
A long-stand-
ing problem
. . . is design-

ing systems
that can
describe a set
of actions . . .
that can be
expected to
allow the
system to
reach a
desired goal.

Articles

SUMMER 1990 61

AI Planning:
Systems and Techniques1

James Hendler, Austin Tate, and Mark Drummond

0738-4602/89/$4.00 ©1990 AAAI

A long-standing
problem in the field
of automated rea-
soning is designing
systems that can
describe a set of
actions (or a plan)
that can be expected
to allow the system
to reach a desired
goal. Ideally, this set
of actions is then
passed to a robot, a
m a n u f a c t u r i n g
system, or some
other form of effec-
tor, which can
follow the plan and
produce the desired
result. The design of
such planners has been with AI since its earli-
est days, and a large number of techniques
have been introduced in progressively more
ambitious systems over a long period. In addi-
tion, planning research has introduced many
problems to the field of AI. Some examples
are the representation and the reasoning
about time, causality, and intentions; physical
or other constraints on suitable solutions;
uncertainty in the execution of plans; sensa-
tion and perception of the real world and the
holding of beliefs about it; and multiple
agents who might cooperate or interfere.

Planning problems, like most AI topics,
have been attacked in two major ways:
approaches that try to understand and solve
the general problem without the use of
domain-specific knowledge and approaches
that directly use domain heuristics. In plan-
ning, these approaches are often referred to as
domain dependent (those that use domain-
specific heuristics to control the planner’s
operation) and domain independent (those in

which the planning
knowledge represen-
tation and algorithms
are expected to work
for a reasonably
large variety of appli-
cation domains).
The issues involved
in the design of
domain-dependent
planners are those
generally found in
applied approaches
to AI: the need to
justify solutions, the
difficulty of knowl-
edge acquisition,
and the fact that the
design principles
might not map well

from one application domain to another.
Work in domain-independent planning has

formed the bulk of AI research in planning.
The long history of these efforts (figure 1) has
led to the discovery of many recurring prob-
lems as well as to certain standard solutions.
In addition, there have been a number of

This article reviews research in the development
of plan generation systems. Our goal is to famil-
iarize the reader with some of the important
problems that have arisen in the design of plan-
ning systems and to discuss some of the many
solutions that have been developed in the over
30 years of research in this area. In this article,
we broadly cover the major ideas in the field of
AI planning and show the direction in which
some current research is going. We define some
of the terms commonly used in the planning lit-
erature, describe some of the basic issues coming
from the design of planning systems, and survey
results in the area. Because such tasks are virtu-
ally never ending, and thus, any finite document
must be incomplete, we provide references to
connect each idea to the appropriate literature
and allow readers access to the work most rele-
vant to their own research or applications.

AI Magazine Volume 11 Number 2 (1990) (© AAAI)

survey results in the area. (Because of the
recurrence of many themes throughout the
planning literature, we survey the field on
the basis of areas of interest rather than in
terms of its chronological development.)
Such tasks are virtually never ending, and
thus, any finite document must be incom-
plete. Thus, in addition to our discussion of
the issues, we provide references to connect
each idea to the appropriate literature and
allow readers access to the work most rele-
vant to their own research or applications.

Planning Terminology
An AI planning system is charged with gener-
ating a plan that is one possible solution to a
specified problem. The plan generated will be

attempts to combine the planning techniques
available at a given time into prototypes able
to cope with increasingly more realistic appli-
cation domains. (Table 1 lists some of these
efforts and the domains to which they were
applied.)

The goal of this article is to familiarize the
reader with some of the important problems
that have arisen in the design of planning
systems and some of the many solutions that
have been developed in the over 30 years of
planning research. We broadly cover the
major ideas in the field of AI planning and
attempt to show the direction in which cur-
rent research is going. We define some of the
terms commonly used in the planning litera-
ture, describe some of the basic issues coming
from the design of planning systems, and

Articles

62 AI MAGAZINE

1960

1970

1980

1965

1975

1985

4. REF-ARF
constraints

10. HEARSAY-II
blackboard

14. MOLGEN (4, 10, 12)
constraints

metaplanning

18. Distributed (10)
Planning

3. State Space
Search

1. GPS
Means-end analysis

op. diff. tables

2. QA3

6. ABSTRIPS (5)
abst. spaces
hierarchical

8. HACKER (5)
Debugging
interaction
problems

13. Replanning on (6,7)
failure (Hayes)

12. NOAH (6, 8)
partial order

critics

11. INTERPLAN (8)
interaction analysis

15. NONLIN (12)
goal structure

typed conditions

9. WARPLAN & (8)
Waldinger

action or goal regression

16. NASL (12)
"Plan State"

 26. O-PLAN (19, 20, 22)

20. DEVISER (15)
time & events

30. FORBIN (15, 20)
36. PLEX (21)

adaptive planning

29. CHEF (21)
case-based planning

38. PRIAR (15,36)
Plan Reuse

22. ISIS-II (16)
constraints

17. NONLIN+ (15)
decision graph

24. TWEAK
(8,9,12,15)
modal truth

criterion 27. PRS (13)
reaction

23. SIPE (14, 15)
PLANX-10

21. "Common Sense (19)
Domain"Planning

(Wilensky)

28. SCRAPS (16, 21)
parallel search

25. "behavioural" (6, 12)
planning
(Lansky)

31. Iteration in (12)
proc. nets

(Drummond)

32. GTD (8)
simulation &
debugging

33. Multi-agent (27)
Planning
(Pednault)

37. PRODIGY/EBL (7)
Learning control

7.PLANEX (5)
MACROPS
execution
"learning"

35. Quantitative (3, 6)
search results

(Korf)

Approximate
Date

5. STRIPS (1,2,3)
precond/add/delete lists

19. OPM (10)
Opportunistic

Search

34. Real-time reaction (6, 27)
(Kaebling)

Studies of
Human Problem

Solving Operations
Research

Theorem
Proving

Truth Maintenance

Temporal logics

Natural Language Processing

Machine Learning

Real-time systems

Domain Modeling

Procedural Languages

Figure 1. A Brief Chronology of Some Well-Known Planning Systems.
The numbers in parentheses represent systems on which each planner has directly built (also shown as solid lines where possible). The dotted lines
represent some of the important outside areas influencing the development of planning systems.

composed of operator schemata, provided to
the system for each domain of application.
This section briefly considers the meaning of
each of these terms and how they relate to
one another.

A problem is characterized by an initial state
and a goal state description. The initial state
description tells the planning system the way
the world is right now. The goal state descrip-
tion tells the planning system the way we
want the world to look when the plan has
been executed. The world in which planning
takes place is often called the application
domain. We sometimes refer to the goal state
description as simply the goal. In many sys-
tems, a goal can be transformed into a set of
other, usually simpler, goals called subgoals.

Operator schemata characterize actions. (The
terms action and event are often used inter-
changeably in the AI planning literature and
are here.) Schemata primarily describe actions
in terms of their preconditions and effects.
Plans are built from these operator schemata.
Each operator schemata characterizes a class
of possible actions by containing a set of vari-
ables that can be replaced by constants to
derive operator instances that describe specif-
ic, individual actions. When the distinction
doesn’t matter, we use the term operator to
stand for both operator schemata and opera-
tor instances. An action that the planner con-
siders to be directly executable is referred to
as a primitive action or, simply, a primitive.

The terminology of Strips operators is com-
monly used throughout the AI planning liter-
ature (Fikes, Hart, and Nilsson 1972a, 1972b).
These operators, first used in the early plan-
ning program Strips, describe an action with
three elements: a precondition formula, an
add-list, and a delete-list (figure 2). An opera-
tor’s precondition formula (simply, the opera-
tor’s preconditions) gives facts that must hold
before the operator can be applied. The add-
list and delete-list are used in concert to simu-
late action occurrence. If an operator’s
preconditions hold in a state, then the opera-
tor can be applied. Applying an operator
means acting on its add-list and delete-list to
produce a new state. The new state is pro-
duced by first deleting all formulas given in
the delete-list and then adding all formulas in
the add-list. Although newer planning sys-
tems do depart from this approach, the termi-
nology of Strips operators is fairly standard,
and we use it often in this article.

A plan is an organized collection of opera-
tors. A plan is said to be a solution to a given
problem if the plan is applicable in the prob-
lem’s initial state, and if after plan execution,
the goal is true. What does it mean for a plan
to be applicable? Assume that there is some
operator in the plan that must be executed
first. The plan is applicable if all the precondi-
tions for the execution of this first operator
hold in the initial state. Repeated analysis can
determine whether all operators can be
applied in the order specified by the plan.
This analysis is referred to as temporal projec-
tion. The first state considered in the projec-
tion is the problem’s initial state. Repeated

Articles

SUMMER 1990 63

Planner Domain

STRIPS (Fikes & Nilsson 1971 Simple Robot Control

HACKER (Sussman 1973) Simple Program Generation

NOAH (Sacerdoti 1977) Mechanical Engineers Apprentice Supervision

NONLIN (Tate 1977) Electricity Turbine Overhaul

NASL (McDermott 1978) Electronic Circuit Design

OPM (Hayes-Roth &

Hayes-Roth 1979) Journey Planning

ISIS-II (Fox et. al. 1981) Job shop Scheduling (Turbine Production)

MOLGEN (Stefik 1981a) Experiment Planning in Molecular Genetics

SIPE (Wilkins 1983) Aircraft Carrier Mission Planning

NONLIN+ (Tate & Whiter 1984) Naval Logistics

DEVISER (Vere 1983) Voyager Spacecraft Mission Sequencing

FORBIN (Miller et. al. 1985) Factory Control

Table 1. Numerous Planning Systems Have Attempted to Integrate
Available Planning Techniques and Apply Them to Application Domains.

Pickup (x)

Precondition:

Delete List:

Add List:

ONTABLE(x) ^
 HANDEMPTY ^
 CLEAR(x)

ONTABLE(x)
HANDEMPTY
CLEAR(x)

HOLDING(x)

Figure 2. A Typical Strips Operator.
The operator Pickup contains a precondition formula
and add- and delete-lists. Thus, Pickup can be used to
lift an object that must be on the table, the hand must
be empty, and the object must be clear (from the pre-
conditions). After pickup, the object is not on the table
and is not clear, and the hand is no longer empty (from
the delete-list); also, the hand is known to be holding
the object (from the add-list).

planners) define points in the search space as
states of the application’s world at various
times. This world state can be traversed by
applying any applicable operator to some
chosen state, leading to a different point in
the search space. A problem solution can be
defined as a sequence of operators that can
traverse the search space from some initial
state to some state defined as satisfying the
goal. Thus, a state-space plan contains
descriptions of states of the world the plan is
to be executed in, and move operators that
correspond to the actions to be carried out to
execute the plan. A state-space solution is
trivial to recognize: It is quite simply a path
from some initial state to a state satisfying
the goal specification (figure 3a).

Other (most of the post-1975) planners
define points in the search space as partially
elaborated plans. One point in this space is
changed into another using any applicable
planning transformation such as the expan-
sion of an action to a greater level of detail,
the inclusion of an additional ordering con-
straint between actions to resolve some inter-
action between effects of unordered actions,
and so on. Given some initial (skeleton) plan
defining a point in this partial plan search
space, a sequence of plan transformations
must be applied that lead to a fully detailed
plan that satisfies the goal (figure 3b). A plan
is considered complete when all the goals can
be realized as a set of primitive actions (total-
ly or partially ordered depending on the
planner).

Systems that search through the space of
partial plans have typically represented plans
as an action ordering in which the actions,
described by operators, are strung together
with temporal ordering relations. The most
famous example of such plans is Sacerdoti’s
(1975) procedural nets (see Planning and
Search). Action-ordering plans directly describe
the relationships among actions rather than
through states and predicates contained
within states.

In an action-ordering representation, a
plan need not completely specify the condi-
tions that each action affects. The plan can
simply order two actions without specifying
intermediate states. In contrast, state-based
plan structures typically require complete spec-
ification of these intermediate states. This
format is particularly difficult for use in
describing complicated causal and temporal
relationships between actions. Thus, many
complex domains are quite difficult to
encode using a state-based approach (Lansky
1987), and action-ordering approaches have
become the generally used technique.

operator applications produce intermediate
state descriptions. If the goal is true at the
end of this projection, the plan is a solution
to the specified problem.

Thus, the input to a typical AI planning
system are a set of operator schemata and a
problem that is characterized by an initial
state description and goal. The output from
the planner is a plan that under projection
satisfies the goal. The process connecting the
input and output is known by various names.
Common names are plan generation, plan
synthesis, and plan construction. A planner is
called domain independent in the sense that
the plan representation language and plan
generation algorithms are expected to work
for a reasonably large variety of application
domains. Although this view of planning is
slightly restrictive, it suffices for the purposes
of this overview.

A planner is organized so that it defines a
search space and then seeks a point in this
search space that is defined as a solution.
Planners differ about how they define their
search space. Some (most of the pre-1975

Articles

64 AI MAGAZINE

Clear(A)
On(B,C)
Clear(B)
Ontable(A)
Ontable(C)
Handempty

On(B,C)
Clear(B)
Holding(A)
Ontable(C)

PICKUP(A)
Clear(A)
On(A,B)
On(B,C)
Ontable(C)
Handempty

STACK(A,B
A)

B)

On(A,B)

On(B,C)

Pickup(A) Stack(A,B

Pickup(B) Stack(B,C

EXPAND

Pickup(A) Stack(A,B

Pickup(B) Stack(B,C
ORDER
SUBGOALS

Figure 3. Partial Solutions to the Blocks World Problem
(ON A B) & (ON B C).

Figure 3a (based on Strips) shows a typical state space and a sequence of operators
representing a partial solution. Figure 3b (based on Noah) shows the plan as a partial
ordering of actions representing a partial solution.

Planning and Search

As seen from the previous discussion, plan-
ning is essentially a search problem. The pro-
gram must traverse a potentially large search
space and find a plan that is applicable in the
initial state and produces a solution to the
goal when run. This search can be quite diffi-
cult because the search space can contain
many interactions between different states or
partial plans. These interactions lead to a sur-
prising amount of complexity; for example,
establishing the existence of a precondition
in a partially ordered plan can require expo-
nential computation (Chapman 1987), and
the problem of finding an optimal plan in
even a simple blocks world domain has
recently been shown to be NP-hard (Gupta
and Nau 1990).

Planning involving conditional effects has
been shown to be undecidable (Chapman
1987); that is, a plan generated in such
domains cannot be guaranteed to succeed
without some type of execution-time addi-
tions. This issue is discussed in Planning and
Execution. Therefore, the problems of orga-
nizing the heuristic search, choosing what to
do in cases of failure, and generally finding
ways of making more informed choices have
been among the most discussed in the plan-
ning literature. (A good quantitative discus-
sion of planning viewed as heuristic search
can be found in Korf [1987].)

Early approaches to planning sought to
apply legal moves to some initial states to
search for a state that satisfied the given
goals. There was a great deal of overlap with
game-playing work. Heuristic evaluation
functions were employed to rate the various
intermediate states produced to estimate their
closeness to a goal state (for example, A* [Hart,
Nilsson, and Raphael 1968] and the graph tra-
verser [Doran and Michie 1966]). This
approach, however, was found wanting
because of the difficulty in designing working
heuristics and the usually exponential growth
of the search space.

To reduce the number of intermediate
states considered, Newell and Simon (1963)
introduced means-ends analysis, a heuristic
that involves considering only those activities
that could satisfy some outstanding goal.
Operators were preferred that would cause the
current state to more closely resemble the
goal state when run. This technique was used
as the basis of the search in many of the early
planners that used state-space-based plans.

With the introduction of procedural nets in
Noah (Sacerdoti 1975), the search problem
changed. In this system and its descendants,

the search space consists not of a set of world
states but of a space of partial plans. For any
nonprimitive action in the current network,
the planner can consider any known method
of reducing this action to a set of other
actions or primitives. Planning in such a
system consists of choosing appropriate
reductions from among the sets of possibili-
ties and ordering actions to eliminate harmful
interactions. One important technique intro-
duced for searching partial plans is least com-
mitment plan representations. (Some people
use the term least commitment to refer only
to the ordering of plan steps in a partial-order
planner. We use the term in the broader
sense, referring to any aspect of a planner
that only commits to a particular choice
when forced by some constraints.)

Such representations are used to allow a set
of plans to be represented in a single state of
the search. Examples of such representations
include the use of a partially ordered plan to
represent a number of possible action order-
ings prior to a commitment becoming neces-
sary, as in Noah (Sacerdoti 1975), or the
posting of constraints on objects referred to
in the plan rather than the making of an arbi-
trary selection, as in Molgen (Stefik 1981b).

To search the space of partially ordered
plans, many solutions have been offered.
Some systems do not search through the pos-
sible alternatives at all. Instead, selections are
made on the basis of locally available infor-
mation, and a commitment is made to a par-
ticular solution path. (Of course, this approach
means that some problems cannot be solved.)
This technique has been most successful
where strong domain heuristics can be used
for making choices. Where such heuristics are
not available, a more general solution is to
use backtracking to allow backing up to occur
when the goal cannot be reached based on
some earlier choice. The planning system
simply saves the state of the solution at each
point at which there are alternative ways to
proceed and keeps a record of the alternative
choices. The first is chosen, and the search
continues. If there is any failure, the saved
state at the last choice point is restored, and
the next alternative is taken (if there are no
alternatives, backtracking continues over pre-
vious decisions). Simple stack-based imple-
mentation techniques can be used for this
process (as done in Prolog).

The Nonlin program (Tate 1977) introduced
a variant of depth-first backtracking for use in
planning. Because good local information is
often available to indicate the preferred solu-
tion path, it is often appropriate to try the
best choice indicated by local heuristic infor-

Articles

SUMMER 1990 65

. . . planning
is essentially
a search
problem.

current focus for the search is identified on
the basis of the most constrained operation
that can be performed. This can be suggested
by a comparison of the current goals with the
initial world model state, a consideration of
the number of likely outcomes of making a
selection, the degree to which goals are
instantiated, and so on. Any problem-solving
component can summarize its requirements
for the solution as constraints on possible
solutions or restrictions of the values of vari-
ables representing objects being manipulated.
They can then suspend their operation until
information on which a more definite choice
can be made becomes available (as in Molgen
[Stefik 1981b]).

A number of planning systems have an
operator-like representation of the different
types of plan transformations available to the
planner. A separate search is made to decide
which of these transformations is best
applied at any point; this search happens
before decisions are taken about the details of
the particular application plan being pro-
duced, as in Molgen (Stefik 1981a; Wilensky
1981b), OPM (Hayes-Roth and Hayes-Roth
1979), and PRS (Georgeff and Lansky 1987).
This technique, primarily used in conjunc-
tion with opportunistic planning, is often
referred to as metaplanning because it requires
the planner to reason not only about the goal
but also about the various techniques avail-
able for generating the plan.

Besides the basic method of reducing the
search space by selection of relevant opera-
tors, many other methods have also been
used in planners. Some examples include
giving goals levels of priority and considering
the highest-priority goals first, as in Abstrips
(Sacerdoti 1973) and Lawaly (Siklossy and
Dreussi 1975), or rejecting states or plans that
are known to be impossible or in violation of
some rule, as in Warplan (Warren 1974). The
latter was refined to include the use of
domain constraints (Allen and Koomen 1983)
and temporal coherence (Drummond and
Currie 1988, 1989) to provide heuristics for
rejecting possible actions. A variant on this
approach, using a domain model to simulate
the results of planning operators, was used in
Simmons’s and Davis’s (1987) generate-test-
debug planner. Deviser (Vere 1983), Sipe
(Wilkins 1983), Nonlin+ (Tate and Whiter
1984), and O-Plan (Currie and Tate 1985) use
checks on resource usage levels, time con-
straints on actions, and other resource
bounds to eliminate some possibilities. A
recent approach has involved the use of par-
allelism to briefly examine many potential
choices concurrently. Heuristics are used that

mation before considering the many alterna-
tives that might be available should the local
choice prove faulty. Taken to the extreme,
depth-first search gives something of the
flavor of such a search strategy. However,
gradual wandering from a valid solution path
could entail backtracking through many
levels when a failure is detected. An alterna-
tive is to focus on the choice currently being
made and try to select the local choice that
seems most promising. This process contin-
ues while all is going well (perhaps with some
cutoff points to take a long, hard look at how
well the process is going). However, if a fail-
ure occurs, Nonlin considers the entire set of
alternatives that were generated (and ranked
by a heuristic evaluator).

This basic technique was further refined to
provide the most widely used approach to
controlling search in planning. Any back-
tracking system based on saved states and
resumption points (whether depth first or
heuristically controlled) can waste much
valuable search effort; a solution can have
several unrelated parts. If backtracking on
one part has to go back beyond points at
which work was done on an unrelated part,
then all effort on the unrelated part will be
lost. Many planning systems avoid this prob-
lem by using a variant of the backtracking
methods used in Nonlin. These systems do
not keep saved states of the solution at choice
points. Instead, they record the dependencies
between decisions, the assumptions on which
they are based, and the alternatives from
which a selection can be made. They then use
methods for undoing a failure by propagating
and undoing all the dependent parts of the
solution. This process leaves unrelated parts
intact irrespective of whether they were
worked on after some undone part of the
solution. Examples of work using this tech-
nique include Hayes (1975); Stallman and
Sussman (1977); Daniel (1983); and, to some
extent, Stefik (1981a, 1981b).

One alternative that was suggested to the
use of backtracking-based search is the oppor-
tunistic planning system. These systems do not
take a fixed (goal-driven or data-driven)
approach to solving a problem. Instead, a

Articles

66 AI MAGAZINE

This technique . . . metaplanning . . .
requires the planner to reason not only
about the goal but also about the
various techniques available for
generating the plan.

allow the effects of various interactions
detected by the parallel search to suggest pos-
sible choices or rule out potential plans, as in
Scraps (Hendler 1987). Another approach is
the use of a naturally occurring locality,
which can occur in a domain, to reduce the
search burden by partitioning the planning
search space into smaller, localized search
spaces, as in Gemplan (Lansky 1988).

Conjunctive Goal Planning
In addition to the problem of controlling the
search, the order in which several simultane-
ous goals are tackled can have a marked effect
on the efficiency of the search process. Some
early planners, for example, could repeatedly
loop on the same goals or get redundant solu-
tion (in the sense that the final plan con-
tained steps that could be removed without
negating the plan’s reaching of the goal) when
the goals were attempted in the wrong order.
The solving of such conjunctive goal plans has
been the basis of much of the modern plan-
ning research. Two somewhat orthogonal
approaches have been taken toward dealing
with this problem: ordering the various goals
by levels of importance and analyzing and
avoiding the interactions caused by interac-
tions between conjunctive goals.

The use of levels to partially overcome this
problem (it is not a complete solution) was
introduced in Abstrips (Sacerdoti 1973) and
Lawaly (Siklossy and Dreussi 1975). These sys-
tems separated the goals into levels of impor-
tance or priority, with the abstract and
general goals being worked on first and the
concrete or detailed levels being filled in later.
A solution was formed at the most abstract
level, and the lower, more detailed levels were
then planned using the preset skeleton plan
formed at the upper levels. No backtracking
to the higher levels was possible. Later sys-
tems (for example, Nonlin [Tate 1977]) treat-
ed the abstraction levels as a guide to a
skeleton solution but were able to replan or
consider alternatives at any level if a solution
could not be found or if it was indicated that
a higher-level choice was faulty.

Other hierarchical systems use the abstrac-
tion levels as one guide to the ordering of
goals but have other mechanisms that can
also be considered. Some systems are able to
determine when a particular choice (at what-
ever level) is sufficiently constrained to be a
preferable goal to work on at any time (for
example, Molgen [Stefik 1981a, 1981b]). A
relatively recent approach included attempt-
ing to build models that can concurrently
plan at different levels of the hierarchy. A

mathematical analysis of some properties that
allow systems to assume independence of
level effects in some cases was performed
(Yang 1989).

A second aspect of handling conjunctive
goal planning is the treatment of the interac-
tions that arise between the different goals in
the planning problem. As an example, con-
sider the situation of trying to paint the ceil-
ing and also painting the ladder used for
painting the ceiling (Sacerdoti 1977). If the
planner paints the ladder first, the ladder will
be wet, and the execution agent will be
unable to paint the ceiling. Further, getting
the paint for the ladder and getting the paint
for the ceiling should be combined in a single
task. Thus, to get an optimal solution, the
planner must partially merge the two separate
plans (figure 4).

Planners can be categorized according to
the way in which they manage interactions
between goals and the way in which they
structure operators in a plan. In terms of goal
interactions, there are planners that make the

Articles

SUMMER 1990 67

Paint the Ceiling and Paint the Ladder

Paint the ceiling

Paint the ladder

SPLIT JOIN

SPLIT JOIN

JOIN
SPLIT

Get paint Get Ladder Put paint on ceiling

Get paint Put paint on ladder

Get paint Get Ladder Put paint on ceiling

Get paint Put paint on ladder

AAAA))))

CCCC))))

DDDD))))

BBBB))))

EEEE))))
JOIN

Get Ladder Put paint on ceiling

Get paint Put paint on ladder

SPLIT

JOIN

Figure 4. Painting the Ceiling (based on Sacerdoti 1977).
The conjunctive goal (figure 4a) is split into two separate tasks (figure 4b). Plans for
each task are separately generated (figure 4c), and ordering links are introduced to
avoid interactions (figure 4d). Finally, common subgoals are merged (figure 4e).

solution failed (Waldinger 1975). (The latter
had the advantage that redundant actions
were not reintroduced if the goal was achiev-
able earlier in the plan).

Interplan (Tate 1975a) introduced a repre-
sentation called goal structure to record the
link between an effect of one action that was
a precondition (subgoal) of a later one. This
representation was additional to the ordering
links between the actions themselves (some
actions have effects that are used much later
in the plan; Sussman [1973] referred to this as
the plan’s teleology.) Interactions were detect-
ed as an interference between some new
action or goal being introduced and one or
more previous goal structure. A minimum set
of goal reorderings could be suggested that
corrected for the interactions found. This
approach was found to be more efficient
because it considered fewer reorderings of the
given goals and subgoals than the earlier
methods.

Noah (Sacerdoti 1975) introduced code
called critics that was used to search for inter-
actions between parts of the plan, which was
represented as a partial ordering. This innova-
tion was important because it allowed the
planner to use a least commitment strategy:
Separate operators would be considered
unordered with respect to each other unless a
critic introduced an ordering relation to
avoid an interaction (as done in figure 4d).
Noah used a data structure, the table of mul-
tiple effects, to record the effects of the opera-
tors and, thus, aid in discovering interactions.

Noah is often called the first nonlinear
planner, referring to the partially ordered
plan structures employed by the system. This
term is often confused with the fact that
Noah was able to solve problems where the
linearity assumption didn’t hold. To help
avoid this confusion, we do not refer to this
type of system as nonlinear but rather,
because such planners use partially ordered
plans, we use the term partial-order planners.
Thus, Noah was the first partial-order planner.

Nonlin (Tate 1975b, 1977) was a partial-
order planner modeled on Noah. As in Noah,
the minimum set of orderings necessary to
resolve interactions could be suggested by
introducing ordering links into a partial-
order plan when they became essential. The
Nonlin system, however, could also consider
alternatives if failures on any chosen search
branch occurred. Nonlin introduced the
notion of a goal-state table, a data structure
that could be used to record dependencies
between plan steps facilitating the analysis of
interactions. Similar analyses of a representa-
tion of the effect and condition structure of a

so-called linearity assump-
tion, that is, assuming
that solving one goal
(out of a conjunction)
and then following this
solution with the solu-
tion to the other goals in
the conjunction will be
successful. This assump-
tion is valid in some
domains because the
solutions to different
goals can often be
decoupled. Most current
planners do not make
the linearity assumption
and can consider arbi-
trary interleavings of all
goals and subgoals.
These planners are often
referred to as nonlinear
planners because they do
not require the linearity
assumption to guarantee
a correct solution. The
term nonlinear is some-
times confusingly used
to refer not to this
assumption but to the
partial ordering of plan
steps that some planners
use in attempting to
handle the problem. We
address this issue later.

Early planning sys-
tems would sequentially
solve the conjunctive
goals and then make a

simple check to see if the conjunction of
goals still held (for example, Strips [Fikes and
Nilsson 1971]). Where the linearity assump-
tion failed, a mutual goal or subgoal interfer-
ence could result that would often require
redundant actions being put into the plan. In
fact, in the worst case, the planner could get
into an endless cycle of reintroducing and
trying to satisfy the same goal.

Several systems followed this type that
could handle some of the problems intro-
duced when the problems being solved
involved interacting goals. These systems
either allowed alternate orderings of entire
solution paths (Hacker [Sussman 1973]), per-
mitting an interfering action (just being
introduced to satisfy some goal) to be placed
at different (earlier) points in the current plan
until a position was found where there is no
interaction (Warplan [Warren 1974]), or goal
regression (that is, considering it earlier)
when an interaction with some particular

Articles

68 AI MAGAZINE

PICKUP-NEAREST(LOC,X)

 FILTER CONDITION:
 For-all (X,Y) DIST(LOC,X) < DIST(LOC,Y)
 & OBTAINABLE(X)
 PRECONDITION: ONTABLE(X) ^
 HANDEMPTY ^
 CLEAR(X)
 MONITOR: (NEW-OBJ-MON
 Queue-length 1
 Run-time 75
 Run-every 500
 Reports:
 if DIST(LOC,newobj) < DIST(LOC,X)
 then UPDATE(X = NewObj)
 (PRESERVE-OBJ-MON
 Queue-length 1
 Run-time 25
 Run-every 250
 Reports:
 if NOT(PRESERVE(x)) then FAILURE)
 STEPS: OPERATOR-MOVE-TO(X)
 LIFT(X)
 FAILURE-DEL: (KNOWN (LOC X))
 FAILURE-ADD: (Achieve
(PICKUP-NEAREST(CurLoc,X)))
 SUCCESS-ADD: AT (X)
 HOLDING(X)
 SUCCESS-DEL: OBTAINABLE(X)
 ONTABLE(X)
 HANDEMPTY
 CLEAR(X)
 PROBABILITY: .72
 RESOURCES: TIME(DIST(LOC,X) AVG-VEL)
 Consumes(Arm)

Figure 5. An Operator for a (Hypothetical)
Modern Planning System.

The oprator is annotated to include precondi-
tions, filter conditions, execution-time monitor-
ing (with real-time scheduling constraints), steps
to be accomplished, add- and delete-lists for suc-
cess and failure, resource usage information, and
a success probability.

plan to detect and correct for interactions
were included in Planx-10 (Sridharan and
Bresina 1985), Sipe’s plan rationale (Wilkins
1983), and Dean’s (1985) work.

A further refinement of the analysis of
interactions was added to the Deviser system
(Vere 1983). When individual goals or actions
in a plan had time constraints on when they
could be satisfied or performed, the detection
and correction of interactions were sensitive
to the temporal displacement introduced.
This helped limit the number of legal solu-
tions that could be proposed. Deviser allowed
for planning in the presence of deadlines and
external events. In addition, the use of objects
being manipulated as scarce resources on
which usage conflicts occur and need to be
avoided was incorporated into the Molgen
(Stefik 1981b) and Sipe (Wilkins 1983) plan-
ners. Viewing time as such a resource is a cur-
rent research topic (Dean and Boddy 1987).

Operator Representation
The first systems to handle planning prob-
lems simply selected appropriate operators to
apply to a problem by considering the differ-
ences between the goal state and the initial
state and looking for operators that were
known to remove such differences. GPS
(Newell and Simon 1963), for example, direct-
ly associated the operators for the problem
with the differences they could reduce. Thus,
an operator such as PAINT(Robot,x) would be
associated with achieving the fact
PAINTED(x).

Strips (Fikes and Nilsson 1971) used this
notion of differences, as well as ideas from
the situation calculus (McCarthy and Hayes
1969) and Green’s (1969) QA3 program, to
make the assumption that the initial world
model would only be changed by a set of
additions to, and deletions from, the state-
ments modeling the world state—everything
else remained unchanged. (This assumption is
sometimes called the Strips assumption.)
Strips then defined an operator as having an
add-list, a delete-list, and a preconditions for-
mula (to define the applicability or subgoal-
ing conditions). Operators were selected on
the basis of the recognition of goals that
matched statements on the add-lists (that is,
those statements the operator could add to
the current state).

For nonprimitive actions, Sacerdoti’s (1975)
Noah system used procedurally specified
SOUP (semantics of user’s problem) code to
introduce appropriate methods of achieving
goals or orderings to correct for interactions
into the network of actions. Later planners

introduced declarative representations to
handle this with operators that were extensions
to the Strips operator type of formalism (for
example, Nonlin’s task formalism [Tate 1977]
and the Sipe notation [Wilkins 1983]). As
well as add- and delete-lists and precondition
formulas, an expansion of the operator to a
lower level of detail could be specified as a
partial order on suitable subactions and sub-
goals.

Recent systems have continued to add
information to the operators. One has been
adding information about resource usage to
the operators so that planners can reason
about limited resources. Time constraints
have also been encoded on operators. Deviser
(Vere 1983), for example, provided a method
for specifying a time window on goals and
activities, external events and their time of
occurrence, and delayed events caused some
time after a planned action. Nonlin+ (Tate
and Whiter 1984) added the capability of rep-
resenting multiple limited resources and
making selections from appropriate activities
on the basis of reducing some overall com-
puted preference between them. The defini-
tion of shared objects as resources and the
declaration of the use of such resources in
operators were also provided in Sipe (Wilkins
1983).

Airplan (Masui, McDermott, and Sobel 1983)
maintained information on the operators to
be able to reason about time intervals and
about how concurrent actions in these inter-
vals could interact. O-Plan (Bell and Tate
1985) uniformly represented time constraints
(and resource usage) by a numeric (min, max)
pair that bounded the actual values for activi-
ty duration, activity start and finish times,
and delays between activities. The actual
values can be uncertain for various reasons,
such as the plan being at a high abstraction
level, not having chosen values for objects
referred to in the plan, or uncertainty existing
in modeling the domain. Constraints can be
stated on the time and resource values that
can lead to the planner finding that some
plans in its search space are invalid. Excalibur
(Drabble 1988) allowed for planning in the
face of external continuous processes that
were qualitatively modeled.

As the domains being considered by plan-
ning systems have become more dynamic (see
Planning and Execution), information has
also been placed on operators to allow for
execution-time monitoring (Firby 1989),
bounded computation or real-time schedul-
ing needs (Kaelbling 1987; Hendler 1989),
and different add- and delete-lists depending
on execution-time success or failure and to

Articles

SUMMER 1990 69

continue. Schoppers (1987) proposes taking
disjunctive planning to an extreme by gener-
ating universal plans, plans with conditional
tests to deal with all possible execution-time
contingencies.

Another approach to handling change in
the environment is to provide a different sort
of integration between the generation and
execution of plans. McDermott’s (1978) NASL
system, for example, interleaved plan genera-
tion and execution by choosing one step at a
time and executing it. This approach made
the planner more susceptible to errors caused
by interactions but less susceptible to errors
caused by change in the environment. This
works well in environments where a small
amount of change can occur but is insuffi-
cient in domains in which rapid reaction is
needed (for example, the traffic world
[Hendler and Sanborn 1987] shown in figure
6). This approach was extended by Drum-
mond (1989): Situated control rules are used
to inform an independently competent exe-
cution system that the execution system can,
if necessary, act without a plan; the plan
simply serves to increase the system’s goal-
achieving abilities.

Much recent work has dealt with designing
mechanisms that can handle rapidly chang-
ing environments. Most of this work achieves
responsiveness by giving up complex plan-
ning for shallow planning or by planning
using tightly coupled sensing and action
(Rosenschein 1982; Chapman and Agre 1987;
Sanborn and Hendler 1988). Some of this
work, however, has dealt directly with the
issues of how to map from planning to reac-
tion. Firby (1989) proposes reactive action
packages that essentially replace the operators
in the system with procedures that include a
reactive component. Rosenschein’s and Kael-
bling’s (1988) Gapps system is a compiler that
translates constraint expressions into directly
executable circuits for use in robotic control
systems. Georgeff and Lansky (1987) describe
the use of a metareasoning system that can
choose from a variety of execution-time
options based on the goals being pursued by
the system. Ambros-Ingerson and Steel (1983)
propose an approach to integrating planning
and execution for changing domains using
an agenda-driven control structure in which
actions that are serially initiated can run con-
currently, with information-acquiring actions
(for monitoring the environment) included.
In addition, an effort is being made to extend
temporal representations to handle simulta-
neously occurring events and event interactions.
The use of these extended representations for
planning is discussed by Pednault (1987).

predict the probability of an operator’s suc-
cess (Miller, Firby, and Dean 1985) (figure 5).

Planning and Execution
Most of the systems described assume that
the planner possesses complete knowledge of
the current state of the world and the cause-
and-effect relationships that govern changes
in this world. Clearly, this approach needs
revising in situations where separate execu-
tion cannot be guaranteed to succeed. This
can occur when agents outside the control of
the planner can cause changes in the envi-
ronment or where the planner might be
uncertain of information that can only be
ascertained while the plan is being run.

For example, the Strips system (Fikes, Hart,
and Nilsson 1972a) was used to plan the
motion of a robot called Shakey and to con-
trol it as it pushed a set of boxes through a
number of interconnecting rooms. A well-
known SRI film shows Shakey following a
Strips-generated plan using an execution
monitor called Planex. Charley Rosen, the
founder of the SRI AI Lab, dressed in a sinister
cloak, appears and disrupts the position of
the boxes during execution. Planex was able
to make use of information maintained by
Strips to recover.

This approach toward dealing with failure
when it arises has become known as replan-
ning and is typically assumed to occur when a
planner recognizes a mismatch between the
expected and actual state of the world. Hayes
(1975) proposes that the subgoal trees and
decision graphs used in the formation of the
plan could be used to guide replanning.
Daniel (1983) explores the use of a similar
mechanism in a partial-order planner. The
Priar system (Kambhampati 1989; Kambham-
pati and Hendler 1989) used a well-defined
subset of this information, the validation
structure, to provide such guidance. (A formal
treatment of replanning can be found in
Morgenstern [1987]).

An alternative to replanning is to actually
expect potential failures and plan for them.
This approach can involve planning for
expected possibilities, such as waiting for a
light to turn green before crossing a street
(Drummond 1985), or it can involve schedul-
ing monitoring task tests to be run at execu-
tion time, associated with fixes to be used in
the case of failed tests (Doyle, Atkinson, and
Doshi 1986). An example of the latter (Kael-
bling 1987) would be having a robot check to
see if two walls were equidistant at some
point during the traversal of a hallway. If not,
the robot could achieve this equidistance and

Articles

70 AI MAGAZINE

This approach
toward

dealing with
failure when
it arises has

become
known as

replanning.

In addition, it now appears that an impor-
tant part of planning in dynamic domains
involves making trade-offs—specifically, trad-
ing precision in decision making for time in
responding to events. In the last few years, a
number of researchers have attempted to
improve the responsiveness of planning sys-
tems operating in dynamic domains by
directly reasoning about the utility of plan-
ning (Dean 1987; Horvitz 1988; Russell and
Wefald 1989). This work involved an exami-
nation of reasoning about these trade-offs
during plan generation (Kanazawa and Dean
1989; Heckerman, Breese, and Horvitz 1989)
or execution (Boddy and Dean 1989; Horvitz,
Cooper, and Heckerman 1989).

Learning and Memory
The concentration in most of the work on
planning has been on generating plans from
scratch, not learning from experience. Thus,
much of the classical work in planning has
been ahistoric; that is, asked to solve the same
problem again, the planner performs no
better than it did the first time. Recently,
because of the gains being made in machine
learning and the new work on case-based rea-
soning, designing planning systems that learn
from experience has become an option.

The earliest approach to learning in plans
was the Macrops (for macro-operators) work
of Fikes, Hart, and Nilsson (1972b) that
extended Strips to include some limited learn-
ing from its failures. When a portion of a plan
was found to have succeeded, the entire set of
operators could be turned into a single opera-
tor whose preconditions and effects were
identical to the preconditions and effects of
the operator sequence. The operators were
generalized by using variables to replace the
constants found in the specific solution from
which the new operator had been derived.
Minton’s (1985) Prodigy/EBL system used a
similar approach but applied an explanation-
based learning algorithm to provide accurate
generalizations.

Case-based reasoning approaches to
planning have also been attempted. In these
systems, an old plan is chosen and modified
to run in the new situation. Many of these
systems concentrate on guiding the search for
the old plan (for example, Julia [Kolodner
1987] and Chef [Hammond 1986]) and then
using a fairly simple mapping to produce the
new plan. Plexus (Alterman 1988) used infor-
mation about the new context to guide the
reuse of an existing plan. The Priar reuse
system (Kambhampati 1989) applied a case-
based approach in the classical planning

framework. Priar, an
extension to Nonlin
(Tate 1977), allowed
the planner to
annotate plans
being created with
information about
the dependency
structure between
operators. This
information was
then used to guide
retrieval, reuse, and
replanning.

Assorted
Shorts

In addition to the
issues discussed ear-
lier, many other
issues arise in the
design of planning
systems. Examples
include planning
with conditionals
and iterators, uncer-
tainty in planning,
and distributed
planning.

Planning with
Conditionals and Iterators
Most of the search space control techniques,
goal ordering, and interaction correction
mechanisms developed in AI planners to date
have been oriented toward the generation of
plans that are fully or partially ordered
sequences of primitive actions. However,
there has been some effort on the generation
of plans that contain conditionals (if . . . then
. . . else . . .) and iterators (repeat . . . until . . .).
Conditionals were handled in Warplan-C
(Warren 1976) by branching the plan at the
conditional and performing separate plan-
ning on the two branches using the assump-
tion that the statement in the conditional
was true in one branch and false in the other.
This analysis led to a case analysis of the sepa-
rate branches to produce a plan that was tree
structured. Drummond (1985) designed an
extension to procedural nets allowing for dis-
junction and iteration that could be used for
predicting the behavior of the system where
these were present.

Uncertainty in Planning

One source of execution-time problems is
uncertainty that exists during plan genera-

Articles

SUMMER 1990 71

Lane 1 2 3 4

Figure 6. The Traffic World
(Hendler and Sanborn 1987).

The traffic world consists of a straight stretch of “four-
lane highway,” along which “cars” travel at various
speeds. There is a much slower–moving “robot” at one
end of the highway that is trying to get across to the
opposite side. Cars change lanes and speeds as they
proceed.

Allen, J. Hendler, and A.Tate (Morgan Kauf-
mann, 1990).

Summary
Planning systems have been an active AI
research topic for nearly 30 years. A number
of techniques have been developed during
this period that still form an essential part of
many of today’s AI planning systems. In this
article, we tried to broadly cover the major
ideas in the field of AI planning and attempt-
ed to show the direction in which current
research is going. Such a task is never ending,
and thus, any finite document must be
incomplete. We provided references to con-
nect each idea to the appropriate literature
and allow readers immediate access to the
work most relevant to their research or appli-
cations.

Acknowledgments

We are grateful for input from research col-
leagues active in AI planning who helped us
structure this review. We hope that we did
not misrepresent anyone in showing how the
research themes, techniques, and planning
systems relate to one another. We also apolo-
gize to colleagues for simplifications made in
our descriptions of past planning systems.
Simplification was a necessary evil for reasons
of space; for complete descriptions, the reader
should consult the associated references. The
work of Austin Tate and the Planning Group
at the Artificial Intelligence Applications
Institute is supported by the United Kingdom
Science and Engineering Research Council
(under IED grant 1320, GR/F 36545) and the
United States Air Force (under contract
EOARD-88-0044). James Hendler is also affili-
ated with the Systems Research Center and
the University of Maryland Institute for
Advanced Computer Studies. His work is
funded in part by U.S. Office of Naval Research
grant N00014-88-K-0560 and National Science
Foundation grant IRI-8907890. A portion of
Mark Drummond’s work at the NASA Ames
Research Center is funded by the Air Force
Office of Scientific Research, Artificial Intelli-
gence Research Program.

Bibliography

Where names of planning systems and other AI
software are described in this article, the appropri-
ate bibliographic entries are annotated with the
name of the system in brackets.

Allen, J. F., and Koomen, J. A. 1983. Planning Using
a Temporal World Model. In Proceedings of the
Eighth International Joint Conference on Artificial

tion. If the planner cannot model the real
world with complete information and instead
uses some sort of probability-based model, it
must deal with low-probability events that
might occur during execution. (This problem
arises in a significant way for systems that use
real sensors to perceive the world). Work
using probability estimates during plan gen-
eration includes that by Dean, Firby, and
Miller (1989) and Kanazawa and Dean (1989).
Segre (1988) examines the issue of execution-
time failures of plans based on uncertain
information.

Distributed Planning

Some systems have been exploring distribut-
ing sources of problem-solving expertise or
knowledge during planning. They allow fully
distributed planning with the subproblems
being passed between specialized planning
experts. The use of the experts—or the behav-
iors they might perform—is controlled
through a centralized blackboard and execu-
tive (with a system similar to priority
scheduling of parallel processes) or can be
controlled in a more distributed fashion
through pairwise negotiation. Examples of
relevant work include Smith (1977), Corkill
(1979), Kornfeld (1979), Konolige and Nils-
son (1980), Georgeff (1982), and Corkill and
Lesser (1983).

Recommended Reading

A good and reasonably up-to-date account of
AI planning techniques and systems is given
in E. Charniak’s and D. McDermott’s Introduc-
tion to Artificial Intelligence (Addison-Wesley,
1985). In particular, chapter 9 and sections of
chapters 5 and 7 are relevant. Somewhat ear-
lier material is provided in Elaine Rich’s Arti-
ficial Intelligence (McGraw-Hill, 1983). N.
Nilsson’s Principles of Artificial Intelligence
(Morgan Kaufmann, 1980) provides a uni-
form treatment of planning techniques avail-
able at the time it was published. There are
several useful summaries of early AI planning
work in the Handbook of Artificial Intelligence
(Morgan Kaufmann, 1981) by A. Barr, E.
Feigenbaum, and P. Cohen—volume 1, sec-
tion II.D, and volume 3, sections XI.B, XI.C,
and XV. A collection of recent papers con-
cerning planning can be found in M.
Georgeff’s and A. Lansky’s Reasoning about
Actions and Plans: Proceedings of the 1986
Workshop (Morgan Kaufmann, 1987). A col-
lection of previously published papers on
planning and reasoning about actions will
soon be available as Readings in Planning by J.

Articles

72 AI MAGAZINE

One source of
execution-

time problems
is uncertainty

that exists
during plan
generation.

Intelligence, 741–747. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.
[TIMELOGIC]

Altermann, R. 1988. Adaptive Planning. Cognitive
Science 12. [PLEXUS]

Ambros-Ingerson, J., and Steel, S. 1983. Integrating
Planning, Execution, and Monitoring. In Proceed-
ings of the Eighth National Conference on Artificial
Intelligence, 83–88. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Appelt, D. E. 1985. Planning English Referring
Expressions. Artificial Intelligence 26:1–33. [KAMP]

Bell, C. E., and Tate, A. 1985. Using Temporal Con-
straints to Restrict Search in a Planner. In Proceed-
ings of the Third Workshop of the Alvey IKBS
Programme Planning Special Interest Group.
London: Institute of Electrical Engineers. [O-PLAN]

Boddy, M., and Dean, T. 1989. Solving Time-Depen-
dent Planning Problems. In Proceedings of the
Eleventh International Joint Conference on Artifi-
cial Intelligence, 979–984. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial
Intelligence.

Bresina, J. L. 1981. An Interactive Planner That Cre-
ates a Structured Annotated Trace of Its Operation,
CBM-TR-123, Computer Science Research Lab., Rut-
gers Univ. [PLANX-10]

Chapman, D. 1987. Planning for Conjunctive
Goals. Artificial Intelligence 32:333–377. [TWEAK]

Chapman, D. 1985. Nonlinear Planning: A Rigor-
ous Reconstruction. In Proceedings of the Ninth
International Joint Conference on Artificial Intelli-
gence, 1022–1024. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.
[TWEAK]

Chapman, D., and Agre, P. 1987. Abstract Reason-
ing as Emergent from Concrete Activity. In Reason-
ing about Actions and Plans: Proceedings of the 1986
Workshop, eds. M. Georgeff and A. Lansky. San
Mateo, Calif.: Morgan Kaufmann.

Corkill, D. D. 1979. Hierarchical Planning in a Dis-
tributed Environment. In Proceedings of the Sixth
International Joint Conference on Artificial Intelli-
gence, 168–175. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Corkill, D. D., and Lesser, V. R. 1983. The Use of
Meta-Level Control for Coordination in a Distribut-
ed Problem-Solving Network. In Proceedings of the
Eighth International Joint Conference on Artificial
Intelligence, 748–756. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Currie, K., and Tate, A. 1985. O-Plan—Control in
the Open Planner Architecture. In BCS Expert Sys-
tems Conference. Cambridge: Cambridge University
Press. [O-PLAN]

Daniel, L. 1983. Planning and Operations Research.
In Artificial Intelligence: Tools, Techniques, and Appli-
cations. New York: Harper and Row. [NONLIN]

Davis, P. R., and Chien, R. T. 1977. Using and
Reusing Partial Plans. In Proceedings of the Fifth
International Joint Conference on Artificial Intelli-
gence. Menlo Park, Calif.: International Joint Con-

ferences on Artificial Intelligence.

Davis, R., and Smith, R. 1983. Negotiation as a
Metaphor for Distributed Problem Solving. Artificial
Intelligence 20:63–109.

Dean, T. 1987. Intractability and Time-Dependent
Planning. In Reasoning about Actions and Plans: Pro-
ceedings of the 1986 Workshop, eds. M. Georgeff and
A. Lansky. San Mateo, Calif.: Morgan Kaufmann.

Dean, T. 1985. Temporal Reasoning Involving
Counterfactuals and Disjunctions. In Proceedings
of the Ninth International Joint Conference on
Artificial Intelligence. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.
[TNMS]

Dean, T., and Boddy, M. 1987. Reasoning about Par-
tially Ordered Events. Artificial Intelligence
36:375–399.

Dean, T.; Firby, J.; and Miller, D. 1989. Hierarchical
Planning Involving Deadlines, Travel Time, and
Resources. Computational Intelligence 3. [FORBIN]

Dershowitz, N. 1985. Synthetic Programming. Arti-
ficial Intelligence 25:323–373.

Doran, J. E., and Michie, D. 1966. Experiments with
the Graph Traverser Program. In Proceedings of the
Royal Society, 235–259. [GRAPH TRAVERSER]

Doran, J. E., and Trayner, C. 1985. Distributed Plan-
ning and Execution—Teamwork 1, Computer Sci-
ence Technical Report, Univ. of Essex.
[TEAMWORK]

Doyle, J. 1979. A Truth Maintenance System. Artifi-
cial Intelligence 12:231–272.

Doyle, R. J.; Atkinson, D. J.; and Doshi, R. S. 1986.
Generating Perception Requests and Expectations
to Verify the Execution of Plans. In Proceedings of
the Fifth National Conference on Artificial Intelli-
gence. Menlo Park, Calif.: American Association for
Artificial Intelligence.

Drabble, B. 1988. Planning and Reasoning with Pro-
cesses. In The Eighth Workshop of the Alvey Planning
Special Interest Group, 25–40. Nottingham, United
Kingdom: Institute of Electrical Engineers.

Drummond, M. 1989. Situated Control Rules. In
Proceedings of the Conference on Principles of
Knowledge Representation and Reasoning.

Drummond, M. 1985. Refining and Extending the
Procedural Net. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence,
1010–1012. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Drummond, M., and Currie, K. W. 1989. Goal
Ordering in Partially Ordered Plans. In Proceedings
of the Eleventh International Joint Conference on
Artificial Intelligence. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Drummond, M., and Currie, K. W. 1988. Exploiting
Temporal Coherence in Non-Linear Plan Construc-
tion. Computational Intelligence 4(4).

Duffay, P., and Latombe, J-C. 1983. An Approach to
Automatic Robot Programming Based on Inductive
Learning. IMAG. [TROPIC]

Erman, L. D.; Hayes-Roth, F.; Lesser, V. R.; and

Articles

SUMMER 1990 73

Calif.: American Association for Artificial Intelli-
gence. [CHEF]

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A
Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on System
Science and Cybernetics SSC-4(2): 100–107. [A*]

Hayes, P. J. 1975. A Representation for Robot Plans.
In Advance Papers of the 1975 International Joint
Conference on Artificial Intelligence, Tbilisi, USSR.

Hayes-Roth, B. 1983a. A Blackboard Model of Con-
trol, HPP-83-38, Heuristic Programming Project,
Stanford Univ. [OPM]

Hayes-Roth, B. 1983b. The Blackboard Architecture:
A General Framework for Problem Solving? HPP-
83-30, Heuristic Programming Project, Stanford
Univ.

Hayes-Roth, B., and Hayes-Roth, F. 1979. A Cogni-
tive Model of Planning. Cognitive Science
30:275–310. [OPM]

Heckerman, D.; Breese, J.; and Horvitz, E. 1989.
The Compilation of Decision Models. In Proceed-
ings of the 1989 Workshop on Uncertainty in Arti-
ficial Intelligence, 162–173.

Hendler, J. 1989. Real-Time Planning. Presented at
the American Association for Artificial Intelligence
Symposium on Planning and Search, Stanford, Calif.

Hendler, J. A. 1987. Integrating Marker-Passing and
Problem Solving: A Spreading Activation Approach to
Improved Choice in Planning. Norwood, N.J.:
Lawrence Erlbaum. [SCRAPS]

Hendler, J., and Sanborn, J. 1987. Planning and
Reaction in Dynamic Domains. In Proceedings of
the Defense Advanced Research Projects Agency
Workshop on Planning.

Hendrix, G. 1973. Modelling Simultaneous Actions
and Continuous Processes. Artificial Intelligence
4:145–180.

Horvitz, E. 1988. Reasoning under Varying and
Uncertain Resource Constraints. In Proceedings of
the Seventh National Conference on Artificial
Intelligence, 111–116. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Horvitz, E.; Cooper, G.; and Heckerman, D. 1989.
Reflection and Action under Scarce Resources: The-
oretical Principles and Empirical Study. In Proceed-
ings of the Eleventh International Joint Conference
on Artificial Intelligence, 1121–1127. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence.

Kaelbling, L. P. 1988. Goals as Parallel Program
Specifications. In Proceedings of the Seventh
National Conference on Artificial Intelligence,
60–65. Menlo Park, Calif.: American Association for
Artificial Intelligence. [GAPPS]

Kaelbling, L. 1987. An Architecture for Intelligent
Reactive Systems. In Reasoning about Actions and
Plans: Proceedings of the 1986 Workshop, eds. M.
Georgeff and A. Lansky. San Mateo, Calif.: Morgan
Kaufmann.

Kahn, K., and Gorry, G. A. 1977. Mechanizing Tem-
poral Knowledge. Artificial Intelligence 9:87–108.

Reddy, D. R. 1980. The HEARSAY-II Speech-Under-
standing System: Integrating Knowledge to Resolve
Uncertainty. ACM Computing Surveys 12(2).

Fahlman, S. E. 1974. A Planning System for Robot
Construction Tasks. Artificial Intelligence 5:1–49.

Faletti, J. 1982. PANDORA—A Program for Doing
Commonsense Reasoning Planning in Complex
Situations. In Proceedings of the Second National
Conference on Artificial Intelligence. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence. [PANDORA]

Fikes, R. E. 1982. A Commitment-Based Framework
for Describing Informal Cooperative Work. Cogni-
tive Science 6:331–347.

Fikes, R. E. 1970. REF-ARF: A System for Solving
Problems Stated as Procedures. Artificial Intelligence
1:27–120.

Fikes, R. E., and Nilsson, N. J. 1971. Strips: A New
Approach to the Application of Theorem Proving
to Problem Solving. Artificial Intelligence 2:189–208.
[STRIPS]

Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972a.
Learning and Executing Generalized Robot Plans.
Artificial Intelligence 3. [STRIPS; PLANEX]

Fikes, R. E; Hart, P. E.; and Nilsson, N. J. 1972b.
Some New Directions in Robot Problem Solving. In
Machine Intelligence 7, eds. B. Meltzer and D. Michie.
Edinburgh: Edinburgh University Press. [STRIPS]

Firby, J. 1989. Adaptive Execution in Complex
Dynamic Worlds. Ph.D. diss., Dept. of Computer
Science, Yale Univ. [RAPS]

Fox, M. S.; Allen, B.; and Strohm, G. 1981. Job
Shop Scheduling: An Investigation in Constraint-
Based Reasoning. In Proceedings of the Seventh
International Joint Conference on Artificial Intelli-
gence. Menlo Park, Calif.: International Joint Con-
ferences on Artificial Intelligence. [ISIS-II]

Georgeff, M. 1982. Communication and Interac-
tion in Multi-Agent Planning Systems. In Proceed-
ings of the Third National Conference on Artificial
Intelligence. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence.

Georgeff, M., and Lansky, A. 1987. Reactive Reason-
ing and Planning. In Proceedings of the Sixth
National Conference on Artificial Intelligence.
Menlo Park, Calif.: American Association for Artifi-
cial Intelligence. [PRS]

Georgeff, M., and Lansky, A. 1985. A Procedural
Logic. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Green, C. C. 1969. Theorem Proving by Resolution
as a Basis for Question Answering. In Machine Intel-
ligence 4, eds. B. Meltzer and D. Michie. Edinburgh:
Edinburgh University Press.

Gupta, N., and Nau, D. 1990. Optimal Block’s World
Solutions are NP-Hard, Technical Report, Computer
Science Dept., Univ. of Maryland. Forthcoming.

Hammond, K. 1986. Chef: A Model of Case-Based
Planning. In Proceedings of the Fifth National Con-
ference on Artificial Intelligence. Menlo Park,

Articles

74 AI MAGAZINE

Kambhampati, S. 1989. Flexible Reuse and Modifi-
cation in Hierarchical Planning: A Validation Struc-
ture Based Approach, Ph.D. diss., Dept. of
Computer Science, Univ. of Maryland. [PRIAR]

Kambhampati, S., and Hendler, J. 1989. Flexible
Reuse of Plans via Annotation and Verification. In
Proceedings of the Fifth Institute of Electrical and
Electronic Engineers Conference on Applications of
Artificial Intelligence. [PRIAR]

Kanazawa, K., and Dean, T. 1989. A Model for Pro-
jection and Action. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelli-
gence, 985–999. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Kolodner, J. 1987. Case-Based Problem Solving. Pre-
sented at the Fourth International Workshop on
Machine Learning, University of California at
Irvine. [JULIA]

Konolige, K. 1983. A Deductive Model of Belief. In
Proceedings of the Eighth International Joint Con-
ference on Artificial Intelligence, 377–381. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Konolige, K., and Nilsson, N. J. 1980. Multi-Agent
Planning Systems. In Proceedings of the First
National Conference on Artificial Intelligence,
138–142. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Korf, R. E. 1987. Planning as Search: A Quantitative
Approach. Artificial Intelligence 33:65–88.

Kornfeld, W. A. 1979. ETHER: A Parallel Problem
Solving System. In Proceedings of the Sixth Interna-
tional Joint Conference on Artificial Intelligence,
490–492. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Lansky, A. L. 1988. Localized Event-Based Reason-
ing for Multiagent Domains. Computational Intelli-
gence Journal (Special Issue on Planning) 4(4).
[GEMPLAN]

Lansky, A. L. 1987. A Representation of Parallel
Activity Based on Events, Structure, and Causality.
In Reasoning about Actions and Plans: Proceedings of
the 1986 Workshop, eds. M. Georgeff and A. Lansky.
San Mateo, Calif.: Morgan Kaufmann. [GEMPLAN]

Latombe, J-C. 1976. Artificial Intelligence in Com-
puter-Aided Design—The TROPIC System, Techni-
cal Note 125, SRI AI Center, Menlo Park, Calif.

Lenat, D. B. 1975. BEINGS: Knowledge as Interact-
ing Experts. In Proceedings of the Fourth Interna-
tional Joint Conference on Artificial Intelligence,
126–133. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence. [PUP]

London, P. 1977. A Dependency-Based Modelling
Mechanism for Problem Solving, Memorandum,
TR-589, Dept. of Computer Science, Univ. of Mary-
land.

Luckham, D. C., and Buchanan, J. R. 1974. Auto-
matic Generation of Programs Containing Condi-
tional Statements. In Proceedings of the AISB
Summer Conference, 102–126.

McCarthy, J., and Hayes, P. J. 1969. Some Philo-
sophical Problems from the Standpoint of Artificial

Intelligence. In Machine Intelligence 4, eds. B.
Meltzer and D. Michie. Edinburgh: Edinburgh Uni-
versity Press.

McDermott, D. V. 1982. A Temporal Logic for Rea-
soning about Processes and Plans. Cognitive Science
6:101–155.

McDermott, D. V. 1978. Planning and Acting. Cog-
nitive Science 2. [NASL]

McDermott, D. V., and Doyle, J. 1979. An Introduc-
tion to Nonmonotonic Logic. In Proceedings of the
Sixth International Joint Conference on Artificial
Intelligence, 562–567. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Masui, S.; McDermott, J.; and Sobel, A. 1983. Deci-
sion-Making in Time Critical Situations. In Proceed-
ings of the Eighth International Joint Conference
on Artificial Intelligence, 233–235. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence. [AIRPLAN]

Mellish, C. S. 1984. Toward Top-Down Generation
of Multi-Paragraph Text. In Proceedings of the Sixth
European Conference on Artificial Intelligence, 229.

Miller, D.; Firby, J.; and Dean, T. 1985. Deadlines,
Travel Time, and Robot Problem Solving. In Pro-
ceedings of the Ninth International Joint Confer-
ence on Artificial Intelligence, 1052–1054. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence. [FORBIN]

Minton, S. 1985. Selectively Generalizing Plans for
Problem-Solving. In Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence,
596–599. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.
[Prodigy/EBL]

Moore, R. 1980. Reasoning about Knowledge and
Action, Technical Report 191, SRI AI Center, Menlo
Park, Calif.

Morgenstern, L. 1987. Replanning. In Proceedings
of the Defense Advanced Research Projects Agency
Knowledge-Based Planning Workshop.

Mostow, D. J. 1983. A Problem Solver for Making
Advice Operational. In Proceedings of the Third
National Conference on Artificial Intelligence,
179–283. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Nau, D.; Yang, Q.; and Hendler, J. 1989. Planning
for Multiple Goals with Limited Interactions. In
Proceedings of the Fifth Institute for Electrical and
Electronic Engineers Conference on Applications of
Artificial Intelligence.

Newell, A., and Simon, H. A. 1963. GPS: A Program
That Simulates Human Thought. In Computers and
Thought, eds. E. A. Feigenbaum and J. Feldman.
New York: McGraw-Hill. [GPS]

Nilsson, N. J. 1971. Problem Solving Methods in Arti-
ficial Intelligence. New York: McGraw-Hill.

Pednault, E. 1987. Solving Multi-Agent Dynamic
World Problems in the Classical Planning Frame-
work. In Reasoning about Actions and Plans: Proceed-
ings of the 1986 Workshop, eds. M. Georgeff and A.
Lansky. San Mateo, Calif.: Morgan Kaufmann.

Reiger, C., and London, P. 1977. Subgoal Protection

Articles

SUMMER 1990 75

Artificial Intelligence. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Segre, A. 1988. Machine Learning od Robot Assembly
Plans. Norwell, Mass.: Kluwer Academic.

Siklossy, L., and Dreussi, J. 1975. An Efficient Robot
Planner That Generates Its Own Procedures. In Pro-
ceedings of the Third International Joint Confer-
ence on Artificial Intelligence. Menlo Park, Calif.:
International Joint Conferences on Artificial Intelli-
gence. [LAWALY]

Siklossy, L., and Roach, J. 1973. Proving the Impos-
sible Is Impossible Is Possible: Disproofs Based on
Hereditary Partitions. In Proceedings of the Third
International Joint Conference on Artificial Intelli-
gence. Menlo Park, Calif.: International Joint Con-
ferences on Artificial Intelligence.
[DISPROVER/LAWALY]

Simmons, R., and Davis, R. 1987. Generate, Test,
and Debug: Combining Associational Rules and
Causal Models. In Proceedings of the Tenth Inter-
national Joint Conference on Artificial Intelligence,
1071–1078. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence. [G-T-D]

Smith, R. G. 1979. A Framework for Distributed
Problem Solving. In Proceedings of the Sixth Inter-
national Joint Conference on Artificial Intelligence.
Menlo Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Smith, R. G. 1977. The Contract Net: A Formalism
for the Control of Distributed Problem Solving. In
Proceedings of the Fifth International Joint Confer-
ence on Artificial Intelligence, 472. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence.

Sridharan, A., and Bresina, J. L. 1985. Knowledge
Structures for Planning in Realistic Domains. Com-
puters and Mathematics with Applications (Special
Issue on Knowledge Representation) 11(5):
457–480. [PLANX-10]

Stallman, R. M., and Sussman, G. J. 1977. Forward
Reasoning and Dependency Directed Backtracking.
Artificial Intelligence 9:135–196.

Steele, G. L., and Sussman, G. J. 1978. Constraints,
MIT AI Lab Memo, 502, AI Lab., Massachusetts
Institute of Technology.

Stefik, M. J. 1981a. Planning and Meta-Planning.
Artificial Intelligence 16:141–169. [MOLGEN]

Stefik, M. J. 1981b. Planning with Constraints.
Artificial Intelligence 16:111–140. [MOLGEN]

Sussman, G. A. 1973. A Computational Model of
Skill Acquisition, MIT AI Lab Memo, AI-TR-297, AI
Lab., Massachusetts Institute of Technology.
[HACKER]

Sussman, G. A., and McDermott, D. V. 1972. Why
Conniving Is Better than Planning, MIT AI Lab
Memo, 255A, AI Lab., Massachusetts Institute of
Technology. [CONNIVER]

Tate, A. 1984a. Goal Structure: Capturing the
Intent of Plans. Presented at the European Confer-
ence on Artificial Intelligence, Pisa, Italy. [NONLIN]

Tate, A. 1984b. Planning and Condition Monitor-

and Unravelling during Plan Synthesis. In Proceed-
ings of the Fifth International Joint Conference on
Artificial Intelligence. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Rich, C. 1981. A Formal Representation for Plans in
the Programmer’s Apprentice. In Proceedings of the
Seventh International Joint Conference on Artificial
Intelligence, 1044–1052. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial Intelligence.

Rich, C.; Shrobe, H. E.; and Waters, R. C. 1979.
Overview of the Programmer’s Apprentice. In Pro-
ceedings of the Sixth International Joint Confer-
ence on Artificial Intelligence, 827–828. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Rosenschein, S. 1982. Synchronization of Multi-
Agent Plans. In Proceedings of the Second National
Conference on Artificial Intelligence. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Rosenschein, S. J. 1981. Plan Synthesis: A Logical
Perspective. In Proceedings of the Seventh Interna-
tional Joint Conference on Artificial Intelligence.
Menlo Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Rosenschein, S. J. 1980. Synchronization of Multi-
Agent Plans. In Proceedings of the Second National
Conference on Artificial Intelligence. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Russell, S., and Wefald, E. 1989. Principles of Metar-
easoning. In Proceedings of the First International
Conference on Principles of Knowledge Representation
and Reasoning. San Mateo, Calif.: Morgan Kaufmann.

Sacerdoti, E. D. 1979. Problem Solving Tactics. In
Proceedings of the Sixth International Joint Con-
ference on Artificial Intelligence. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence.

Sacerdoti, E. D. 1977. A Structure for Plans and
Behaviour. Amsterdam: Elsevier–North Holland.
[NOAH]

Sacerdoti, E. D. 1975. The Non-Linear Nature of
Plans. In Advance Papers of the Fourth Internation-
al Joint Conference on Artificial Intelligence. [NOAH]

Sacerdoti, E. D. 1973. Planning in a Hierarchy of
Abstraction Spaces. In Advance Papers of the Third
International Joint Conference on Artificial Intelli-
gence. [ABSTRIPS]

Sanborn, J., and Hendler, J. 1988. Monitoring and
Reacting: Planning in Dynamic Domains. Interna-
tional Journal of AI and Engineering 3(2).

Sathi, A.; Fox, M. S.; and Greenberg, M. 1985. Rep-
resentation of Activity Knowledge for Project Man-
agement. IEEE Special Issue of Transactions on Pattern
Analysis and Machine Intelligence. [CALLISTO]

Schank, R. C., and Abelson, R. P. 1977. Scripts,
Plans, Goals, and Understanding. Hillsdale, N.J.:
Lawrence Erlbaum.

Schoppers, M. 1987. Universal Plans for Reactive
Robots in Unpredictable Domains. In Proceedings
of the Tenth International Joint Conference on

Articles

76 AI MAGAZINE

ing in a FMS. Presented at the International Confer-
ence on Flexible Automation Systems, Institute of
Electrical Engineers, London, July 1984. [NONLIN]

Tate, A. 1977. Generating Project Networks. In Pro-
ceedings of the Fifth International Joint Conference
on Artificial Intelligence. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial Intelli-
gence. [NONLIN]

Tate, A. 1975a. Interacting Goals and Their Use. In
Proceedings of the Fourth International Joint Con-
ference on Artificial Intelligence, 215–218. Menlo
Park, Calif.: International Joint Conferences on
Artificial Intelligence. [INTERPLAN]

Tate, A. 1975b. Project Planning Using a Hierarchi-
cal Non-Linear Planner, Report 25, Dept. of Artifi-
cial Intelligence, Edinburgh Univ. [NONLIN]

Tate, A.,and Whiter, A. M. 1984. Planning with
Multiple Resource Constraints and an Application
to a Naval Planning Problem. First Conference on the
Applications of Artificial Intelligence, Denver, Colorado,
USA. San Mateo, Calif.: Morgan Kaufmann.
[NONLIN+]

Vere, S. 1983. Planning in Time: Windows and
Durations for Activities and Goals. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
PAMI-5(3): 246–267. [DEVISER]

Vilain, M. B. 1980. A System for Reasoning about
Time. In Proceedings of the Second National Con-
ference on Artificial Intelligence. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Waldinger, R. 1975. Achieving Several Goals Simul-
taneously, Technical Note 107, SRI AI Center,
Menlo Park, Calif.

Warren, D. H. D. 1976. Generating Conditional
Plans and Programs. In Proceedings of the AISB
Summer Conference, 344–354. [WARPLAN-C]

Warren, D. H. D. 1974. WARPLAN: A System for
Generating Plans, Memorandum, 76, Dept. of Com-
putational Logic, Edinburgh Univ. [WARPLAN]

Wilensky, R. 1983. Planning and Understanding.
Reading, Mass.: Addison-Wesley.

Wilensky, R. 1981a. A Model for Planning in Com-
plex Situations, Memorandum, UCB/ERL M81/49,
Electronics Research Lab., Univ. of California at
Berkeley.

Wilensky, R. 1981b. Meta-Planning: Representing
and Using Knowledge about Planning in Problem
Solving and Natural Language Understanding. Cog-
nitive Science 5:197–233.

Wilensky, R. 1978. Understanding Goal-Based Sto-
ries, Research Report, 140, Dept. of Computer Sci-
ence, Yale Univ.

Wilkins, D. E. 1988. Practical Planning—Extending
the Classical AI Planning Paradigm. San Mateo,
Calif.: Morgan Kaufmann.

Wilkins, D. E. 1983. Representation in a Domain-
Independent Planner. In Proceedings of the Eighth
International Joint Conference on Artificial Intelli-
gence, 733–740. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.[SIPE]

Wilkins, D. E., and Robinson, A. E. 1981. An Inter-

active Planning System, Technical Note 245, SRI,
Menlo Park, Calif. [SIPE]

Yang, Q. 1989. Improving the Efficiency of Plan-
ning, Ph.D. diss., Dept. of Computer Science, Univ.
of Maryland.

James Hendler is an assistant professor with a joint
appointment from the Computer Science Depart-
ment and the Systems Research Center at the Uni-
versity of Maryland. He received a Ph.D. from
Brown University in the area of AI planning sys-
tems. He authored Integrating Marker-Passing and
Problem Solving (Lawrence Erlbaum, 1987) and
edited Expert Systems: The User Interface (Ablex,
1988) and Readings in Planning (with J. Allen and A.
Tate) (Morgan Kaufmann, 1990). He is also an asso-
ciate editor for the international journal Connection
Science. His current work focuses primarily on plan-
ning in rapidly changing, dynamic domains.

Austin Tate is the director of the Artificial Intelli-
gence Applications Institute at the University of
Edinburgh and is a university professorial fellow. In
the mid-1970s, he developed the Nonlin planner
and its associated task formalism. Tate’s current
research focuses on the development of O-Plan
(open planning architecture), which is a flexible
workbench for the construction of computer sys-
tems to aid in the command, planning, and control
of tasks such as factory management, project man-
agement, and spacecraft operations.

Mark Drummond is currently employed by Ster-
ling Software and works at the NASA Ames
Research Center. He received a Ph.D. in AI from the
University of Edinburgh in 1987, where he also
worked as a consultant on the design and construc-
tion of knowledge-based planning systems for the
Artificial Intelligence Applications Institute. His
general research interests include temporal and spa-
tial reasoning, real-time systems, scheduling, and
decision support systems. His current work focuses
on the problem of plan synthesis in the context of
situated reaction.

Notes
1. An early version of this article appeared in
Knowledge Engineering Review in June 1985 (volume
1, number 2, pages 4–17). Part of that review, along
with a tutorial introduction to the field, appeared
in the planning chapter of Knowledge Engineering,
volume 1, edited by H. Adeli (McGraw-Hill, 1990).
A version of this article, stressing technical defini-
tions, appears in Readings in Planning, edited by J.
Allen, J. Hendler, and A. Tate.

Articles

SUMMER 1990 77

