the 
active KSAR’s status is set to running. 

The grouper KS uses driver rules to 
initialize internal processing; these 
rules fire immediately after the KS 
starts running. When the KS is initial- 
izing a group, the driver rule builds a 
dummy data element, the parent ele- 
ment, on the blackboard. This ele- 
ment is the parent of the focus ele- 
ment of this KS activation. It is the 
job of the grouper KS to group the 
focus element and its siblings into 
this element. Figure 16 shows the 
driver rule for group initialization. 

The rule in figure 16 works as fol- 
lows: The first two CEs match the 
running KSAR and the focus element. 
The purpose of the third CE is to pre- 
vent the rule from firing more than 
once during any KS activation by 
allowing the rule to fire only if no par- 
ent of the seed element is already in 
the working memory. It would be able 
to find the parent element because a 
parent element always has the focus 
element of the KS as its first child. 
The last CE is designed to find an ele- 
ment that could possibly be the model 
panel counterpart of the parent ele- 
ment by finding the parent of the 
focus element’s label element. 

The rule performs two actions 
when it fires. First, it builds the parent 
element. As we mentioned previously, 
the KS’s focus element and its siblings 
are grouped into this element The 
parent element is initialized with 
appropriate parameters: panel, data 
type, level, id number, size, and so on. 
Furthermore, the parent element’s 
first child is set as the focus element 
to prevent the driver rule from firing 
twice and allow the remaining KS 
body rules to easily find both the 
focus and parent elements. The rule 
also builds a KSAR that requests the 
parent element be labeled. 

90 AI MAGAZINE 



Because edge E, is an orphan in our 
example, this driver rule will fire. 
When the firing happens, a new ele- 
ment, say, element Faa, is created and 
deposited on the blackboard. This 
new element is on the face level of 
the data panel with label Fc and ini- 
tially has element E, as its only child. 
Now it is up to the rest of the KS body 
rules to find element E,‘s siblings and 
group them into the face F,, 

After the driver rule initializes the 
parent element, the remaining KS 
body rules can fire. Just one KS body 
rule needs to fire to group edge ele- 
ments into a face element. This rule 
is nontrivial and fires at least one 
time for every edge that can be 
grouped into the face This rule is 
shown in figure 17; as one can see, it 
is fairly complex. 

The first four CEs of the rule in fig- 
ure 17 find the active KSAR, the par- 
ent element, the model label of the 
parent element, and the focus ele- 
ment, respectively. The fifth CE finds 
a candidate to group into the parent 
This CE makes sure that the candi- 
date is on the same level and panel as 
the focus element and that it has not 
been grouped into the parent already. 
The rest of the CEs are present just to 
get data that is needed in the right 
side of the rule. This CE group 
includes the sixth CE that matches a 
WME which holds a homogeneous 
transformation matrix. The transfor- 
mation matrix is defined to transform 
the focus element’s label element so 
that it is compatible with the candi- 
date’s label element. 

When the rule fires, the collinearity 
between the candidate and a trans- 
formed version of the focus element is 
computed. If this value is greater than 
a threshold, the candidate is grouped 
into the parent element. This group- 
ing is done by finding the next empty 
slot of the parent’s child list and 
inserting the candidate’s id number. 
The new edge also contributes evi- 
dence that the parent’s label is cor- 
rect. Notice that if the candidate ele- 
ment doesn’t meet the criteria to be 
grouped, then nothing in the working 
memory is changed, and refraction 
prevents the rule from firing again 
with the same instantiation. 

In our example, any edge that has 
one of the labels I, J, K, or Q is a can- 
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Figure 18 (Above) Line Drawing of the Expected Scene with Edges Labeled 
Figure 19 (Below). A Sidewalk Image Used for Illustrating PSEIKI Processing. 
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didate to be grouped with edge E, into 
face Fzo Edges h, h, b, ana El7 
meet this criterion. Thus, any edge 
that is collinear with the transformed 
version of the focus element is 
grouped into the parent. If all but E,, 
were collinear with the transformed 
E,, then the children of F,, would be 
the edges E,, Eis, EIG, and E,,. 

Experimental Results 
PSEIKI was run on a number of 
images typical of what would be seen 
by a sidewalk-navigating mobile robot 
with downward-slanted cameras. For 
one such run, figure 18 shows the 
edges representing the expected scene 
and figure 19 the actual observed 
image. Note that there is significant 
misregistration between the expected 
scene and the observed image; two of 
the major edges in the expected scene, 
in the lower left, are missing entirely 
in the observed image. The reader 
should also note the presence of shad- 
ow edges in figure 19. The output of 
the preprocessor is shown in figure 20. 

The final result produced by PSEIKI 
consists of labels, with associated 
belief values, attached to entities at 
the edge and higher levels on the data 
panel of the blackboard. For the exam- 
ple in figures 18-20, if we select from 
the scene level (the highest blackboard 
level) the entity with the maximum 
belief and then retain from the lower 
blackboard levels only those groups 
which correspond to this scene entity, 
at the edge level we obtain the result 
shown in figure 21. This figure shows 
the edges and their associated labels in 
the scene interpretation that PSEIKI 
found most plausible. In line with the 
earlier discussion, the percentage val- 
ues associated with a label indicate 
the belief that PSEIKI has in the cor- 
rectness of the label. For example, 
PSEIKI has a belief of .53 that the 
lower right edge is the right-bottom 
edge from the expected scene, imply- 
ing that at a belief level of .47, PSEIKI 
either believes that the label is not 
right-bottom or that PSEIKI is simply 
ignorant about the matter of labeling 
the edge in question. 

Concluding Remarks 
If our aim was limited to labeling the 
edges in simple-looking images, such 
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as the one in figure 18, the reader 
might accuse us of creating the AI 
equivalent of the Monty Python skit 
where the characters hunt sparrows 
with rocket launchers However, note 
that what we have accomplished so 
far is only a stepping stone and is 
intended to give us the expertise for 
incorporating more complex spa- 
tiotemporal context in solving image- 
understanding problems. Of course, 
the following question remains: Does 
our solution scale up for more com- 
plex images? We believe that by rea- 
soning in a hierarchical space, we 
have gained substantial leverage over 
the computational complexity 
involved. Admittedly, we are not yet 
in a position to present any formal 
expressions for the time complexity 
functions associated with PSEIKI, but 
then we are not aware of any having 
been derived previously for black- 
board processing in general. 

We hope we have provided the read- 
er a sense of how evidence is accumu- 
lated in PSEIKI from both the expect- 
ed scene information and any internal 
geometric consistencies that might 
exist in the image data. Notwith- 
standing the fact that no single large- 
scale implementation of any uncer- 
tainty formalism exists where 
researchers did not have to take mas- 
sive liberties with the underlying 
assumptions, our use of Dempster’s 
rule is not entirely beyond reproach 
because we did not address the 
requirement that evidence sources be 
independent before being combined. 
Loosely said, the independence 
requirement states that the evidence 
from one source not depend on the 
evidences from other sources; howev- 
er, it is often difficult to formalize 
this notion and develop computation- 
ally feasible tests for its validity Yet, 
given the importance of the issue, this 
area is active with research; the reader 
is referred to Dubois and Prade (1985, 
1986), Huntsberger and Jayarama- 
murthy (1987), Kyburg (1987), Smets 
(19861, and Yen (1986) for further dis- 
cussions on the subject. 

Acknowledgments 
We would like to thank Lynn Garn, team 
chief of the Image Understanding and Arti- 
ficial Intelligence Group and member of 
the Army Center for Night Vision and 

Electra-Optics, and Tim Williams, also of 
the Army Center, for many fruitful discus- 
sions that educated us on the limitations of 
the existing methodologies for automatic 
target recognition. We would also like to 
thank Richard Coe for his work on the 
design and development of PSEIKI’s debug- 
ging software 

Appendix 
In this appendix, we give a short review of 
some relevant terms from the D-S theory 
of evidence accumulation. For a detailed 
presentation, see Shafer (1976) 

In a random experiment, the frame of 
discernment (FOD], o, is the set of all pos- 
sible outcomes For example, if we roll a 
die, B is equal to the set of possibilities 
“the number showing is i,” where 1 5 i 5 6; 
therefore, o can be set equal to the set 
{1 2 3 4 5 61 The 2’0’ subsets of o are called , , I , I 
propositions, and the set of all the proposi- 
tions is denoted by 20 In the die example, 
the proposition “the number showing is 
even” is represented by the set {2,4,6] 

In the D-S theory, probability masses are 
assigned to propositions, meaning to some 
of the sets in 28; therein lies a major depar- 
ture of this theory from the Bayesian for- 
malism, in which probability masses must 
be assigned to the individual elements of E) 
These probability masses must add up to 
one, and the probability mass assigned to o 
represents ignorance The interpretation to 
be given to the probability mass assigned 
to a subset of o is that the mass is free to 
move to any element of the subset; this 
interpretation agrees with the probability 
mass assigned to o representing ignorance 
because this mass can move to any ele- 
ment of the entire FOD When a source of 
evidence assigns probability masses to the 
propositions discerned by e, the resulting 
function is called a basic probability 
assignment (bps) Formally, bps is function 
m:2o+ [O,l], where 

oo<m(*)<IO, m(lZl=Oand C m(X)=10 
xg 

A belief function, Bel(X), over o is defined by 

Bel(X) = C m(Y) 
Y&X 

In other words, our belief in a proposition 
X is the sum of probability masses assigned 
to all the propositions implied by X 

Dempster’s rule of combination states 
that given two bpa’s, ml[*) and ma(*) corre- 
sponding to two independent sources of 
evidence, we can combine them to yield a 
new bpa mj *) using 

where 

This formula is commonly called Demp- 
ster’s rule or Dempster’s orthogonal sum 
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Notes 

1 We say a system is domain dependent 
when domain-specific knowledge is 
embedded in various components of the 
inference engine, such as the rules or the 
knowledge sources PSEIKI is domain inde- 
pendent in this sense; the context informa- 
tion that PSEIKI uses is encoded entirely in 
the form of a line drawing of the expected 
scene 
2 We refer to this mapping throughout the 
article 
3 Note that these two panels correspond 
to the observability and picture graphs in 
ACRONYM 
4. Note that in the following discussion, 
the elements on the model panel have capi- 
tal letters as subscripts, and the elements 
on the data panel have numeric subscripts. 

5 In the appendix, we define some of the 
relevant terms of the Dempster-Shafer for- 
malism for evidence accumulation 

6 The scale factor is provided to limit the 
amount of disconfirming evidence generat- 
ed by small edges that might be the result 
of noise 
7 The labels shown in figure 9 are intend- 
ed only for the purpose of explanation In 
actual practice, even for simple imagery, 
the initial label map can be much more 
chaotic, depending on the extent to which 

an image is degraded by noise and other 
artifacts. 
8 If not already familiar with terms such 
as working memory and production memo- 
ry, the reader is referred to Brownston et al 
(1985) for an exposition on the architecture 
of a production system. The OPS83 used 
for PSEIKI is a direct descendant of the 
OPS5 system described in Brownston et al 
(1985). Much more so than OPS5, OPS83 
allows functions and procedures to coexist 
with rules and working memory elements 

9 This does not imply that a data element 
can only participate in a single group An 
edge element is, for example, allowed to be 
in two or more groups if it is on the com- 
mon boundary between them However, 
any edge element can serve as a seed for 
only one group. Therefore, an edge element 
that belongs to two or more groups can 
trigger the formation of only one of them; 
other edges would have to act as seeds for 
the other groups. 
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