
The use of AI tech-
niques in develop-
ing design programs
provides formalisms
for representing
p r o b l e m - s o l v i n g
processes. In this
article, the use of AI
techniques in mod-
eling design process-

es is elaborated with the presentation of three
models that formalize the representation of
design knowledge within a design program.

For the purpose of establishing the rele-
vance of the models presented here, a struc-
tured approach to the overall process of
design is adopted in which the design process
comprises three phases: formulation, synthe-
sis, and evaluation.

Design formulation involves identifying the
requirements and specifications of the design
problem. The result of design formulation is
sometimes referred to as the design brief or
program or, more simply, the definition of
the design problem. Design synthesis includes

Studies in design
methodology pro-
vide various struc-
tured approaches to
the design process.
Many books provide
definitions and
elaborations of the
design process: In
the structural engi-
neering field, such books include Holgate
(1986) and Lin and Stotesbury (1981). More
generally, various design methods and tech-
niques are described in Alexander (1964) and
Jones (1970). These design methods share the
characteristic of prescribing a general set of
tasks to be performed by the designer. One
problem with design methodologies is that
such approaches prescribe what a designer
should do but not how. Human designers
tend to not use such methodologies because
they stifle creativity through a prescription of
structured activities. There is a need to identi-
fy models of design processes that facilitate
design rather than prescribe a design process.

There is a
need to
identify
models of
design pro-
cesses that
facilitate
design rather
than prescribe
a design
process.

Articles

WINTER 1990 49

Process Models for
Design Synthesis

Mary Lou Maher

Models of design processes provide guidance in
the development of knowledge-based systems for
design. The basis for such models comes from
research in design theory and methodology as
well as problem solving in AI. Three models are
presented: decomposition, case-based reasoning,
and transformation. Each model provides a for-
malism for representing design knowledge and
experience in distinct and complementary forms.

Copyright, ©1990 American Association for Artificial Intelligence. All rights reserved. 0738-4602/90/$4.00

AI Magazine Volume 11 Number 4 (1990) (© AAAI)

design activities but not executing them.
When a particular methodology does provide
a procedure for executing a design activity, it
becomes too constrained to be helpful in most
design situations. Rather than prescriptions
for the execution of design activities, it might
be more helpful to identify descriptive models
that allow reasoning and creativity within the
formalized representation of design.

The focus in this article is on the synthesis
phase. During design synthesis, the form of
the design solution is identified. This phase
of the design process is not well supported by
computer-based tools unless the design prob-
lem can be formulated in mathematical terms;
for example, optimization techniques are
used during synthesis when the design prob-
lem can be formulated as an objective function
and constraints. The recent use of knowledge-
based systems for the synthesis of design
descriptions has shown promise and forms
the basis for the models described here. Expe-
rienced designers resort to trial and error less
frequently than novice designers when they
synthesize designs, suggesting that the use of
knowledge-based systems to represent experi-

the identification of one or more design solu-
tions consistent with the requirements
defined during formulation and any addi-
tional requirements identified during synthe-
sis. Design evaluation involves interpreting a
partially or completely specified design
description for conformance with expected
performances. This phase of the design pro-
cess often includes engineering analysis.

Although the phases might not be
addressed in the order prescribed for the
entire design process and are often carried
out recursively, there is an inherent order in
which designers approach a design problem.
Typically, a designer starts with a definition
of the design problem, identifies one or more
potential design descriptions, and then evalu-
ates the design. The variation occurs in the
revisions of the requirements or descriptions
and the iterations of the various phases.

The identification of different phases in the
design process is a beginning for the formal-
ization and understanding of design. What is
missing from such methods is how each
phase is completed. The use of a structured
approach is acceptable for identifying various

During design
synthesis,

the form of
the design
solution is
identified.

Articles

50 AI MAGAZINE

?

=>

=>

Decomposition Case-based Reasoning Transformation

Figure 1. Three Models of Design Processes.

ence might aid in synthesizing designs. The
major issue then is the explicit representation
of design experience in a knowledge base.

During design synthesis, a designer considers
a design space that contains the knowledge
that is used to develop the design solution. A
human designer does not need to explicitly
identify his(her) design space; it is implicitly
developed and expanded as s/he gains experi-
ence. A design program, however, does con-
tain an explicit representation of the relevant
design space. The nature of the knowledge in
the design space must be explicit when con-
sidering a knowledge-based approach to
design.

Simon (1969) presents design as a problem-
solving process and, even more specifically, as
a search process. The implication of search as
a model for design processes is that design
knowledge can be expressed as goals and
operators. As a general approach to modeling
design, search provides a formalism for
expressing design knowledge; however, it
does not directly address some of the intrica-
cies and idiosyncrasies of design problems.
Considering design as problem solving is a
beginning to understanding and modeling
design, but design problem solving has some
additional characteristics that can be exploit-
ed by more explicit models.

It is interesting to consider the three phases
of design as a search process within a design
space: Design formulation involves identify-
ing the goal(s) of the design problem. Design
synthesis involves the search for one or more
design solutions through the selection and
application of operators. Design evaluation
involves assessing whether the goal(s) have
been satisfied.

Variations in both the goals and the state-
space descriptions as the design process pro-
ceeds and the difficulty in predetermining the
relevant operators are some of the issues that
are not readily addressed in using search for
solving design problems. The goals of the
problem can change during the problem-solv-
ing process, which can indicate a different
design space to be searched. One reason
design has been difficult to implement as a
search process is this change in problem defi-
nition during the problem-solving process.
One way of dealing with this difficulty is to
identify models of the design synthesis pro-
cess, assuming that formulation has occurred.
Another way is to allow synthesis to proceed
even with a change of goals. The implication
here is that using search as a model for the
design process is too general; more specific
models that use search in various ways are
needed to bridge the gap between a model of

design and the eventual representation of
design knowledge and experience.

The use of AI techniques combined with
research in design methodology provides an
opportunity to exploit the results of both to
produce an understanding of design problem
solving. The early efforts in using AI tech-
niques in design resulted in expert systems
capable of designing specific artifacts using
rule-based approaches. In many cases, the
experience in developing rule-based design
systems led to the generalization of design
problem solving in which the knowledge base
was no longer made up of unstructured rules.
The justifications for this transition from an
unstructured rule base to a design-oriented
knowledge base included ease of knowledge
acquisition and an increased understanding
of design problem solving.

Three Models of
Design Synthesis

In generalizing design problem solving, three
distinct models of design synthesis can be
identified: decomposition, case-based reason-
ing, and transformation (figure 1). These
models are distinct in their associated for-
malisms for design knowledge. The models
are not necessarily cognitive models;
although they might match various
approaches humans take when producing
design solutions, the correspondence has not

Articles

WINTER 1990 51

Large, complex
problem

Solution to
subproblem2.1

Subproblem 2.1

Subproblem 2 Subproblem nSubproblem 1 • • •

Fi 2 D iti M d l
Figure 2. Decomposition Model.

Articles

52 AI MAGAZINE

been adequately tested. The distinction
among the models lies in the representation
of design knowledge rather than in their
appropriateness for a specific design domain
or phase of design. The purpose of identify-
ing more than one design model is in identi-
fying appropriate formalisms for representing
design knowledge.

Decomposition (figure 2) is perhaps the
most ubiquitous model of design. It follows
directly from the development of design
methodology and has been shown to be
useful in the development of knowledge-
based design systems. The idea of dividing
large complex problems into smaller, less
complex problems is well accepted and prac-
ticed. It is possible to consider all models of
design as some form of decomposition.
When we consider a knowledge-based
approach to representing design knowledge,
the decomposition model has provided a
clear position about the type of design
knowledge needed. Specific knowledge-based
systems for design by decomposition have
been developed that identify specific lan-
guages for describing design knowledge.
Examples of such languages include DSPL
(Brown and Chandrasekaran 1985), Edesyn
(Maher 1988), and Vexed (Steinberg 1987).
The issues associated with this model include
the appropriateness of decomposing and
assuming that solutions to loosely coupled
subproblems will combine to form a good
design solution and the ease of specifying
design knowledge in the domain as decom-
position and recomposition knowledge.

Case-based reasoning is a model of design
that directly uses design experience in the
form of episodes rather than compiles and
generalizes it. The model (figure 3) uses ana-
logic reasoning to select and transform spe-
cific solutions to previous design problems to

be appropriate as solutions for a new design
problem. This model is attractive because the
knowledge acquisition for developing gener-
alized representations of design knowledge
in a particular domain can be difficult and
time consuming. The issues associated with
using this model for design include the iden-
tification of the necessary information about
a design episode to reason about its applica-
bility in a different context, the meaning of a
similar design, and the transformation of the
solution from the original context to the
new context. Although human designers
appear to be good at using this type of analo-
gy, it is difficult to automate it.

Transformation is a holistic approach to
design, similar to case-based reasoning, but
uses generalizations rather than specific
episodes, like decomposition. In the transfor-
mation model (figure 4), the design knowl-
edge is expressed as a set of transformational
rules in which the left-hand side (LHS) of the
rule is replaced by the right-hand side (RHS)
of the rule. The most common application of
the transformation model is manifested as
grammars. The issues associated with using
this model are the representation of the
design description, the control in selecting
an eligible transformational rule, and the ter-
mination of the application of rules.

In the following subsections, the definition
and use of these models are elaborated. Cur-
rently, the models are ill defined, and many
issues need to be resolved before they can
become domain-independent formalisms
defined in sufficient detail to be computer
environments for knowledge-based design.
In addition, examples are presented of systems
that have been implemented that use one of
the models. The purpose of the following
subsections is to illustrate that such models
of design are not domain dependent—the

Design
episode 1

New
design
problem

Design
solution

SELECT TRANSFORM

Figure 3. Case-Based Reasoning Model.

examples are drawn from different domains—
and that the models provide an understand-
ing of the nature of the design knowledge
that needs to be acquired to implement
knowledge-based systems for design.

Decomposition

Decomposition by definition means that
something is decomposed; it also implies a
recomposition. The early expert systems for
design synthesis implicitly used the decompo-
sition model. Hi-Rise (Maher and Fenves 1984;
Maher 1988), an expert system for the prelim-
inary design of high-rise buildings, used both
rule-based and frame-based representations of
design knowledge. R1 (Xcon), an expert system
for the configuration of computer systems,
used a rule-based approach. In both cases, the
representation of the design knowledge was
dictated by the language in which the system
was implemented: PSRL (Rychener 1984) in
the case of Hi-Rise and OPS5 (Forgey 1981)
for R1. These expert systems led to the gener-
alization of the design approach to define a
decomposition language for developing a
knowledge base. Hi-Rise led to Edesyn (Maher
1988) and R1 to Salt (Marcus, Stout, and
McDermott 1988). These two systems were
not unique in this sense. Many efforts in
developing design expert systems led to the
development of languages for decomposition
in the anticipation that this approach would
facilitate the development of additional
design expert systems and provide a formal-
ism for representing design knowledge.

The identification of various languages for
describing design knowledge has raised a
number of issues in the application of the
decomposition model to complex design
problems. Several questions are raised when
applying this model to the development of a
knowledge base for design: What is decom-
posed? How is the problem decomposed? Is
the decomposition fixed? How does recompo-
sition occur?

What is decomposed? It is easy to say that
the design problem is decomposed into sub-
problems, but what is the meaning of decom-
position in design? There are at least two
meanings to the decomposition of a design
problem into subproblems: (1) to decompose
a domain of design knowledge, say, structural
design, into the various physical components
that are used to construct design solutions,
say, walls, slabs, and so on, or (2) to decom-
pose into the various functions that must be
provided for by a design solution, for exam-
ple, resisting various types of load and provid-
ing open space, until a component can be

identified that will provide a specified function.
The first approach to decomposition is an

object-centered approach in which the design
knowledge is organized around the physical
systems and components that a particular
domain is concerned with. The second
approach considers a functional decomposi-
tion to a sufficient level of detail in which a
function to form mapping can occur.

The issue of function versus form as a basis
for decomposition is not resolved yet. The
point here is that design knowledge compris-
es various types of knowledge, for example,
function and form, and recognizing these
types of knowledge facilitates the formaliza-
tion of the design process and, subsequently,
the development of a solution. One approach
to dealing with the decomposition of the
function versus form dilemma is to ignore the
distinction between function and form and
identify a uniform representation for either
function or form. In a search process
approach to design, this uniform representa-
tion is typically called a goal. Another
approach is to dictate a specific representa-
tion for functional decomposition and a spe-
cific representation for form decomposition.

How is the problem decomposed? The
assumption behind decomposition is that
each subproblem can be solved independent
of the other subproblems. However, this
assumption is an idealization rather than a
reality for any problem definition. The rule of
thumb in decomposition is to decompose
into nearly independent subproblems or
loosely coupled subproblems. Usually, this
decomposition is easier said than done. How-
ever, because many have been successful in
solving complex problems using decomposi-

Articles

WINTER 1990 53

LHS pattern 1

REPLACED-BY

REPLACED-BY

REPLACED-BY

RHS pattern 1

LHS pattern 2 RHS pattern 2

LHS pattern n RHS pattern n

•
•
•

•
•
•

Figure 4. Transformation Model.

Articles

54 AI MAGAZINE

tion, there must be something to it. A well-
understood problem is easier to decompose
than one that has not yet been explored.

Is the decomposition fixed? A fixed decom-
position implies that it is not altered for a
specific problem and is used without modifi-
cation for all problems presented. At a gener-
al level of abstraction, a fixed decomposition
might be possible. For example, it is useful to
decompose design into formulation, synthe-
sis, and evaluation at a general level. Such a
decomposition is not as useful for a more
detailed view of a specific design problem. As
soon as a more detailed approach to design is
required, a single decomposition is inadequate.

For example, the decomposition of the
design of a structural system might be (1)
design the lateral load resisting system, (2)
design the gravity load resisting system, and
(3) design the foundation. This decomposi-
tion makes sense when the structure is a
building with more than five stories. Varia-
tions can occur when (1) the structure is a
single-family residence, where the lateral load
resisting system is insignificant and where
the order of the decomposition might change
but not the subproblems; (2) the structure is
underground, where the lateral load resisting
system cannot be considered separate from
the gravity load resisting system, and the
nature of the subproblems must be reconsid-
ered; and (3) the structure is an offshore oil
platform, where the foundation and the vari-
ous structural systems for lateral and gravity
loads are integrated. Once it has been deter-
mined that the decomposition should not be
fixed, a representation that accommodates
variations must be identified.

How does recomposition occur? The
decomposition of a design problem into sub-
problems implicitly assumes that recomposi-
tion will occur. The fact that recomposition is
implicit, rather than explicit, indicates that it
is not an obvious process. Recomposition can
occur implicitly; that is, by stating the solu-
tions to the subproblems, the entire problem
is solved. Recomposition can, however, intro-
duce complications. Considering the sub-
problems as independent problems is only an
idealization of reality. Putting the subprob-
lems together must take into account the
interactions. One way of representing the
interactions is as constraints; the issue of
recomposition then becomes one of con-
straint satisfaction.

The various computer environments that
have been developed for design by decompo-
sition answer each of these questions through
the identification of a structured language or

syntax for describing a knowledge base. As an
example, Edesyn provides two major repre-
sentation structures for the representation of
design knowledge: the system and the con-
straint. The representation of various systems
allows the design knowledge base to explicit-
ly represent the decomposition knowledge
discretely, although the decomposition of
any one system can vary as design proceeds.
Edesyn provides a uniform representation for
form and function, leaving the distinction to
the knowledge base developer. The represen-
tation of various constraints allows the
recomposition knowledge to be explicitly
stated. What we gain from the implementa-
tion of the decomposition model as domain-
independent computer environments for
design is a better understanding of decompo-
sition and its associated problems but, more
importantly, the realization that models of
design are not domain specific.

Case-Based Reasoning

Case-based reasoning in design involves the
generation of a design solution using the
solution or solution process from a previous
design problem as a basis. This model of
design synthesis requires episodes of design
cases rather than generalizations about a
design domain. Examples of a case-based rea-
soning approach to design include Struple
(Zhao and Maher 1988) and Bogart (Mostow,
Barley, and Weinrich 1989). Struple uses a
database of building design solutions, finds
partial matches to a new design problem, and
provides a set of relevant design components
for the solution of the new design problem.
Bogart uses a library of circuit design plans,
allows the user to select a relevant previous
design, and replays the previous design plan
for a new design problem. These two systems
are based on previous efforts in developing
decomposition languages for design (Edesyn
in the case of Struple and Vexed in the case of
Bogart) and the need to more directly use
experience because the knowledge acquisi-
tion of generalized decompositions was prov-
ing to be difficult.

As a process model, case-based reasoning
involves several operations. One set of opera-
tions is (Darpa 1989) (1) recall relevant cases
from case memory, (2) select the most
promising case, (3) construct a solution for
the new problem, (4) test the solution, (5)
evaluate the results, and (6) update case
memory by storing the new case.

In design synthesis, the operations of most
interest are centered on case retrieval, selec-

tion, and modification. With the assumption
that case memory is large (that is, many
design cases are stored), retrieval becomes a
search problem in a large space. The selection
of a case among potential cases requires
recognition of the relevance of each case and
how close the case is to providing a solution
to the design problem. The modification of
the case for the new design problem raises the
issues of what should be changed and what
should stay the same. It can be assumed that
the changes are based on the results of a par-
tial match, where the features of the case that
did not match should be changed, but such
local changes might not be sufficient.

There are guidelines for the development of
a case-based reasoning system, regardless of
whether the problem is design, planning, or
diagnosis, as in the following:

Case memory organization: The extremes
in representing cases in memory are to repre-
sent each case in its entirety (Reisbeck 1988;
Stanfill and Waltz 1986; Koton 1988; Ham-
mond 1986; Rissland and Ashley 1988) or
break each case into pieces (Carbonell 1983;
Kolodner 1988; Hinrichs 1988). When break-
ing a case into pieces, there are various
approaches, such as conceptual clustering
(Fischer 1988) and discrimination networks
(Feigenbaum 1963).

Indexing: The most obvious way to index
cases is to use appropriate features as indexes.
The selection of a set of indexes can be fixed,
which is not flexible, or the selection can be
based on inductive-learning methods to iden-
tify predictive features (Lebowitz 1987) or
explanation techniques (Mark and Barletta
1987) or to define a vocabulary associated
with a task-oriented approach to problem
solving (here, design and planning are exam-
ples of tasks) (Hammond 1986).

Retrieval algorithms: There are basically
two guidelines in the development of a
retrieval algorithm: concept refinement and
parallel search. Concept refinement assumes
that the structure of case memory is hierarchi-
cal in nature. The more general features or
shared features of various cases are searched
first, eliminating large amounts of cases
according to these shared features. There are
examples in which cases were stored in
entirety using redundant discriminate net-
works (Kolodner 1983; Lebowitz 1983) and in
pieces (Kolodner 1988). Parallel implementa-
tions use multiple processors so that every
case in memory can be simultaneously
checked (Stanfill and Waltz 1986).

Selection of the best case: A weighted
count of matching features provides one way
to select the best case; however, this approach

does not take into account that the case itself
might determine the importance of a feature.
Some approaches to finding the best case are
preference heuristics (Kolodner 1988), dimen-
sional analysis (Rissland and Ashley 1988),
and dynamically changing weighted evalua-
tion functions (Stanfill 1987).

These guidelines provide a basic under-
standing of case-based reasoning but do not
directly address the issues of case-based rea-
soning as a model for design synthesis. When
storing design episodes as cases, the content,
as well as the organization, of a case must be
considered. Most design solutions are stored
as descriptions of the physical object or
system; most commonly, this description is in
the form of drawings or geometric models.
The synthesis of a design solution for a new
problem starts with a set of specifications and
requirements. These specifications do not
solely consist of geometric information; so,
unless the cases include information about
the intended function, behavior, or perfor-
mances of the design solution, retrieval of
specific design cases can be distorted and,
therefore, not provide a useful basis for the
new design. This need is partly addressed by
the identification of a representation of
design episodes that includes function,
behavior, and performance as well as geomet-
ric descriptions.

There is also the issue of storing the design
solution or the operators used to produce the
design description. The advantage to storing
the design solution is that many existing
cases can be used immediately, augmenting
the geometric description with the relevant
functions, and so on. The disadvantage is that
transforming the old solution to fit the new
problem is difficult. The alternative, storing
the operators, allows the transformation to
the new problem to be an execution of the
old solution operators using the new problem
statement.

The use of case-based reasoning for design
synthesis assumes that the design knowledge
is represented in the form of design episodes,
defining the type of knowledge needed. The

Articles

FALL 1990 55

Case-based reasoning in design involves the
generation of a design solution using the
solution or solution process from a previous
design problem as a basis.

and applied by Stiny and Gips (Gips 1975;
Stiny and Gips 1978; Stiny 1980). The appli-
cation of shape grammars to architectural
design has illustrated the ability of shape
grammars to formally represent generative
design knowledge and capture design style.
The most notable applications include gram-
mars that characterize the design of Frank
Lloyd Wright’s prairie houses (Koning and
Eizenberg 1981), Palladian villa plans
(Mitchell and Stiny 1978), and Queen
Ann–style houses (Flemming 1987).

The considerations in using a grammar to
represent design synthesis knowledge include
(1) the definition of the terminal and nonter-
minal symbols and (2) the identification of
productions. The definition of the terminal
and nonterminal symbols is usually based on
a formal representation of shape. The identi-
fication of productions provides the domain
knowledge, where the productions represent
design transformations associated with a spe-
cific design domain, for example, the design
of rigid-frame structural systems, or a design
style, for example, prairie houses.

Shape grammars and their application pro-
vide an example of how grammars can be used
to manipulate shape. Other types of grammars
address other aspects of design. In some design
domains, it is not sufficient to generate design
alternatives on the basis of shape alone. The
types of grammars that have been identified
include graph grammars and attribute gram-
mars (Mullins and Rinderle 1990).

The attractive aspects of a grammatical
approach to design are the ability to repre-
sent a design space without enumerating the
possible design solutions and the formal basis
for representing design knowledge. The diffi-
culty in the practical application of grammars
to design lies in the definition of a vocabu-
lary that is expressive enough to capture
design knowledge. The major barrier to the
application of grammars to engineering
design is the lack of a formal basis for repre-
senting function. Most grammars represent
geometry in the form of shapes or geometric
models. There are a few experiments with
representing both function and geometry in a
grammar. Fenves and Baker (1987) define a
grammar that considers spatial transforma-
tions and an additional grammar that adds
context or function to the generated shapes.
Finger and Rinderle (1990) describe a bond
graph approach to defining a grammar that
captures behavior and geometry of mechani-
cal systems.

Although the consideration in developing a
grammar for representing design knowledge
is defining the vocabulary and the rules, the

representation of design episodes requires a
formalism that includes geometric descrip-
tion, function, and behavior, so that reason-
ing about the transformation from the old
solution to the new design problem is possi-
ble. As a model, case-based reasoning has
been explored in many areas, and algorithms
and specific programs have been developed.
The implications of using this model in
design have not been addressed as extensive-
ly as with the decomposition model.

Transformation

The transformation model follows a theoreti-
cal approach to design in which the initial set
of design requirements is transformed into a
design solution. The transformation model
begins to approach the issue of how transfor-
mation occurs. Because grammars provide a
formalism for the transformation model, they
are used here to define the model. A general
rule-based system shares many characteristics
of a transformation model, the distinction
being a subtle one. In rule-based systems, a
predefined control mechanism determines
which rule will execute, and there are fewer
restrictions on the use of a rule’s LHS and RHS.
In a transformation model or, more explicitly,
in a grammar, there is no explicit control
mechanism, and the rules are considered
rewrite rules in which LHS is replaced by RHS.

A grammar is more commonly associated
with language rather than design or problem
solving. Understanding grammars and their
application to design requires considering
design knowledge as a language and legal
design solutions as legal statements in a lan-
guage. In this sense, we can consider a gram-
mar to be a formalism of design knowledge
that can be used to generate a set of legal design
solutions or, alternatively, to check whether a
design solution is legal. The term legal is being
used here in the broadest sense, meaning that
a design solution or statement conforms with
the formal definition of the language.

The properties of a grammatical formalism
were explored by Chomsky (1957). A formal
definition of a grammar is

G = {N,T,P,S} ,
where N is a set of nonterminal symbols, T is
a set of terminal symbols, P is a set of produc-
tions or rewrite rules, and S is a special
symbol called the start symbol.

The most well-known and successful type
of grammar used in design is the shape gram-
mar. Shape grammars use symbols that are
based on shapes made up of points and lines.
The formal definition and basic properties of
shape grammars have been clearly defined

Articles

56 AI MAGAZINE

difficult questions for the practical use of
grammars as both a representation and an
implementation as a computer program are,
How can function be formally represented?
and How is rule execution controlled? The
first question is still open, although there are
some examples of including function in
grammars. With the second question, the
resulting system is usually made interactive
(that is, the user or designer chooses which
eligible rule is executed), or an inference
mechanism similar to those used in rule-
based expert system languages is used.

Conclusion
Three models of the process of design synthe-
sis were presented: decomposition, case-based
reasoning, and transformation. The value in
identifying multiple models of design lies in
the richness of the representation of design
knowledge and experience provided by each
and in the ability to choose a model that
more closely fits the knowledge readily avail-
able for the domain being considered.
Although each model can be implemented as
a computer environment on its own, there is
an advantage when the three models can be
interchangeably used, the use of a model
depending on available knowledge. For exam-
ple, design decomposition can provide an
overall model for design, where each system-
subsystem can be designed using case-based
reasoning when a relevant case is available, a
set of transformations when a grammar is
available, or further decomposition when the
generalized decomposition is understood.
Before such an integrated environment is pos-
sible as an implementation, many of the
questions and issues raised by the implemen-
tations of each model need to be resolved.

Acknowledgment
This work was supported by the Engineering
Design Research Center at Carnegie-Mellon
University and the National Science Founda-
tion Design Theory and Methodology program.

References
__. 1989. Case-Based Reasoning, DARPA: Machine
Learning Program Plan. In Proceedings of the DARPA
Workshop on Case-Based Reasoning, 1–13. San Mateo,
Calif.: Morgan Kaufmann.

Alexander, C. 1964. Notes on the Synthesis of Form.
Cambridge, Mass.: Harvard University Press.

Brown, D., and Chandrasekaran, B. 1985. Expert
Systems for a Class of Mechanical Design Activity:
Knowledge Engineering. In Computer-Aided Design,
ed. J. Gero, 259–283. Amsterdam: North-Holland.

Carbonell, J. G. 1983. Derivational Analogy and Its
Role in Problem Solving. In Proceedings of the
Third National Conference on Artificial Intelli-
gence, 64-69. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence.

Chomsky, N. 1957. Syntactic Structures. Mouton & Co.

Feigenbaum, E. A. 1963. The Simulation of Verbal
Learning Behavior. In Computers and Thought, eds.
E. A. Feigenbaum and Feldman, 297–309. New
York: McGraw Hill.

Fenves, S., and Baker, N. 1987. Spatial and Func-
tional Representation Language for Structural
Design. In Expert Systems in Computer-Aided Design,
ed. J. Gero, 511–529. Amsterdam: Elsevier.

Finger, S., and Rinderle, J. R. 1990. Transforming
Behavioral and Physical Representations of
Mechanical Designs. In Proceedings of the First
International Workshop on Formal Methods in
Engineering Design, Manufacturing, and Assembly,
133–151.

Fischer, D. H. 1988. A Computational Account of
Basic Level and Typicality Effects. In Proceedings of
the Seventh International Conference on Artificial
Intelligence. Menlo Park, Calif.: International Joint
Conferences on Artificial Intelligence.

Flemming, U. 1987. More Than the Sum of Parts:
The Grammar of Queen Anne Houses. Environment
and Planning B. Planning and Design 14.

Forgey, C. L. 1981. OPS5 User’s Manual, Technical
Report, CMU-CS-81-135, Dept. of Computer Sci-
ence, Carnegie-Mellon Univ.

Gips, J. 1975. Shape Grammars and Their Uses.
Stuttgart: Birkhauser Verlag.

Hammond, K. 1986. CHEF: A Model of Case-Based
Planning. In Proceedings of the Fifth International

Articles

FALL 1990 57

The most well-known and successful type of grammar
used in design is the shape grammar. Shape grammars
use symbols that are based on shapes made up of points
and lines.

in Engineering 4(4): 181–196.

Mullins, S., and Rinderle, J. R. 1990. Grammatical
Approaches to Design. In Proceedings of the First
International Workshop on Formal Methods in
Engineering Design, Manufacturing, and Assembly,
42–69.

Reisbeck, C. K. 1988. An Interface for Case-Based
Knowledge Acquisition. In Proceedings of the DARPA
Workshop on Case-Based Reasoning. San Mateo,
Calif.: Morgan Kaufmann.

Rissland, E. L., and Ashley, K. D. 1988. Credit
Assignment and the Problem of Competing Factors
in Case-Based Reasoning. In Proceedings of the
DARPA Workshop on Case-Based Reasoning. San
Mateo, Calif.: Morgan Kaufmann.

Rychener, M. D. 1984. PSRL: An SRL-Based Produc-
tion-Rule System, Reference Manual, Dept. of Com-
puter Science, Carnegie-Mellon Univ.

Simon, H. A. 1969. The Sciences of the Artificial.
Cambridge, Mass.: MIT Press.

Stanfill, C. 1987. Memory-Based Reasoning Applied
to English Pronunciation. In Proceedings of the
Sixth National Conference on Artificial Intelli-
gence. Menlo Park, Calif.: American Association for
Artificial Intelligence.

Stanfill, C., and Waltz, D. 1986. Toward Memory-
Based Reasoning. Communications of the ACM
29(12): 1213-1228.

Steinberg, L. 1987. Design as Refinement Plus Con-
straint Propagation: The VEXED Experience. In Pro-
ceedings of the Sixth National Conference on
Artificial Intelligence. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Stiny, G. 1980. Introduction to Shape and Shape
Grammars. Environment and Planning B(7): 343–351.

Stiny, G., and Gips, J. 1978. Algorithmic Aesthetics.
Berkeley, Calif.: University of California Press.

Zhao, F., and Maher, M. L. 1988. Using Analogical
Reasoning to Design Buildings. Engineering with
Computers 4:107–119.

Mary Lou Maher is current-
ly a senior lecturer in the
Department of Architectural
and Design Science and
deputy director of the Key
Centre of Design Quality at
the University of Sydney.
She is on leave from
Carnegie-Mellon University,
where she was involved

with the Synthesis Lab at the Engineering Design
Research Center.

Conference on Artificial Intelligence. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence.

Holgate, A. 1986. The Art in Structural Design.
Oxford: Oxford University Press.

Hinrichs, T. R. 1988. Towards an Architecture for
Open World Problem Solving. In Proceedings of the
DARPA Workshop on Case-Based Reasoning. San
Mateo, Calif.: Morgan Kaufmann.

Jones, J. C. 1970. Design Methods. London: Wiley
Interscience.

Kolodner, J. L. 1988. Retrieving Events from a Case
Memory: A Parallel Implementation. In Proceedings
of the DARPA Workshop on Case-Based Reasoning. San
Mateo, Calif.: Morgan Kaufmann.

Kolodner, J. L. 1983. Towards an Understanding of
the Role of Experience in the Evolution from
Novice to Expert. International Journal of Man-
Machine Studies 19.

Koning, H., and Eizenberg, J. 1981. The Language
of the Prairie: Frank Lloyd Wright’s Prairie Houses.
Environment and Planning B(8): 295–323.

Koton, P. 1988. Reasoning about Evidence in
Causal Explanations. In Proceedings of the DARPA
Workshop on Case-Based Reasoning. San Mateo,
Calif.: Morgan Kaufmann.

Lebowitz, M. 1987. Experiments with Incremental
Concept Formation: UNIMEM. Machine Learning
2(2): 103–138.

Lebowitz, M. 1983. Generalization from Natural
Language Text. Cognitive Science 7(1).

Lin, T. Y., and Stotesbury, S. D. 1981. Structural Con-
cepts and Systems for Architects and Engineers. New
York: Wiley.

Maher, M. L. 1988a. Engineering Design Synthesis:
A Domain-Independent Representation. Artificial
Intelligence for Engineering Design, Analysis, and Man-
ufacturing 1(3): 207–213.

Maher, M. L. 1988b. HI-RISE: An Expert System for
Preliminary Structural Design. In Expert Systems for
Engineering Design, ed. M. Rychener, 37–52. San
Diego, Calif.: Academic.

Maher, M. L., and Fenves, S. J. 1984. HI-RISE: A
Knowledge-Based Expert System for the Prelimi-
nary Structural Design of High-Rise Buildings,
Technical Report, R-85-146, Dept. of Civil Engi-
neering, Carnegie-Mellon Univ.

Marcus, S.; Stout, J.; and McDermott, J. 1988. VT:
An Expert Elevator Designer That Uses Knowledge-
Based Backtracking. AI Magazine 9(1): 95–114.

Mark, W., and Barletta, R. 1987. Case-Based Reason-
ing in Manufacturing, Lockheed AI Center, Palo
Alto, Calif.

Mitchell, W., and Stiny, G. 1978. The Palladian
Grammar. Environment and Planning B(5): 5–18.

Mostow, J.; Barley, M.; and Weinrich, T. 1989. Auto-
mated Reuse of Design Plans. Artificial Intelligence

Articles

58 AI MAGAZINE

