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Abstract

There is a great disparity between the number
of papers which have been published about
AI-based manufacturing scheduling tools and
the number of systems which are in daily use
by manufacturing engineers. It is argued that
this is not a reflection of inadequate AI tech-
nology, but is rather indicative of lack of a
systems perspective by AI practitioners and
their manufacturing customers. Case studies
to support this perspective are presented by
Carnegie Group as a builder of scheduling
systems for its customers, by Texas Instru-
ments and Intel Corporation as builders of
schedulers for their own use, and by Intellec-
tion as a consulting house specializing in
scheduling problems.

Introduction
Given the impact of manufacturing
on the gross national product of any
developed nation, it is not surprising
that an increasing number of AI prac-
titioners are becoming involved in
the manufacturing domain.
(Although the AAAI SIGMAN (Special
Interest Group in MANufacturing)
held its first formal business meeting
at AAAI-88, its membership already
includes roughly one-third that of
the AAAI parent organization.) From
an optimistic viewpoint, this blos-
soming of interest could bring about
two important results. One is the
revitalizing effect that strong solu-
tions for outstanding problems
would have in manufacturing. The
other is the validating effect that suc-
cessful solution of large scale prob-
lems would have on AI theories.

The pessimistic reality is that these
results have not yet been realized in
spite of long-term efforts by talented
people. In this paper, we try to exam-
ine some of the reasons for this limit-
ed progress. While there are clearly
technical problems encountered in
applying AI techniques to manufac-
turing problems, our experience is
that it is more likely that “people
problems” block the march of
progress. Although specifying and

implementing the things which go
on inside the computer are difficult,
handling the things which go on
outside of the computer are even
more troublesome. While a few com-
ments on technological matters will
inevitably slip into the discussion,
our intended focus is the manufac-
turing personnel and AI technolo-
gists involved in the projects with
which we are familiar.

Artificially intelligent schedulers of
manufacturing production serve as
our example application. A variety of
scheduling problems, including flow-
shops and job-shops, have been
shown to be NP-complete [Garey and
Johnson 1979]. A wide selection of
AI-based solutions have been pro-
posed including at least the 100 ref-
erenced in a recent overview article
[Kempf 1989a]. But very few AI-based
schedulers have found their way into
daily manufacturing practice. Even
the most publicized of AI-based man-
ufacturing schedulers, the ISIS/OPUS
systems produced at Carnegie Mellon
University starting in 1980, have yet
to enter productive service and are
not considered to be on the verge of
doing so [Smith 1989].

A panel was convened at the AAAI
co-sponsored Third International
Conference on Expert Systems and
the Leading Edge in Production and
Operations Management with the
charter of addressing the disparity in
manufacturing production schedul-
ing between the number of papers in
print and the number of systems in
service. Under the auspices of the
Management Sciences Department in
the College of Business Administra-
tion of the University of South Car-
olina, a number of speakers were
invited to participate. With direction
from Timothy Fry, one of the Pro-
gram Chairmen, the aerospace, auto-
motive, and electronics industries
were targeted. Systems were sought
which had been built from scratch
and/or using commercial tools, and
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which included the efforts of internal
company personnel and/or external
consultants.

An invitation was issued to
Carnegie Group Incorporated on the
basis of their commercial tool offer-
ings, consulting experience in manu-
facturing, and scheduling applica-
tions in aerospace and electronics.
INTEL Corporation and Texas Instru-
ments were invited based on their
ongoing interest in applying AI to
semiconductor manufacturing
including production scheduling sys-
tems. Intellection’s invitation was
based on consulting access to a wide
variety of manufacturing companies
as well as broad experience in the
scheduling arena. Each of these invi-
tations was accepted and the nomi-
nees were the speakers during the
panel and the authors of this article.

Two other invitations were issued,
but declined. They are mentioned
here simply because the reasons giv-
en for not participating speak to the
central theme of this paper. One
went to General Motors Technical
Center where it was known that KEE
(from Intellicorp) was being used to
build a scheduler for a GM flexible
manufacturing system. The invita-
tion was declined citing secrecy dur-
ing the pursuit of patents. We took
this as an indication of a successful
application. The other unsuccessful
invitation went to Westinghouse
Electric which has been working for
some years using ART (from Infer-
ence Corporation) to build a sched-
uler for a flexible manufacturing sys-
tem located at a General Dynamics
facility in Fort Worth, Texas
[Reynolds 1986]. An obvious ques-
tion for a panel member representing
this project would have contrasted
Westinghouse sponsorship of ISIS
with their utilization of ART. Unfor-
tunately, the question was never
answered since the invitation was
declined based on the transfer of the
initiator and principal architect of
the project to another department
within Westinghouse.

Panel members were each fur-
nished with a list of questions prior
to the event. This list was intended
to serve at least as a motivator of dis-
cussion or, at most, as a partial out-
line for their presentation. The ques-
tions included the following .....

1) At a sufficiently detailed level to
give some context to your remarks,
what was the scheduling problem
addressed and what was the techni-

cal approach you took in your solu-
tion? Had there been previous
attempts in the manufacturing orga-
nization to provide similar function-
ality?

2) What were the steps that you
went through to get the system into
actual use? Were there laboratory tri-
als? Were there factory floor trials?
Was the system delivered incremen-
tally in terms of functionality or all
at once?

3) Were there knowledge collec-
tion issues? Were there human
schedulers? Were they experts pro-
ducing high quality solutions quick-
ly? Was their knowledge collected
and used? Was their knowledge aug-
mented?

4) Were there data collection or
interfacing issues? Was there a manu-
facturing data collection system?
How difficult was the interfacing
task? Was the data available com-
plete, correct, and consistent?

5) Were there user interfacing
issues? Who are the users - the
experts or the shop floor personnel?
How does the user interact with the
system? How often do they interact?
Were the users computer literate at
the start of the project?

6) Does the system work? What are
the metrics used to assess system per-
formance? How much better is the
automated system than the system it
replaced? Do the users and the man-
agement think it is better?

7) Is the system accepted in the
company? Do the intended users
actually use the system? Does the
management actually rely on the sys-
tem? How do personnel not directly
in contact with the system view it?

8) Where is the system going? Is it
done? Will it ever be done? Is it
expanding or contracting? Has it
turned users on or off to AI? Has it
turned management on or off to AI?
Has it set up other AI projects?

Each speaker addressed these and
other issues for about 15 minutes.
Then the session was opened for
comments from the audience. Sur-
prisingly, discussion continued for
over an hour with roughly one half
of the one hundred people in atten-
dance participating either by asking a
question or volunteering an answer,
example, or comment. The following
are the texts of the speakers’ remarks,
expanded as a result of the stimulat-
ing audience interaction.

A Viewpoint from Carnegie
Group Incorporated
Two different applications will be
examined in this section. The first is
called DISPATCHER [Acock and
Zemel 1986, Zemel and Acock 1986],
a currently deployed and operational
system at Digital Equipment Corpo-
ration (DEC). It was developed col-
laboratively by Carnegie Group
Incorporated (CGI) and DEC, and is
currently being maintained and
enhanced by DEC. The second appli-
cation is currently under develop-
ment by CGI for Ellwood City Forge.

The DISPATCHER environment
consists of different printed circuit
board assembly facilities containing
on the order of 75-100 workcenters
performing various process steps. An
automated material handling system
moves work between the processing
stations. After each process step,
work in process is routed back to a
central location equipped with stor-
age carousels where dispatching deci-
sions are made. Once the decision
making software has made the
assignment of a tote to a workcenter,
the material handling system carries
out the movement to the nest work-
center. These assignments are based
on tote due dates and priorities, and
station availability and capability. Of
course, the environment is dynamic
and a given workcenter may be
unavailable at a point in time or may
change over from one process step to
another. The decision making soft-
ware is coded in OPS-5, BLISS, and C.
It is integrated with conventional
software; namely, the material han-
dling systems and the factory infor-
mation system. In some sense, the
decision-making logic is relatively
simple in this particular application.
The strength of the system lies in its
ability to maintain the quality and
speed of its decision making under
load. Load is driven both by the fre-
quency with which the decisions
have to be made and the rate of
change in the status on the factory
floor. Under conditions of heavy
load, human decision makers tend to
fall behind and have to place totes
into the carousels; whereas, the auto-
mated decision making keeps pace
and continues to turn totes around
and assign them to available worksta-
tions.

A finite capacity planning/schedul-
ing system for Ellwood City Forge,
the second application, is being built
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for a $70 million a year specialty steel
forgings manufacturer located near
Pittsburgh. Their business depends
on producing high quality product
efficiently while being very respon-
sive to their customers. The process
employed includes four sequential
sets of operations. Hot steel is created
in batches called melts which are
then poured into ingots. Ingots in
turn move to the forging process
where they are forged into their
required shape. Subsequently, they
are heat treated according to a cer-
tain temperature profile. Finally, the
parts are machined to meet their
final specifications. The approach
taken is rather different from the pre-
vious example. Instead of focusing
on transaction-by-transaction deci-
sions, the overall flow of orders
across all four steps must be
smoothed and compromises made to
maximize overall flow. Significant
cost reductions can be achieved
through improving yield, reducing
fuel consumption, and reducing the
stock and work-in-progress invento-
ries. The application is being built on
top of Knowledge Craft to facilitate
the explicit modeling of the manu-
facturing environment and various
process details. The system will be
deployed in the production planning
department. Current pilot versions
are in operation with partial func-
tionality.

A number of issues that arise in
actually deploying AI-based schedul-
ing systems will be addressed in this
section. In each paragraph an issue
will be raised and how the issue was
addressed in the two cases described
above will be contrasted.

What were the steps or stages of
the project? The DISPATCHER project
went through a fairly traditional soft-
ware engineering life cycle with sig-
nificant emphasis on testing prior to
deployment. In the Ellwood City
Forge case, due to the complexity of
the environment, an incremental
build strategy is being followed
where deployment of increasingly
complex functionality will be staged.
Again, this places a significant
emphasis on testing in the environ-
ment of intended use.

Where did the scheduling knowl-
edge come from? In DISPATCHER
there were several human dispatchers
who had previously performed this
function. Most of their knowledge
was sufficient for the task; and as
noted above, the benefits of the sys-

tem were due to its maintaining the
quality and speed of the decision
making under load. In the case of Ell-
wood City Forge, there are a number
of experts who contribute know-
ledge. For example, metallurgists
have provided knowledge of steel
types and properties to meet various
users’ requirements. Forging experts
have supplied forging process knowl-
edge. The president of the company
has supplied knowledge in terms of
overall strategies that he would like
to employ in running his manufac-
turing environment. However, any
one of these sets of expertise is not
sufficient to solve the overall
scheduling problem. It is the integra-
tion and the use of all these sources
in a coordinated fashion that leads to
the solution.

What were the data interface
issues? With DISPATCHER, interfaces
were needed to obtain both the shop
floor status and the released orders.
In addition, an interface to a material
handling system was required to car-
ry out the decisions of the expert
software. In the Ellwood City Forge
example, the required shop floor sta-
tus and order information will come
out of their MRP system. The integra-
tion between our system and the
MRP system provides the focal point
for the teamwork between the cus-
tomers’ MIS organization and CGI’s
knowledge-based systems develop-
ment group. A significant challenge
to the project is the fact that the data
from the MRP system may be
unavailable, may be incomplete, and
in some cases may be inaccurate. The
decision making software must be
prepared to make the best decisions
it can in an environment of imper-
fect information.

What were the user interface
issues? For DISPATCHER, a relatively
simple text-oriented display revealing
the decisions made to the operators
was the basic online information.
Summary status and performances
were also developed and have been
extended as operational experience
has been gained. Since the Ellwood
City Forge application is used by pro-
duction planners, a more sophisticat-
ed information-rich interface is
required. Various graphic forms of
presentation tables and information
need to be displayed and the user
needs to be able to interact with the
system to change certain key assump-
tions or override certain decisions.
Clearly, different users required radi-

cally different interfaces.
How is system success measured?

In the case of DISPATCHER, very
clear measurements of throughput
were made. After system deployment,
throughput was double what it was
prior to system deployment. Of
course, there were other changes tak-
ing place in the manufacturing envi-
ronment concurrent with the system
deployment that somewhat dilute
the correlation. However, in this par-
ticular case, the payoff for the system
is very clear. In the Ellwood City
Forge case, due to the complexity of
the system and its phased delivery, it
is unlikely that as clear a measure of
impact will be available. A great deal
of subjective human evaluation of
the quality of its decisions through-
out the phased deployment will be
the main measuring stick. If the sys-
tem passes those measures, it will
then be fully deployed.

How is the system accepted? The
acceptance of DISPATCHER was very
high. The previous approach to the
problem was manual and that has
now been replaced by the automated
decision-making embedded in the
DISPATCHER software. In the case of
Ellwood City Forge, the current
approaches are manual and the vari-
ous individuals involved in making
those decisions are yet to be fully
convinced that the system will
improve those decisions. An impor-
tant challenge of the deployment
process is obtaining the buy-in and
commitment of all concerned to the
success of the system. In the Ellwood
City Forge case, the jury is still out.

Is the system developing further
and has it spawned other AI-based
systems? In the DISPATCHER case,
the answer is clearly yes. It is an
operational system undergoing the
usual enhancement and mainte-
nance. Within DEC the commitment
to AI-based decision software in the
manufacturing environment is very
high. Many factors contribute to that
but some of the early successes such
as DISPATCHER and, of course,
XCON (a system that configures
computer equipment) have con-
tributed to this. In the Ellwood City
Forge case, it is to be determined
whether the success and follow-on
commitment will be high. However,
given the scope of the system and
the fact that it embodies a very broad
range of expertise, we anticipate sig-
nificant on-going enhancement and
development of the system.
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The two case studies illustrate a
fairly general point. It is fairly easy to
automate some relatively well con-
strained, localized decision making.
If there are significant gains to be
made by maintaining the quality and
speed of that decision making under
load, a very high return opportunity
exists. The implementation cycle is
likely to be short, measurement of
success localized and relatively easy,
and commitment should be high.
However, these opportunities are fair-
ly rare. Ellwood City Forge represents
the more typical manufacturing
scheduling challenge, where the
gains are only achieved by taking a
broader view of the entire operation,
bringing many diverse sets of exper-
tise to bear including basic strategies
for how you want to run your manu-
facturing operation. Deployed sys-
tems in these categories are few and
represent significant challenges to
the system implementor. However,
the payoff for successful deployment
of these systems should be substan-
tial and will represent a major contri-
bution of our field to manufacturing
productivity.

A Viewpoint from 
Texas Instruments 
The Texas Instruments (TI) case study
dealt with the “real world” problems
involved in getting a knowledge-
based manufacturing scheduling sys-
tem into production. The factory is
located in Lubbock, Texas, and main-
ly produces the educational toy prod-
ucts of TI’s consumer products group.

The factory consists of three semi-
autonomous work centers: plastics
molding, printed wire board assem-
bly, and final assembly. The factory
produces almost 100 different elec-
tronic assembly products. The goal of
the system is to generate the daily
work schedules for each work center,
coordinate the operation of the three
work centers in order to meet the fac-
tory demand goals, and comprehend
the raw material constraints imposed
by the higher level MRP system. In
order for the system to utilize materi-
al constraints in the generation of
the schedule, the system has to keep
track of all of the current inventory
of both raw materials and work in
process, and needs to know about
the future expectation of delivery of
vended materials.

The most difficult scheduling

problems concern the plastics shop.
The scheduling of the production of
the plastics parts has to comprehend
molds, presses, operators, techni-
cians, raw materials, and sequence
dependent change-overs. The shop
has 117 molds and 25 presses. A giv-
en mold can fit into multiple presses.
The system has to optimize accord-
ing to preference.

Another major aspect of this sys-
tem is its ability to understand that
the factory has to deal with seasonal
variations of products, demand, and
resources. All of the resource repre-
sentations have to be built on a tem-
poral foundation so that the system
can understand, for example, that
the number of resources (machines
and operators) varies over time.

Another interesting problem con-
cerns providing the users of the sys-
tem insight into WHY a particular
scheduling decision was made.
Because the implementation of the
system is not built on a conventional
rule engine, the analysis portion did
not come for free. The why or why-
not analysis sometimes proved to
provide as much value as the gener-
ated schedule, especially when raw
material constraints were encoun-
tered.

However, the point of the panel
was not to dwell on the particulars of
the scheduling problem or the algo-
rithms used for solution. The panel
presented case studies of problems
dealing with the difficulties involved
in integration and bringing the sys-
tem into production.

During the development phase of
the project we encountered numer-
ous problems. The system was envi-
sioned to be used by multiple depart-
ments, each with their own needs
and priorities. It was sometimes diffi-
cult to know which department had
authority for certain aspects of sys-
tem definition. The factory data was
distributed over different databases,
requiring the system implementors
to coordinate different customer
teams to work together. Some of the
domain knowledge was in the form
of PC spreadsheets. Some “experts”
gave us conflicting information
about how the operations were run.
We had a recurring problem of
understanding the difference
between how the operations were
currently organized versus how some
expert thought they should be orga-
nized.

We had numerous prototype mile-

stones during the development of the
system. One problem that we had
difficulty with was that some of the
milestones were not written in
enough detail to unambiguously
define the deliverables for a particu-
lar milestone. For example, a mile-
stone that was defined as a “func-
tional prototype” had a wide gap of
expectations between the users and
the implementors. Some of this was
expected since this was an intra-com-
pany effort. The contract would have
been much more rigorously con-
structed if this had been an inter-
company project.

There were numerous factors work-
ing for us however. For example, the
user population was very computer
literate. We did not have problems
with the users understanding high
level user interfaces. They really were
excited about using a “workstation”
class tool. We had an even more
important advantage in that the local
Management Information Systems
(MIS) department was behind the
effort. They had identified a person
that received formal training on the
Explorer symbolic processing system.
This person also worked with the
development team so that he had a
good understanding of the system
architecture. In retrospect, this com-
mitment by the MIS organization
was the key to the success of the pro-
ject.

From the beginning, the goal was
to have the system be driven by the
information that was currently in the
factory databases. This information
included: bill of materials structures,
demand profiles, outstanding pur-
chase orders to raw material vendors,
and current inventory information.
In addition, the knowledge engineers
had to gather information about the
specific characteristics of the domain
that was not available in a formal
database. The engineering and prefer-
ential constraints of which plastic
molds can operate in which injection
machines serve as one example.

It was thought that by having the
system integrated with the current
factory data information structure,
the system would be easier to main-
tain. Someone could change the bill
of materials for a product in one
place and the system would automat-
ically adjust. During the implementa-
tion of the system, the customer was
repeatedly told that the integrity of
the factory data system was KEY to
the successful operation of the sys-
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tem. The system implementors
stressed the importance of putting
the appropriate administrative mech-
anisms in place to assure the factory
data was accurate and up to date. The
various factory operation groups real-
ized that this was important. They
believed that the current mecha-
nisms were adequate. They were
wrong.

Although the final acceptance test
of the system was completed in the
summer of 1988, the system is cur-
rently in production only in a limited
capacity. The primary reason for the
latency between acceptance and full
scale production is the inability of
the various organizations to maintain
the factory databases to a level that
allows the scheduling system to pro-
vide quality operations management
support. The system is expected to
provide very detailed schedules, tak-
ing into account detailed informa-
tion about the current state of the
factory floor. The more detailed the
analysis expected, the more detailed
the data required.

The nature of the database prob-
lems were the usual ones encoun-
tered with CIM environments: data
gathering procedures that were not
enforced, unsupportable MIS soft-
ware (the original author was no
longer with the organization), and
cross-organization responsibilities
resulting in no one being responsible.

It is interesting to note that while
the database problems encountered
were the usual CIM problems, the sys-
tem does provide some interesting
side benefits. For example, the analy-
sis feature of the scheduling system
provided a benefit during the integra-
tion phase. Because the system could
give reasons for its decisions, the users
of the system could debug the factory
databases. For example, if there was
an error in the bill of materials
description for a particular product,
the system usually could not schedule
the production of that part. The sys-
tem could provide “why not” analysis
that would give the users insight into
where the factory data was invalid. In
fact, during the time that the system
was not in production, it still provided
a valuable tool that allowed the facto-
ry administrators to better understand
what parts of the factory databases
and administrative procedures needed
to be enhanced.

Even though the system is current-
ly only in limited operation, it is an
important tool to allow the various

departments to quantify the quality
of their operation methodologies.
The system is the central focal point
for all factory data and production
methodologies and provides a sanity
check that is not encumbered by
departmental boundaries.

A Viewpoint from 
INTEL Corporation
At INTEL Corporation, work is under-
way on the problem of scheduling
semiconductor wafer fabrication
facilities, better known as “fabs”.
These fabs typically run 4 to 6 dis-
tinct processes, each containing
roughly 250 processing steps. It is
not uncommon for 6 to 8 different
products to be produced with each
process with as many as 1000 jobs
active in the factory at any point in
time. A typical fab contains about
300 pieces of schedulable production
equipment as well as roughly 1000
tools (lithography reticles, diffusion
boats, implantation sources) and 50
operators per shift. Fabs often oper-
ate 24 hours per day, seven days per
week. They are scheduled strategical-
ly on a monthly and weekly basis,
tactically at the beginning of each 12
hour shift, and rescheduled in real-
time as often as necessary.

Given this level of complexity, it is
not surprising that the main goal
which the manufacturing engineers
who use scheduling systems are seek-
ing is predictability and manageabili-
ty. Given the complexity of the soft-
ware involved in the solution to this
set of scheduling problems, neither is
it surprising that the main goal of
the development team has been to
insure that the system exhibits a
high degree of usability and main-
tainability. Of course, both the users
and the developers are interested in
employing the scheduling systems to
increase fab performance in terms of
minimizing work-in-progress and
throughput-time and maximizing
on-time-deliveries and machine-uti-
lization.

The approach we have taken con-
tains three components, one each for
the strategic, tactical, and real-time
problems [Kempf 1989b]. The strate-
gic component is very useful for
answering longer term “what-if”
questions about increasing, decreas-
ing, and rearranging production
capabilities and marketing requests.
The tactical and real-time compo-

nents are tightly integrated and pow-
erfully address the shorter term oper-
ations of each shift. While the strate-
gic scheduler is built on convention-
al scheduling technology, the tactical
scheduler is based on a novel
approach [Kempf 1989c]. The tactical
component contains a number of
scheduling techniques, each applica-
ble under a different set of condi-
tions. These techniques range from
machine-centered scheduling for use
when bottleneck machines are the
main problem, to job-centered
scheduling when late jobs are the
focus of attention, to hybrid
approaches for a range of intermedi-
ate problems. Situation assessment
knowledge is included for use in
determining which technique to
select as well as determining when a
change of technique is indicated.

Our approach to this problem
began with an extended period of
study. We felt that it was appropriate
to spend time with the manufactur-
ing personnel who would be the ulti-
mate users of the system until two
events occurred - we felt we under-
stood the problem, and they felt we
understood the problem. With both
the strategic and tactical compo-
nents, this study period was followed
by rapid delivery of a prototype user
interface. This was important for the
users because it crystallized in their
minds the fact that we understood
their problem and helped set their
expectations of what the system
would do once delivered. This was
important for the developers because
it got the users involved in the pro-
ject at a very early stage and provid-
ed a harness in which to test the
evolving modules of the scheduler
under realistic conditions. After a
series of such tests, the strategic
scheduler is entering daily service in
late 1989. The tactical scheduler is
well into its test cycle with installa-
tion expected in early 1990. The real-
time scheduler is just entering its ini-
tial implementation stage, but may
be in service by the end of 1990.

The knowledge collection scenario
was set early in this project when it
was realized that the scheduler
should not, in fact could not, be an
expert system. The users made it
clear early in our interactions that,
although they had some good ideas
concerning how to schedule
production, they certainly did not
want a computational model of cur-
rent practice. They felt that their
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knowledge was necessary but not suf-
ficient. These circumstances have
necessitated both knowledge collec-
tion and knowledge augmentation.
In terms of mechanism, this means a
base scheduling mechanism which
operates strictly on the firm con-
straints in the system and aims at
overcoming the fundamental combi-
natorics, augmented by a secondary
mechanism which applies user-gener-
ated heuristics to mediate between
conflicting constraints and makes
decisions left open after all the rele-
vant constraints have been applied.
Given the availability of the user
interface to run test cases, and given
a user friendly knowledge editor
(which has not yet been implement-
ed), we have not yet experienced
major problems with knowledge col-
lection.

Data collection issues have been a
quite different story. Although a data
collection and management system
was in place in the initial fab target-
ed to assist in the development of
our scheduling tools, many problems
arose in trying to use it. In the first
place, it was not architected to pro-
vide interfaces to the kinds of sys-
tems that the schedulers represented,
and so special interfaces had to be
written. Furthermore, as instantiated
by the manufacturing organization,
the system did not track each manu-
facturing step about which any effec-
tive scheduler should have data. And
finally, the data entered by the opera-
tors on the fab floor proved to be
incomplete, incorrect, and inconsis-
tent when checked in detail. These
last two problems have been especial-
ly difficult to handle and are not
completely resolved at this time.
There has always been a circular
argument revolving around a)
promises from the manufacturing
organization to address the problems
as soon as the scheduling system was
working and b) statements from the
development team that the system
could not be expected to work until
the problems were eliminated. This
conflict was clouded by lack of any-
one being clearly identified as own-
ing the problems.

There could have been equally
serious user interface problems in
this project, but they were avoided
by hard work on the part of the
development team. It became obvi-
ous that the intended community
contained a wide mix of users. On
one hand, there were users who were

very computer literate, a few with
personnel computers or terminals on
their desks. On the other hand, there
were users who were skeptical (if not
antagonistic) based either on lack of
exposure or bad previous experi-
ences. We managed this mix by
employing three fundamental ideas.
The first was to make the interface as
simple as possible. The interface was
made to be understandable by the
users, and did not exhibit all the
tricks which the developers could
think of including. The second idea
was to show the users a prototype as
soon as possible, and to work
through many iterations until the
users were comfortable. The third
was to include in our user interface
many of the standard reports that
the users were accustomed to seeing
from the existing data system, in
addition to the same information
displayed using the power of our
high-resolution, bit-mapped, color
graphic terminal. This allowed each
user to adapt to the system, moving
from the old system to the new at
their own pace.

Assessing whether this system
works or not is very difficult. This is
because we did not simply automate
the current approach, so it is not pos-
sible to compare performance before
and after, or with the system
switched off then switched on. The
scheduling tools will (and have
begun to) actually change peoples
jobs and the way in which produc-
tion is accomplished. This is a much
more difficult circumstance in which
to measure. But it is safe to say that
the users like the system and believe
it will (and has begun to) help them.
Once the tactical version is in pro-
duction use on a daily basis, it may
be possible to more accurately quan-
tify system performance in terms of
the standard manufacturing metrics
of minimizing work-in-progress and
throughput-time and maximizing
on-time-deliveries and machine-uti-
lization.

It is even more difficult to access
whether the system is accepted in the
company [Meieran and Kempf 1989].
We have noticed cases, fortunately
isolated ones, in which the further
an individual is up the management
chain, the less important the hour by
hour scheduling problem seems, and
so the less important our system
seems. Others in the management
chain appreciate the set of schedul-
ing tools as a competitive weapon.

There have been further cases, also
fortunately isolated, of non-accep-
tance surfacing among those who
supply data to the system. This has
mainly been due to the difficulties
with the quality of the data required
by the tools. Others in the data chain
are happy to see something being
done with the data system which
they have worked so hard to install,
even if they do need to do further
work to improve it.

The fab scheduling project at
INTEL is a long way from being com-
pleted. Given that fabs are dynamic
entities, always changing processes,
products, and equipment, not to
mention scheduling strategies in
response to conditions in the market-
place, it is possible that the schedul-
ing tools will command a certain
amount of attention for a very long
time. From a larger perspective, this
AI-based scheduling project has stim-
ulated a lot of interest in AI tech-
niques to help build other competi-
tive weapons in the manufacturing
arena. We believe that our real lever-
age will come when we have a set of
AI programs in each of our manufac-
turing facilities, all interfaced togeth-
er bringing a new meaning to the
CIM concept [Kempf 1987]. In this
case, we will certainly be involved
with the scheduling tools for many
years to come.

A Viewpoint from 
Intellection
Intellection is in the business of pro-
viding effective solutions for complex
manufacturing scheduling problems.
We have had the chance to review
many existing traditional and AI-based
scheduling systems that failed to meet
the users’ expectations. We are rarely
called upon to address a problem for
which no previous solution attempts
have been made. In fact, it is fairly
common for us to encounter situa-
tions where several techniques have
been tried unsuccessfully.

Analysis of many of these situa-
tions shows that there are a few typi-
cal mistakes that are commonly
made in both AI-based and tradition-
al approaches. In this section, a clas-
sification of these shortcomings will
be provided based on conceptual and
technical issues related to scheduling
system designers and implementors.
Other important difficulties such as
organizational politics and integra-
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tion with other factory systems have
been discussed previously in this arti-
cle.

A semiconductor wafer fabrication
plant (fab) will be used as a source of
examples to clarify some of the
points that will be raised. Assume
that the major goals for the wafer fab
being discussed are meeting due
dates and minimizing cycle times.
Example-1 provides a high-level view
of fab operations while example-2
focuses on one particular area, pro-
viding greater detail into the lot
sequencing requirements there.

Example-1 is shown diagrammati-
cally in Figure 1. Assume that the
wafer fab produces four types of
products including P1, P2, P3, and
P4. Consider two key areas of the fac-
tory including photo lithography
and metal deposition. The photo area
consists of two types of machines
called steppers which index the
lithograpy pattern across the surface
of the wafers. The older steppers can-
not handle newer products with nar-
row geometries like P3 and P4. The
newer steppers can run all products
that the fab produces. It is preferred
that the newer steppers concentrate
on products P3 and P4 since products
P1 and P2 can run on the older step-
pers. In the metal deposition area,
products P1 and P4 require much

more service than products P2 and
P3. Thus, if too many P1 and P4 type
lots arrive together at this area, it can
get clogged.

The fashion in which lots arrive at
any area depends on the lot release
and sequencing policies being used
at upstream areas. If the lot release
strategy is inappropriate, the mix of
lots in the factory will be such that
only limited improvements can be
achieved by intelligent lot sequenc-
ing. The planning problem is thus
one of releasing lots in such a fash-
ion that they arrive at the above type
of areas in an appropriate fashion.
The appropriate fashion is one where
the probability of minimizing the
average cycle time for all lots and the
probability of meeting due dates are
maximized.

Example-2 is depicted in Figure 2.
This example focuses on the lot
sequencing decisions that need to be
made once the lots are released to
the fab. M1 is a machine which can
process more than one lot of wafers
at a time, such as the diffusion fur-
nace described above, with a capacity
of 2 lots per batch. Lot1 is queued for
step1 to be performed on machine
M1. The next step, step2, is to be per-
formed on machine M3. Similarly,
Lot2 and Lot3 are queued for step11.
Step11 is followed by step12, which

is to be performed on machine M2. M2
is broken and has a large queue.
Machine M1 is to be loaded with either
step11 (with Lot2 and Lot3) or step1
(with Lot1). The time required is the
same for step1 and step11 and is inde-
pendent of the number of lots loaded.

If Lot2 and Lot3 are loaded first it is
certain that they will wait a long time
in the queue of machine M2. Since
this decision does nothing to reduce
the stay of these in the plant, it does
not help meet their due dates, nor
does it help in reducing their contribu-
tion to plant WIP and throughput-
time. On the other hand if Lot1 is
loaded, only 50% of M1s capacity is
utilized. If M1 needs to be utilized at a
high level this decision may cause
higher queuing at a later stage.

The following is a classification of
the mistakes that we commonly
come across in systems designed to
solve the scheduling problems con-
tained in these examples. The reason
for the failure of a given effort is usu-
ally a combination of some of the
points that are mentioned below. No
order of importance is implied.

1. Inadequate understanding of
dominant domain characteristics: In
any domain, there usually are domi-
nant characteristics that can be
exploited in order to simplify solu-
tion strategies. The existence of dom-
inant bottlenecks is a good example
of such a characteristic. Decisions
related to these dominant character-
istics have significant impact on the
quality of the overall solution. Many
scheduling systems are incapable of
recognizing and making use of this
information. The resulting schedules
are usually unsatisfactory.

There are other cases where systems
do attempt to exploit a domain char-
acteristic, but cause other damage in
this attempt. This is very common in
bottleneck based solution strategies.
The designers of such strategies
believe that the only thing that the
scheduling system should worry
about is the need of the capacity bot-
tleneck resource. The reliance on any
one characteristic at the expense of
other important ones leads to poor
schedules. In Example-1, assume that
the photo area is the capacity bottle-
neck. In such a situation, it is quite
possible for a bottleneck based strate-
gy to feed the plant with a mix that is
P2 and P3 intensive. This mix ade-
quately utilizes the photo area, but
there is a possibility of starving the
metal area because P2 and P3 do not
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need much processing in metal.
From another perspective, it is fair-

ly common to come across examples
of inadequate analysis of domain
characteristics when pre-packaged
scheduling tools are used. In many
such cases, system designers concen-
trate on understanding tools instead
of concentration on understanding
the problem. Attempts are then made
to fit the problem into the frame-
work provided by the chosen tool.

2. Inappropriate reliance on locally
greedy strategies: Because most
scheduling problems are fairly com-
plex, they are often simplified by
using simple local dispatching rules
such as First-In-First-Out (FIFO),
Shortest-Remaining-Processing-Time
(SRPT), and so on. As is evident from
Example-2, in many situations it
makes no sense to give priority to a
job just because it arrived at a work-
station first. Though SRPT has some
attractive properties, it does not make
sense to give priority to a lot with a
short remaining processing time,
when it is known that it will get stuck
in a downstream queue. When critical
decisions are made purely on local cri-
teria, without considering global
impact, systems do not perform well.
This is one of the most common mis-
takes that we encounter.

3. Misuse of shallow expert knowl-
edge: Experience indicates that in the
domain of scheduling, experts often
tend to present an inadequate picture
to knowledge engineers. We come
across situations where the number
and nature of the constraints are
such that humans are forced to over-
simplify, or where situation-depen-
dent knowledge is presented as gen-
eral purpose knowledge. Once again
consider Example-2 and assume that
for the past year customer demand
(and thus the mix running through
the plant) was such that machine M1
was idle 50% of the time. When
queried, the expert might say that
the proper way to schedule M1 is to
give highest priority to the job with
the SRPT, unless the downstream pro-
cess for that job has a queue of more
than three jobs. Now assume that the
mix changes and M1 needs to be uti-
lized at a 96% load. In this situation
the previous rule is not good because
the penalties associated with under-
utilizing M1 become very high. In
Example-2, even though Lot2 and
Lot3 join a existing queue of four
jobs, loading them is better than
wasting 50% of M1’s capacity, by

loading Lot1 alone. Experts are either
aware of such possibilities a priori, or
adapt very fast. Expert systems that
use such shallow knowledge without
adaptation do not perform well.

As another facet of this same prob-
lem, we often notice that expert
knowledge is used as a crutch and
not enough effort is made to under-
stand the basic properties of the
problem being solved.

4. Excess concern about trivialities:
We often come across so-called intelli-
gent systems that are extremely dumb.
One sign of this dumbness is the
amount of effort these systems spend
on meaningless activity. Consider a sit-
uation where a system is building a
schedule for a factory for a shift of
eight hours. During the course of
developing the schedule, the system
comes across two jobs that overlap at a
machine for one minute, seven hours
from the current time. Assume that
there are bound to be fluctuations. It is
as meaningless to label a schedule
with a one minute overlap as infeasi-
ble as it is to label a schedule with a
one minute gap as feasible. Systems
that do not recognize such facts waste
a lot of computation.

5. Improper problem segmenta-
tion: When people attempt to solve
large scheduling problems, they usu-

ally start with a prototype. The proto-
type usually attempts to solve a sim-
plified problem as a first step. A sub-
section of the plant is usually picked.
Often, the proper way to design an
appropriate solution for the large
problem is different from the
methodology needed for this small
subsection. We have come across situ-
ations where this fact was not recog-
nized. A solution that was a great suc-
cess as a prototype failed at solving
the scaled up version of the problem.

A related problem occurs with
incremental approaches to system
design. When the initial system is
build, all the important constraints
are not considered up front. A proto-
type system is built. Later attempts
are made for the system to accommo-
date more and more criteria. This
attempt to incrementally slap on
additional constraints works only in
extremely well designed systems. A
simple example of this is the pres-
ence of holidays. Assume that an ini-
tial prototype ignored holidays while
building schedules. Now the proto-
type is being enhanced to accommo-
date the constraint that no jobs can
be scheduled during holidays.
Assume that there is a job that
requires a processing time of 8 hours.
Also assume that this job is being
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scheduled in such a way that it needs
seven hours of processing during reg-
ular working hours and one hour of
processing during a holiday period.
One option is to follow a rule that
does not allow you to schedule any
job that runs into a holiday. This is
the simple way of solving the prob-
lem. What really needs to happen is
that the system must determine if it
is important enough to schedule the
job before the holiday starts. If this is
the case, then it should see if there is
any way to start the job one hour ear-
lier. Such enhancements are not
straightforward if the initial proto-
type was not designed properly.

In summary, we feel that there is a
set of useful abstractions over the
detailed problems related in points
one though five. The first abstraction
has to do with problem definition
and spans points one and two. The
lesson from our experience is that in
AI, as in any other discipline, defin-
ing the problem - being sure that all
of the issues have been made explicit
and correctly evaluated - is absolutely
necessary (but certainly not suffi-
cient) for success. The second abstrac-
tion deals with knowledge including
the Operations Research type of
knowledge found in point two, the
expert knowledge mentioned in
point three, and the common sense
knowledge referred to in point four.
The lesson, possibly unique to AI, is
that defining the knowledge - being
sure that all of the knowledge from
all of the sources has been made
explicit and correctly evaluated - is
absolutely necessary (but certainly
not sufficient) for success. The third
abstraction deals with inference as
reflected in the problems described in
point five. The lesson here is that the
approach, or combination of
approaches, selected must be able to
solve the whole problem using all of
the knowledge even if the system is
going to go through prototype stages
and be delivered in stages. Of course,
we all know these things, but appar-
ently, based on the results so far, they
are frequently forgotten in the face of
pressure to demonstrate a working
system as soon as possible.

Conclusions
We all agree that AI techniques that
are accessible today can and should be
applied to the solution of manufactur-
ing scheduling problems. Successful
application benefits both the AI com-

munity and the manufacturing com-
munity. We present the status of a
number of such attempts. Unfortu-
nately, only one of the examples
described here is currently fully func-
tional and operating on a daily basis,
and it addresses a relatively simple
scheduling problem. Of the projects
addressing more complex scheduling
problems, none of the ones reported
here have been fully successful yet.

We believe that it is interesting to
note that there are a very large num-
ber of non-AI issues which contribute
strongly to the prolonged develop-
ment periods of the AI projects
described. Looking critically at the
state of the examples above, it
becomes clear that to deliver a work-
ing AI-based scheduler into a manu-
facturing environment requires
attention to system issues which can
and do occupy at least as much per-
son-time as the AI core. It is often the
case that this situation surprises
many AI practitioners who want to
solve the AI part of the problem and
then move on. Project personnel
with this perspective are almost sure
to fail to provide either relevant tests
of AI theory or useful tools to manu-
facturing personnel. A number of
problems should be anticipated from
project inception, and should be
identified and addressed as early as
possible if the AI project is to suc-
ceed. These potential problems are
reflected in the question set present-
ed in the first section of this article.

If the application is difficult
enough to provide a good test of AI
theory, there may be broad disagree-
ment in the user community
whether the problem is real or is
simply an artifact of inappropriate
operating procedures elsewhere. If it
is agreed that there is a problem,
there may be broad disagreement
whether to automate existing meth-
ods or to try for something better. In
either case, there may be broad dis-
agreement about who should be con-
sidered the manufacturing “experts”
participating in the project. In brief,
defining the problem may occupy
significant time.

There will need to be a data inter-
face to a non-AI system which may
not be architected to interface to AI
systems. If a data interface is success-
fully implemented, the data which it
supplies may be incomplete, incor-
rect, inconsistent, and untimely in
the context of the AI system. The per-
sonnel in charge of the conventional

data system may not agree that there
are any shortcomings in their system,
and even if they do agree, may be
slow to respond. In brief, designing
and implementing the data interface
may occupy a lot of time.

There will need to be a user inter-
face to potentially computer illiterate
personnel who may have a negative
disposition toward computers based
on previous bad experiences. They
will be able to describe what they do
not like about existing applications in
their factory, but may not be able to
provide adequate descriptions of user
interface features which they would
find helpful. If a user interface is suc-
cessfully implemented, the users may
continuously request modifications
and enhancements. In brief, design-
ing and implementing the user inter-
face may occupy a lot of time.

Since the AI-based system, as deliv-
ered, will require a new and different
operating procedure (even if it was
meant to simply automate existing
methodology), it may be impossible
to prove analytically that the system
is a success. Since many procedural
changes will have been made in
manufacturing during the develop-
ment and installation of the AI-based
system, performance improvements
may be credited to these changes
rather than to the AI system.

Designers and implementors of
conventional software have encoun-
tered and learned to recognize these
problems over the course of their
experience. But AI practitioners have
not yet delivered their technology
often enough to be so aware. Until
we learn that the AI core of our
applications is no more than the tip
of the iceberg, the AI community will
continue to have a set of untested
theories and the manufacturing com-
munity will continue to have a set of
poorly solved problems.
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