
The types of prob-
lems that engineers
normally solve are
bounded by the
d e r i v a t i o n -
formation spectrum.
In derivation-type
problems, the solu-
tion to the problem
consists of identify-
ing an outcome or
hypothesis from a
finite set of possible
outcomes known to
the problem solver.
In formation-type
problems, however,
the problem solver
only has the knowl-
edge of how to form
the solution. The
problem solver then
utilizes several prob-
lem-solving tech-
niques to arrive at a
solution.

The problem of
design falls at the
formation end of
the spectrum. Design
can be viewed as the
process of specifying
a description of an
artifact that satisfies
constraints arising
from a number of
sources by using diverse sources of knowl-
edge. The constraints can be prespecified or
can evolve during the design process. In this
article, we provide an overview of some repre-

sentative research
projects that utilize
AI techniques, in
particular knowl-
edge-based systems
(KBSs), for engineer-
ing design auto-
mation at the
Massachusetts Insti-
tute of Technology
(MIT). The design
process is described
in the next section,
followed by a discus-
sion of the classes of
design activities 
in Types of Design
Activity. Several
research projects in
design automation
are described in the
subsequent five 
sections.

Design Process
The design process
can be viewed as an
iterative six-step
process:

1. Problem Identifi-
cation: The prob-
lem, necessary
resources, target
technology, and

so on, are identified at this stage.

2. Specification Generation: Design require-
ments and performance specifications are
listed.

Design can be
viewed as the
process of
specifying a
description of
an artifact
that satisfies 
constraints
arising from 
a number of
sources by
using diverse
sources of
knowledge. 
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and Dundee Navinchandra

Advances in computer hardware and software
and engineering methodologies in the 1960s and
1970s led to an increased use of computers by
engineers. In design, this use has been limited
almost exclusively to algorithmic solutions such
as finite-element methods and circuit simulators.
However, a number of problems encountered in
design are not amenable to purely algorithmic
solutions. These problems are often ill structured
(the term ill-structured problems is used here to
denote problems that do not have a clearly
defined algorithmic solution), and an experi-
enced engineer deals with them using judgment
and experience. AI techniques, in particular the
knowledge-based system (KBS) technology, offer
a methodology to solve these ill-structured design
problems. In this article, we describe several
research projects that utilize KBS techniques for
design automation. These projects are (1) the
Criteria Yielding, Consistent Labeling with Opti-
mization and Precedents-Based System
(CYCLOPS), which generates innovative designs
by using a three-stage process: normal search,
exploration, and adaptation; (2) the Concept
Generator (CONGEN), which is a domain inde-
pendent framework for conceptual or preliminary
design; (3) Constraint Manager (CONMAN),
which is a constraint-management system that
performs the evaluation and consistency mainte-
nance of constraints arising in design; (4) the
distributed and integrated environment for com-
puter-aided engineering (DICE), which facilitates
coordination, communication, and control
during the entire design and construction/manu-
facturing phases; and (5) DESIGN-KIT, which
can be envisioned as a new generation of com-
puter-aided engineering environment for process-
engineering applications.
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continues until a satisfactory or optimal
design is obtained.

Types of Design Activity

It is useful to classify design into various cate-
gories. These design classes can be thought of
as being bounded by the creative-routine
spectrum. These classes, which are process-
based rather than product-based, are
described as follows.

• Creative design. An a priori plan for the
solution of the problem does not exist,
where the plan is an abstract decomposi-
tion of the problem into a set of levels that
represent choices for the component or
object hierarchy of the problem. Rather
than using a convergent line of reasoning,
the designer uses a divergent thought pro-
cess. The key element in this design type is
the transformation from the subconscious
to the conscious.

• Innovative design. The decomposition of
the problem is known, but the alternatives

3. Concept Generation: The selection or syn-
thesis of preliminary design solutions satis-
fying a few key constraints is performed.
Several alternative designs might be 
generated.

4. Analysis: The response of the system to
external effects is determined using an
appropriate model for the system.

5. Evaluation: Solutions generated during the
concept generation stage are evaluated for
consistency with the specifications. If sev-
eral designs are feasible, then (normally) an
appropriate evaluation function is used to
determine the best possible design to
refine.

6. Detailed Design: Various components of
the system are refined so that all applicable
constraints (or specifications) are satisfied.

Significant deviations might exist between
the component properties assumed or gener-
ated at the concept generation stage and
those determined at the detailed design stage,
which necessitates a reanalysis. The process
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for each of its subparts do not exist and
must be synthesized. The designer uses
some fundamental principles of the
domain to develop the alternatives; these
alternatives might be a novel combination
of existing components. One must note
that a certain amount of creativity comes
into play in the innovative design process.
Further, a system considered as innovative
in one culture might not seem innovative
in another culture.

• Redesign. An existing design is modified to
meet changed functional needs.

• Routine design. An a priori plan of the
solution exists. The subparts and alterna-
tives are known in advance, perhaps as a
result of either a creative or an innovative
design process. The solution involves find-
ing the appropriate alternatives for each
subpart that satisfy the given constraints.

At the creative end of the spectrum, the
design process might be nebulous (hazy),
spontaneous, chaotic, and imaginative,
whereas at the routine end, the design is pre-
cise, predetermined, systematic, and mathe-
matical. Brown and Chandrasekaran (1985)
classify the first two classes as class I and class
II designs and the fourth as a class III design.
Several applications developed at MIT that
span the creative-routine design spectrum are
described in the following sections.

Innovative Design: CYCLOPS
CYCLOPS is an experiment in innovative
design. The system was developed to investi-
gate the following observations about design:
(1) Designers work with multiple objectives
and constraints but are not always bound by
them. (2) Designers are not mere satisfiers:
They like to produce optimal designs. (3) New
criteria emerge as design progresses. (4) Past
design examples are extensively used in prob-
lem solving.

The CYCLOPS system is based on the thesis
that innovative designs can be obtained by
exploring a wide variety of alternatives. Inno-
vative designs are not obtained through some
deliberate attempt at producing them but by
generating lots of design alternatives and
throwing away the bad ones. Consequently,
the ability of a system to innovate depends
on how well it can generate diverse alterna-
tives that break away from the norm and the
governing constraints. This idea is based on
the observation that new alternatives some-
times serendipitously lead to interesting solu-
tions. Our system explores design alternatives
by relaxing the governing criteria.

The system’s exploratory capabilities are
supplemented by its ability to reason from
design cases (we use the words precedent and
case interchangeably in this section). The
ability to use knowledge drawn from experi-
ences inside or outside the current domain
helps produce innovative solutions. In partic-
ular, a design appears novel if it incorporates
knowledge acquired from past experiences in
domains different from the current one.

CYCLOPS, whose domain is landscape
design, operates in three modes: normal search,
exploration, and adaptation. These modes are
described in the following subsections.

Normal Search Mode
In normal search mode, CYCLOPS uses a mul-
tiobjective version of the A* algo-
rithm—Pareto-Optimal A*—to find all
nondominated solutions (provided they
exist). The search process uses two modules:
the synthesizer and the selector (figure 1).
The synthesizer takes partial designs and adds
detail to them by instantiating new variables.
The selector checks for dominance and places
the designs in a dormant or an active list.
Dominance is determined by plotting the par-
tial designs on a multiobjective pareto graph
and selecting the pareto-optimal points. An
example of a pareto graph for two objectives
(O1 and O2) is shown in figure 2. After selec-
tion, the active designs are returned to the
synthesizer for further detailing.

Exploration Mode
In the exploration mode, CYCLOPS relaxes
the governing criteria and searches alterna-
tives outside the original solution space using
an augmented version of the Pareto-Optimal
A* algorithm. The explorer module generates
new alternatives by relaxing the constraints
and objectives that bound the space (figure
1). In effect, relaxation increases the size of
the solution space, allowing the system to
examine designs in the state space that nor-
mally would have been pruned off (Navin-
chandra and Marks 1986). Two types of
criteria are used in CYCLOPS: constraints and
objectives. Both criteria define the solution
space as a subset of the larger state space of
possible designs. We can explore the space by
relaxing either of these criteria.

Relaxing constraints produces new alterna-
tives, some of which can fortuitously lead to
improved designs. For example, a landscape
designer who relaxes the constraint that all
homes be on slopes less than 8 percent to
some higher value (say 10 percent) makes
available plots of land that are on a slope
between 8 percent and 10 percent. It is possi-

CYCLOPS
performs this
kind of 
reasoning 
by matching
against the
subgoals and 
relations in
the causal
explanation
underlying the 
precedent. 
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as favorable. For example, when CYCLOPS
was given the problem of finding a location
for a new house, it considered alternatives by
normal search and exploration. During explo-
ration, it relaxed a constraint on the maxi-
mum allowable slope and found a location
high on a hillside. On examining this alterna-
tive, it was reminded of a precedent about
how an elevated location provides a good
panoramic view. After examining the prece-
dent, the program extracted a new criterion
about view. It then reevaluated the existing
alternatives using the new criterion. New cri-
teria often change the focus of the problem-
solving process. This phenomenon is called
criteria emergence. The matching algorithm is
explained next.

Adaptation Mode
In the adaptation mode, CYCLOPS uses
precedent knowledge to debug design prob-
lems. This knowledge is achieved by the
adapter module (figure 1). The adapter uses a
technique called demand posting, where
demands are posted to the precedents
database manager, and appropriate prece-
dents are retrieved. The debugger works by
recursively applying the following steps: (1)
looking for and recognizing bugs in a given
design; (2) explaining the causes of bug; (3)
repairing the bug by recalling and applying
relevant precedents; and finally, (4) reexam-
ining the design for new bugs. The third step
is the central function of the precedent-based
debugging process.

The demand-posting technique helps
CYCLOPS solve design problems by drawing
analogies. Whenever CYCLOPS encounters a
design problem that does not directly match
any past experience, it tries to reason by anal-
ogy. Drawing an analogy requires the ability
to match a precedent and the target problem
even though they have different characteris-
tics. For example, a landscape designer faced
with the problem of locating a house on a
steep slope might solve the problem by plac-
ing the house on stilts. The designer might
get this idea by reasoning analogically from a
precedent about how villagers in Thailand
put their huts on stilts to avoid flooding.
Notice that the purpose for using stilts in the
base precedent is different from the purpose
of the target problem. The matching is not
based on surface features of base and target
but on a deeper understanding of why the
huts are put on stilts. CYCLOPS performs this
kind of reasoning by matching against the
subgoals and relations in the causal explana-
tion underlying the precedent. An explana-
tion is usually a trace of how the different

ble that some of these new alternatives might
provide opportunities such as better soil 
conditions or better view. Relaxation over-
comes the artificial precision built into a cri-
terion. When we say that the slope should be
less than 8 percent, it does not mean that lots
with slightly higher slopes of say 9 percent or
10 percent be completely avoided.

Objectives can be relaxed by deliberately
pushing the pareto surface toward the origin
(figure 2). The figure shows that only a few of
a large group of designs are nondominated
and lie on the pareto surface. The curve
defines the trade-off between objectives O1
and O2. The situation depicted in figure 2a
can be relaxed by deliberately pushing the
pareto surface toward the origin, as shown in
figure 2b. In effect, all solutions that lay just
below the pareto surface are available for con-
sideration. It is in this way that new alterna-
tives can be brought into consideration
through objective relaxation.

The alternatives generated by exploration
are passed to the selector through the synthe-
sizer. The selector tries to see if potential
opportunities exist in the generated designs,
which is done by emerging new criteria. The
selector has a criteria-emergence submodule
that matches design alternatives against
precedents (figure 1). The ability to emerge
new criteria is implemented by providing the
selector with a database of past experiences
(precedents). In its simplest form, a precedent
is a record of an experience or episode; it is a
record of the conditions and the effects expe-
rienced. The effects can be physical or emo-
tional. All precedents are input by the
programmer or knowledge engineer. The pro-
gram matches design alternatives to the
precedents in the database. If a design has
certain characteristics that match a favorable
past experience, the current design is viewed
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parts of the precedent relate to subgoals of
the overall goal of the precedent. If a match is
found, design strategies used in the relevant
parts of the precedent are applied to the
target problem. The process is continued until
all bugs in the target problem are eliminated
(Sycara and Navinchandra 1989).

The advantage of this technique is that it
can match a base and target even if their
main goals or surface features are radically
different. For this reason, the program
appears to reason analogically (Gentner and
Toupin 1986).

The debugger has to retrieve past problem-
solving precedents that provide appropriate
repair strategies. An obvious way of finding
such precedents is to use a description of the
current bug as a cue into memory. Often,
however, a cue might not retrieve relevant
precedents, even if they exist in memory,
because the cue might not have the right
symbols in its representation or might be too
vague or overly specific. We need to generate
new cues that although related to the original
cue are different enough to retrieve useful
precedents. Several techniques for cue trans-
formation have been suggested: elaboration
(Kolodner 1980), condensation (Kolodner
1988), tweaking (Kass and Leake 1988;
Schank 1986), and adaptation (Sycara 1987).

Other techniques for finding relevant
precedents have been suggested by
researchers working on the psychological
aspects of human creativity and problem
solving. The developers of techniques such as
brainstorming (Osborn 1953) and synectics
(Gordon 1961) suggest that creative problem
solving is predicated on retrieving and using a
wide variety of precedents. The techniques
they use to facilitate this process are based on
asking many questions (Recently, this idea
was also examined in the AI literature
[Schank 1986, 1988]). Questions serve as cues
into memory and help retrieve precedents
that normally would not have come to mind.
CYCLOPS performs this kind of reasoning by
redefining the given problem. For example,
given problem X, the program first asks, “Is
there a known way of eliminating X?” If it
cannot find an appropriate precedent, it asks,
“What are the causes of X?” “If it is not
known how to eliminate X, can its causes be
eliminated?” “Can its effects be reduced or
eliminated?” Roughly speaking, the idea is to
reduce a bug into subbugs that can relate
either directly or analogically to precedents in
memory. The reasons underlying a given bug
are determined by developing a causal expla-
nation for the existence of the bug. This ques-
tioning process is recursively applied until a

solution is found (Navinchandra 1988, forth-
coming).

Execution of CYCLOPS
CYCLOPS is started in the normal search
mode. If no solutions are found or if the user
makes a request, the program goes into the
exploration mode. The adapter is only
invoked by the user. This restriction was
placed because adaptation is computationally
expensive, and hence, it is not possible to try
and adapt each and every design produced by
the synthesizer.

Implementation Details
The first version of CYCLOPS was implement-
ed at the MIT Intelligent Engineering Systems
Laboratory in Franz Lisp™ on a Vax™
machine running the UNIX™ operating
system. The CYCLOPS interface uses the X
window system developed by Project Athena
at MIT. CYCLOPS has been tested on land-
scape design problems with 10 to 15 land
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used to control various tasks, such as the acti-
vation of other KSs, it comprises the task con-
trol knowledge. Domain-independent KSs
(DIKSs) perform specific tasks involved in
design in a domain-independent manner;
DIKSs can be viewed as KBES shells. In the
current implementation, we are incorporat-
ing four DIKSs. First, the synthesizer takes a
set of specifications (or constraints) and gen-
erates one or more conceptual designs. A
description of the synthesizer is provided in
the next subsection.

Next, the evaluator performs a preliminary
evaluation of all the feasible alternative solu-
tions that are generated by the synthesizer.
The evaluator acts on a network of object
templates; this network exists in the domain
KS level. The root object of this network con-
tains details of the evaluation, such as fea-
tures needed for evaluation, and the
evaluation function. The child nodes (or
objects) represent various features; the value
of each feature is determined by traversing
through the alternative solution, which is
represented as a tree in the solution partition
of the context.

Third, the geometric reasoner KS is an
intelligent computer-aided design (CAD)
graphics system that performs the following
tasks when fully implemented: (1) under-
stands engineering sketches and drawings, (2)
generates geometric models and reasons
about these models, and (3) performs inter-
ference checking between design objects.

Fourth, the constraint manager KS per-
forms the evaluation and consistency mainte-
nance of constraints arising in design. The
constraint manager is further described in the
next section.

Domain KSs contain knowledge for a par-
ticular domain. These KSs are used by DIKSs.
Design plans, goals, constraints, objects, and
analysis procedures are some KSs that can be
incorporated at this level. For example, for
preliminary (or conceptual) structural design
(Sriram 1987), the design plan is represented
as shown in figure 4. The classes of con-
straints that arise in structural design (civil
and mechanical) can be categorized into (1)
synthesis constraints, which affect the gener-
ation of feasible configurations, including
spatial requirements and heuristics that repre-
sent the designer’s style or experience; (2)
interaction constraints, which arise from the
interaction of structural subsystems, includ-
ing the compatibility of materials and struc-
tural behavior; (3) causal constraints, which
represent equations of equilibrium, compati-
bility relationships, and the response of struc-
tural systems to their environment; and (4)

uses, about a dozen constraints, and half a
dozen objectives. The program usually adds
three or four new objectives during a design
process. The knowledge base has 25 prece-
dents.

Contact: D. Navinchandra or D. Sriram.

Routine Design: CONGEN
CONGEN is being developed as a domain-
independent framework for conceptual (or
preliminary) design. This system includes
some of the features incorporated in earlier
knowledge-based expert systems (KBESs) such
as ALL-RISE (Sriram 1987) and Pinch Roll
Interactive Design Expert (PRIDE) (Mittal,
Dym, and Morjaria 1985) that were devel-
oped for conceptual design. CONGEN con-
sists of a layered knowledge base, a context
mechanism, and a friendly user interface, as
shown in figure 3. The knowledge base and
the context are described briefly in the fol-
lowing subsections.

Knowledge Base
The knowledge base consists of a number of
knowledge sources (KSs) that are organized
into several layers or levels. Briefly, we are
incorporating four KSs into CONGEN. Strate-
gy-level KSs determine the appropriate
domain-independent KS to fire, depending
on the information provided in the control
partition of the context. Because this level is
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parametric constraints, which are constraints
on parameters (attributes) of components,
including strength and serviceability con-
straints. Sample synthesis and interaction
constraints for preliminary (conceptual) struc-
tural design follow.

Synthesis Constraint
IF material is concrete, AND

30 <= no. of stories <= 40, AND
the formwork is not expensive

THEN the constraint is satisfied

Interaction Constraint
IF 3D.lateral.load.material =

3D.gravity.load.material
THEN the constraint is satisfied

Quantitative KSs contain the analytic
knowledge and reference information
required for analysis and design.

Synthesizer KS
The synthesizer KS takes a set of specifications
(or problem-specific constraints) and gener-
ates one or more preliminary designs. It can
be viewed as a problem solver for a consistent
labeling problem (Haralick and Queeney
1982; Mackworth 1977) and can be defined
by the following tuple:

{U, L, C, T, R, δ}  ,
where
U = {u1, u2, ...., un} is a set of units that need
to be assigned; these units can be hierarchi-
cally decomposed into subunits.
L = {l1, l2, ...., ln} is a set of labels that can be
assigned to U; the elements of L can be
known in advance or generated using a
known function.
C is a set of constraints that need to be satis-
fied by every feasible solution. (Four types of
constraints—interaction, synthesis, causal,
and parametric—were described earlier. Other
design problems can incorporate similar cate-
gories of constraints. In Mackworth [1977],
the interaction constraints were classified into
arc constraints when two units are involved
in a constraint and path constraints when
more than two units are involved in a con-
straint; the synthesis and parametric con-
straints were classified under node
constraints.)
T = {(u1, l1) (u2, l2) ...., (un, lm)} is a set of legal
assignments. 
R is a set of feasible solutions.
δ is a set of operators that set up the sequence
of unit assignments, that is, hierarchical
refinement.

In the current KBES for design, the units
are normally represented as parts of a design
plan. For example, the units in a preliminary
(conceptual) structural design system (figure

4) are 3D-lateral-mat (from the select lateral
material task), 3D-gravity-mat (from the select
gravity material task), and so on.

Context
The context consists of all the solutions gen-
erated during conceptual design. It is divided
into two parts: the control partition, which is
used for storing general information, and the
solution partition, which comprises a tree of
contexts. Multiple solutions (or partial solu-
tions) to the design problem can be obtained
from the leaf node contexts.

Implementation Details
CONGEN is being developed on three plat-
forms: SUN, IBM PC, and Macintosh II. The
SUN and Macintosh versions are being imple-
mented in Parmenides/Frulekit, which is a
frame-based–rule-based language developed
in Common Lisp at Carnegie-Mellon Univer-
sity by Jaime Carbonell’s research group; the
user interface for the SUN version will be
developed in the X Window environment.
The IBM PC version is being developed in
KAPPA™, which is a C-based hybrid program-
ming environment marketed by Mega-
Knowledge Inc. We hope to release the
synthesizer and the constraint manager KS
modules for the Macintosh during the
Summer of 1990.

Contact: D. Sriram.

CONMAN
Constraints are continually added, deleted,
and modified throughout the development of
a new product. For example, the initial set of
specifications might be augmented, changed,
or refined as the design progresses. The result-
ing constraint set can contain conflicting or
unrealizable requirements. The management
of these constraints throughout the evolving
design is a nontrivial task. The constraints are
often numerous, complex, and contradictory.
In complex designs, where form, function,
and physics strongly interact, it is difficult to
track all relevant constraints and parameters
and understand the basic design relationships
and trade-offs. Effective tools for constraint
management facilitate the conceptual design
process. These tools should form an integral
part of any design automation system.

A constraint-management system should
have three functionalities.

1. Evaluation. One obvious elementary
function of a constraint manager is to evalu-
ate the set of constraints for given values of
known parameters. This ability is essential to
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other components can be added to the
system. Each component is represented as a
frame in a concept base. Each frame encodes
a set of constraints that predict its perfor-
mance, establish its physical limits, and
define its topological (connectivity) restric-
tions. In addition, graphic icons and other
physical properties are included in each
frame (figure 6a). In the current system, the
user interactively selects individual compo-
nents from a menu and specifies the connec-
tivity relationships between these
components. The system creates the aggre-
gate concept model in the working memory
by fusing the individual component models
(figure 6b). The constraint manager then
evaluates the aggregate model given the
known parameters and identifies redundant
or conflicting constraints. Concepts can be
stored and retrieved and can be used as com-
ponents in higher-level concepts. Currently,
the constraint manager is being incorporated
in CONGEN as the constraint manager KS.

Constraint Manager: Overview
The role of the constraint manager is exem-
plified by the causal dependency sphere
metaphor (figure 7), which encloses a net-
work of parameter relationships and interde-
pendencies. The sphere interacts with the
world through a series of devices that can be
either input transducers or output actuators.
These devices, shown in the figure as cylin-
drical rods that radially extend from the
sphere, have various sizes denoting their rela-
tive importance. They can have a scale indi-
cating values, and they can have limits on
the values they can attain. The limits can
have warning lights to signal a limit has been

enable the designer to examine the basic rela-
tionships and trade-offs between design
parameters.

2. Minimization of computation. During
evaluation, the computational effort should
be minimized. This effort is generally accom-
plished by identifying and isolating those con-
straints relevant to a particular computation.

3. Consistency maintenance. Because con-
straints are continually added, deleted, and
modified throughout the conceptual design
process, it is possible for a constraint set to
contain inconsistencies. If a constraint set
contains inconsistencies and cannot be evalu-
ated, it is desirable that the system be able to
identify the redundant or conflicting con-
straints.

CONMAN has these functionalities and
was implemented as part of a knowledge-
based system—the concept modeler (figure
5). The concept modeler provides the user
with a menu of predefined concept models of
common mechanical engineering components;
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reached. The limits on the devices can be set
by the designer. The designer can query the
system by acting on any of the devices and
observe the responses on all other devices;
the devices respond according to the depen-
dencies set within the sphere. The constraint
manager functions in a similar manner. It
provides useful information regarding the
dependencies among the parameters, even
when a feasible solution is found. This infor-
mation can be used as a guide in searching for
a better solution and to gain insight into the
nature of the solution space. Details of how
the constraint manager represents and pro-
cesses constraints are provided in the follow-
ing subsections.

Constraint Representation
A constraint is a set of parameters that behaves
according to a specified relationship (or con-
straining mechanism). The parameters can
take on continuous or discrete values. The
status of a parameter is its classification as a
(known) constant or (unknown) variable. The
constraint relationships can be piecewise con-
tinuous equalities or inequalities. Individual
constraints, as well as systems of constraints,
are modeled as a constraint graph, which is a
directed graph whose nodes denote parame-
ters and whose arcs denote constraint rela-
tionships. Arcs are labeled according to the
constraint they represent; the same label can
appear on more than one arc. This representa-
tion is illustrated by considering the can-
tilever beam subjected to a point load, as
shown in figure 8a. The associated constraints
and the constraint network (or graph) are
shown in figure 8b.

Constraint Evaluation
To evaluate a system of constraints, an assign-
ment or matching of every unknown parame-
ter to a particular constraint relationship
must be performed (this matching problem
has been extensively studied in the literature;
see Serrano [1977] for a literature review). The
matching is represented by the bipartite
graph G = {V, E}. A graph is said to be bipartite
when its set of nodes V is the union of two
subsets N and F such that the intersection of
these subsets is a null set (that is, N ∩ F = ∅ )
and such that every member of its set of arcs
E connects one element of N with one ele-
ment in F; N = {n1,...,np} is a set of p nodes
that correspond to the unknown parameters;
and F = {f1,..,fr} is a set of r nodes that corre-
spond to the set of constraints. Each arch in E
= {e1,..,ek} matches one unknown parameter
with one constraint; no two arcs in E can
have the same elements in N or F in
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Figure 8. Example of a Constraint Representation.
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deleted except those denoting the unknown
parameter’s matching constraint. The pres-
ence of cycles in the tree makes evaluation
difficult because a cycle identifies a constraint
subset that must be solved simultaneously.
The subset consists of constraints matching
the nodes that constitute a strong component
in the diagraph. These strong components are
collapsed; the resulting tree is shown in
figure 9b-2. The unknowns are then evaluat-
ed using a reverse topological sort, which is
described in Serrano (1977).

Implementation Details
The constraint-management system was
implemented on an IRIS workstation in Franz
Lisp. Recently, several companies have been
developing constraint-management tools as a
part of their design automation packages.
Example constraint-management tools are
Cognition Inc.’s MathSolve™, which is based
on early work performed at the MIT Mechani-
cal Engineering-CAD laboratory and is a rep-
resentative constraint management system;
Borland’s Eureka™, which is a relatively inex-
pensive constraint solver available on person-
al computers but does not help identify the
causes of constraint failure, as in Math-
solve™; and Premise Inc.’s variational geome-
try package which contains a constraint
management facility for dealing with equality
constraints.

The constraint manager has several limita-
tions, such as the inability to handle inequal-
ities. We are currently pursuing various
augmentations to the constraint-manage-
ment system.

Contacts: D. Serrano, D. Gossard, D. Navin-
chandra, and D. Sriram.

Cooperative Engineering Design
Most engineering projects involve a large
number of components and the interaction
of multiple technologies. The components
included in the product are decided in an
iterative design process. In each iteration,
interfaces and interface conditions among
these components are designed with slack to
account for potential variations created when
the components and interface values become
better known. Iteration proceeds toward
increasing detail; design personnel may
change, and their numbers expand with
increasing level of detail. This process intro-
duces a number of problems in the engineer-
ing industry.

The problems facing the engineering
industry in the United States will be high-

common. Therefore, each arc in the bipartite
graph corresponds to a particular node (an
unknown parameter) and one of its attached
arcs (a constraint) in the original constraint
graph. In the example introduced earlier, N =
{I, H, B, L, Y, F} is the set of unknown parame-
ters; KN = {M, E, A, K, S} is the set of known
parameters; and F = {f1, f2, f3, f4, f5, f6} is the
set of constraints. A bipartite graph before
matching is shown in figure 9a-1, and bipar-
tite graphs depicting two possible matchings
are shown in figures 9a-2 and 9a-3.

This matching permits the original con-
straint graph to be converted to a tree-like
structure, shown in figure 9b-1. At every node
in the constraint graph representing an
unknown parameter, all incoming arcs are
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Iteration proceeds toward increasing detail; design personnel can change, and their
numbers can expand with increasing level of detail. This process introduces a number
of problems in the engineering industry.



lighted by considering the design and con-
struction of structures.1 On a single project,
interacting design technologies often come
from separate firms or functional groups
within a firm, and little coordination exists
between designers and contractor(s) during
design. Because designers find coordination
among themselves difficult, they leave this
task to construction managers or the contrac-
tor. Thus, working drawings, used to inform
the contractor of the product, lack detail.
Shop or fabrication drawings are required
from the contractor to document details, but
potential conflicts among trades are often
unrecognized until construction begins. 

Several undesirable effects are caused by
this lack of coordination: (1) The construc-
tion process is slowed, and work stops when a
conflict is found. (2) Prefabrication opportu-
nities are limited because details must remain
flexible. (3) Opportunities for automation are
limited because capital-intensive, high-speed
equipment is incompatible with work inter-
ruptions from field-recognized conflicts. (4)
Rework is rampant because field-recognized
conflicts often require design and field
changes. (5) Conservatism pervades design
because designers provide excessive slack in
component interfaces to avoid conflict. (6)
The industry is unprepared for the advent of

automated construction because the need for
experience in design limits choice to available
materials placed by hand.

All these problems decrease productivity. In
addition, failures, such as the 1981 Kansas
City Hyatt Regency collapse where two sky-
walks in the lobby of the hotel collapsed,
occur more often then they should. Overcom-
ing these problems requires significant
changes to the design process, together with
superior computer-integrated design and con-
struction-manufacturing (CIDCAM) tools.

Computer-aided tools, which are collective-
ly called DICE, are currently being developed
with these objectives2: (1) to facilitate effec-
tive coordination and communication
between various disciplines involved in engi-
neering; (2) to capture the process by which
individual designers make decisions, that is,
what information was used, how it was used,
and what it created; (3) to forecast the impact
of design decisions on manufacturing or con-
struction; (4) to interactively provide design-
ers with detailed manufacturing process or
construction planning; and (5) to develop
intelligent interfaces for automation.

DICE can be envisioned as a network of
computers and users (called knowledge mod-
ules [KMs]), where the communication and
coordination is achieved—through a global
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an analysis program, and so on; a computer
user; or a combination of these. A KBES could
be viewed as an aggregation of KSs. Each KS is
an independent chunk of knowledge, repre-
sented either as rules or objects. In DICE,
KMs are grouped into three categories: strate-
gy, specialist, and quantitative. The strategy
KMs help the control mechanism in the coor-
dination and communication process. The
specialist KMs perform individual specialized
tasks in the design and construction process,
and the quantitative KMs are mostly algorith-
mic CAD tools.

Control Mechanism 
The communication, coordination, data
transfer, and all other functions define the
control mechanism. The control mechanism
performs two tasks: (1) evaluates and propa-
gates implications of actions taken by a par-
ticular KM and (2) assists in the negotiation
process.

Task 1 is accomplished through methods
associated with objects in the object hierar-
chy of SBB and a truth maintenance system
(TMS) that keeps the global database in a con-
sistent state. If two KMs try to access the
same object, then the priorities are achieved
by the strategy KM, and the scheduling infor-
mation is stored in CORDBB.

database called blackboard—by a control
mechanism. A conceptual view of DICE for
design and construction is shown in figure
10; only a representative set of KMs are
shown in the figure.

Blackboard
The blackboard is the medium through
which all communication takes place. The
blackboard in DICE is divided into three par-
titions: solution, negotiation, and coordina-
tion. The solution blackboard (SBB) partition
contains the design and construction (or
manufacturing) information generated by
various KMs. This design information is rep-
resented in the form of an object hierarchy
and contains information about the design
product and process. The negotiation black-
board partition consists of the negotiation
trace between various engineers taking part
in the design and manufacturing (construc-
tion) process. The coordination blackboard
(CORDBB) partition contains the information
needed for the coordination of various KMs.

Knowledge Modules
Each KM can be viewed as a KBES, developed
for solving individual design- and construc-
tion-related tasks; a CAD tool, such as a
database structure, that is, a specific database,
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DICE: Trace of Task 1 for Construction
Automation
A trace of events for task 1 for design and
construction is shown in figure 11 and is out-
lined as follows: (1) A preliminary design of a
building (in the form of objects), which
includes loading details and designer’s inten-
tions in making certain decisions is posted on
SBB partition by the conceptual designer
(developed using CONGEN). (2) Let the con-
nection details of a particular joint be repre-
sented by the connection object. The
connection designer sends a message with
details of connections and any assumptions
made during the design. (3) TMS checks to
see whether earlier assumptions made by the
conceptual designer are violated. (4) Associat-
ed with the connection object are methods,
which indicate the possible KMs that can
modify the object. Assume that the fabricator
KM is one of them. A message is sent to the
fabricator KM to find out whether the con-
nection can be fabricated in the field. (5) The
connection designer is notified if any prob-
lems are anticipated. (6) Sometimes two or
more KMs might want to modify or access a
particular object in the SBB partition. This
information is stored in the CORDBB parti-
tion and is used by the control mechanism.

Implementation Details
During the initial stages, our major focus was
the development of (1) utilities for defining
the SBB object hierarchy; (2) transactions for
posting, modifying, and deleting information
in the blackboard; (3) a simulation program
to demonstrate the utility of DICE; and (4) a
prototype that involves the automatic genera-
tion of construction schedules from an archi-
tectural drawing. The DICE prototype was
implemented on a network of SUN computers
in Parmenides/Frulekit. Our current research
is addressed at scaling up DICE so that it can
be used in the industry.

Contact: D. Sriram and R. Logcher.

DESIGN-KIT: A Knowledge-
Based Environment for Process

Engineering
A computer-aided process engineering soft-
ware environment should allow designers to
move consistently among the following engi-
neering tasks: (1) conceptual design of pro-
cessing schemes and evaluation of alternative
chemistries, mass, and energy allocations; (2)
simulation, economic, and operability analy-
sis of generated process designs; (3) comple-
tion of the design by sizing and costing all

major equipment; (4) identification of control
loop configurations; (5) generation of design
operating procedures for start-up, shutdown,
and alternative levels of production; and (6)
generation of piping and instrumentation
diagrams, fabrication isometrics, mechanical
details of machinery, structures, and so on.

Each of these tasks is composed of a struc-
ture of subtasks, requires different informa-
tion (qualitative or quantitative) at various
levels of detail, and generates information
that might be prerequisite for the execution
of another task and might involve the user’s
participation at various levels of interaction.

A programming environment—DESIGN-
KIT—that addresses these issues was devel-
oped in the Laboratory for Intelligent Systems
in Process Engineering (LISPE) in the Depart-
ment of Chemical Engineering. The structure
of DESIGN-KIT and some of the applications
that were developed using DESIGN-KIT are
presented in the following subsections.
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grams, and mechanical equipment configura-
tions takes place, interactively or automatical-
ly. (2) SELECT EQUIPMENT contains lists of
processing units, mechanical equipment, or
components of control loops. (3) DISPLAY
OPERATIONS contains commands operating
on the graphic objects of the main DESIGN
PANE window, that is, connect, disconnect,
delete, move object, and so on. (4) PRO-
GRAM OPERATIONS contains commands to
retrieve an old process or save the current
process or control loop design, exit, and so
on. (5) LISP LISTENER allows the user to
access the Common Lisp facilities to debug,
edit, compile, evaluate, and so on, Lisp code.

Ephemeral windows appear in the graphic
interface to support the interactive characteri-
zation of processing units, control loop com-
ponents, and so on.

Graphic Objects. The construction of icons to
represent specific processing units, control
loop components, or operational paths is
based on a set of class objects. The objects are
mouse sensitive and can be created, deleted,

Structure of DESIGN-KIT

DESIGN-KIT is envisioned as the next genera-
tion computer-aided engineering environ-
ment, with full integration of knowledge-
based systems, algorithmic packages, and
graphic interfaces. DESIGN-KIT is implement-
ed in Common Lisp and KEE™ on a Symbol-
ics machine. The various components (figure
12) of DESIGN-KIT are briefly described in
the following paragraphs; further details are
provided in Stephanopoulos et al. (1987).

Graphics and Graphic Interfaces. DESIGN-
KIT contains three interfaces: (1) the multi-
window interfaces, (2) the graphic objects,
and (3) KEE’s graphic interface.

Multiwindow Interfaces. These interfaces were
constructed using generic objects available in
the Symbolics Common Lisp programming
environment. For example, figure 13 shows a
five-window arrangement: (1) In DESIGN-
PANE, the graphic composition of new or the
rearrangement of old process flowsheets, con-
trol loops, process and instrumentations dia-

DESIGN-KIT
is envisioned

as the next
generation
computer

aided 
engineering

environment,
with full 

integration of
knowledge-

based systems,
algorithmic

packages, 
and graphic

interfaces.
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Figure 13. Graphic Interface of the Interactive Synthesis and Analysis of 
Process Flowsheets within DESIGN-KIT.



modified, or rearranged through simple
mouse and menu operations.

KEE’s Graphic Interface. The facilities of KEE
provide additional graphic interfaces. Within
the scope of DESIGN-KIT, these facilities are
used to (1) display the structure of the data
models in a given design or the attributes of
specific object; (2) generate new classes of
objects or modify the attributes of existing
ones; and (3) articulate production rules, and
so on.

Object-Oriented Database: Data Models.
The graphic images of processing units, com-
plete flowsheets, control loops, or operational
strategies are directly connected with data
models in an object-oriented database. These
data models are structured so that they con-
tain information and knowledge describing
what it is we might know about an object,
what we would like to automatically infer
about an object, and how to infer it. The
mechanism of multiple inheritance and KEE’s
knowledge organization is used throughout
DESIGN-KIT to construct the data models for
various objects.

Hierarchical Modeling of Processing Sys-
tems. The representation of processing sys-
tems is achieved through a dual hierarchical
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have their values specified. If not, it attempts
to specify additional equations containing
the unknown variables and inserts them in
the list of equations. This expansion termi-
nates at a user-specified process boundary or
when no variables are left unspecified. Once
the set of symbolic equations for solving a
particular problem has been compiled, special
methods simplify the representation by weed-
ing out redundant variables. Subsequently,
the incidence matrix is formed with the asso-
ciated lists of variables and equations. The
Lee-Christensen-Rudd algorithm is invoked
for the selection of the design variables that
renders the simplest set of simultaneous
equations to be solved (Lee, Christensen, and
Rudd 1966).

Order-of-Magnitude Reasoning. Order-of-
magnitude analysis and reasoning are inher-
ent in every design activity and are of
particular value in process design and control
(Douglas 1987). The O[M] (order-of-magni-
tude) formalism, developed by Mavrovounio-
tis and Stephanopoulos (1987), was
incorporated into DESIGN-KIT.

Applications
DESIGN-KIT is being used in the design of
preliminary process flowsheets, the synthesis
of plantwide control configurations, plan-
ning process operations, and the analysis and
diagnosis of real-time operations.

Contact: G. Stephanopoulos.

Summary
A representative set of projects at MIT that
utilize the KBS technology for engineering
design is described in this article. In addition
to the projects described, considerable
research is also being conducted by Professor
Jerry Connor (civil engineering), Professor
Steven Kim (Laboratory for Manufacturing
Productivity), Professor Warren Seering

structure depicting the various levels of
abstraction of processing systems (figure 14a)
and the relationships of the various modeling
components (figure 14b). Such a system
allows multiple, coexisting levels of abstrac-
tion for the various processing entities; con-
sistency of models at any level of detail; and
conflict-free specification of design or opera-
tional constraints at any level of the model-
ing components.

The development of process models is sup-
ported by a model editor (figure 15), which
knows how to construct the modeling rela-
tionships using principles from chemical
engineering science. Specific relationships
can also be entered by the human designer. It
also contains a series of development tools,
which are used to facilitate the encoding,
inspection, and maintenance of knowledge.

Production Rules and Reasoning Mecha-
nisms. DESIGN-KIT employs the facilities of
the KEE system to capture production rules
and execute them within the scope of specific
reasoning strategies. Various reasoning mech-
anisms (forward chaining, backward chain-
ing, truth maintenance, and so on) available
in KEE are used.

Equation-Oriented Simulation and Design.
A rudimentary symbolic equation solver was
implemented as a part of DESIGN-KIT. Sym-
bolic equations are generated from the data
models (describing various components) and
connections between various components.
Consider the following example: The message
(COMPUTE-EFFLUENT-COMPOSITION) is
sent by the user to the graphic icon of a con-
tinuous stirred tank reactor using the mouse
on the graphic interface. The system searches
through the data model of the reactor and
identifies the equation containing the desired
variable and places this equation in a list.
Subsequently, it examines whether other vari-
ables and parameters in the selected equation
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Failures, such as the 1981 Kansas City Hyatt Regency col-
lapse where two skywalks in the lobby of the hotel collapsed,
occur more often then they should. Overcoming these 
problems requires significant changes to the design process,
together with superior computer-integrated design and 
construction-manufacturing (CIDCAM) tools.



(mechanical engineering), and Professor Karl
Ulrich (School of Management). Significant
contributions are being made, and it is hoped
that advanced design automation tools will
be available to the designer in the near future.

A number of projects with similar scope are
also being pursued in other research institu-
tions. A forthcoming book entitled Artificial
Intelligence in Engineering Design, edited by C.
Tong and D. Sriram will contain papers
describing some of these projects. Other
sources for articles on AI in design are a
recent book entitled Expert Systems for Engi-
neering Design, edited by M. Rychener and
published by Academic Press, and several
books edited by J. Gero and published by
Elsevier Science, North-Holland.  ■
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Notes
1. Manufacturing in the civil engineering industry
is known as construction. Several differences exist
between the construction industry and the manu-
facturing industry. For example, in manufacturing,
several hundreds of a single type of product are
produced, whereas construction involves the pro-
duction of one-of-a-kind products. However, the
overall engineering process is similar. In this article,
the terms manufacturing and construction denote
the realization or creation of a designed artifact.
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industry, including ICES STRESS, STRUDL,
knowledge-based cost estimating, scheduling,
and a number of other CAD systems.
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