
W H E R E ’ S T H E A I ?
Roger C. Schank

I survey four viewpoints about what AI is. I describe a program exhibiting AI
as one that can change as a result of interactions with the user. Such a program
would have to process hundreds or thousands of examples as opposed to a
handful. Because AI is a machine’s attempt to explain the behavior of the
(human) system it is trying to model, the ability of a program design to scale
up is critical. Researchers need to face the complexities of scaling up to programs
that actually serve a purpose. The move from toy domains into concrete ones
has three big consequences for the development of AI. First, it will force software
designers to face the idiosyncrasies of its users. Second, it will act as an impor-
tant reality check between the language of the machine, the software, and the
user. Third, the scaled-up programs will become templates for future work.

Articles

38 AI MAGAZINE 0738-4602/91/$4.00 ©1991 AAAI

AI Magazine Volume 12 Number 4 (1991) (© AAAI)

For a variety of reasons, some of which I dis-
cuss in this article, the newly formed Institute
for the Learning Sciences has been concen-
trating its efforts on building high-quality
educational software for use in business and
elementary and secondary schools. In the two
years that the institute has been in operation,
it has created quite a few prototypes that go
beyond the kind of things that have tradi-
tionally been built under the heading of edu-
cational software. Behind these new designs
are a number of radically different “teaching
architectures” that change the nature of how
students interact with computers, moving
from what is called “the page-turning archi-
tecture” to architectures based on simulation-
driven learning by doing, story- or case-based
teaching, and Socratic dialogues (Schank
1990a; Schank and Jona 1991).

These prototypes have been successful, and
for the most part, the institute’s sponsors have
been impressed with the results, acknowledg-
ing that they have never seen anything quite
like them before. Nevertheless, researchers at
the institute have been plagued by a curious
kind of question when they show these pro-
totypes to certain audiences. The question
they keep hearing is the title of this article:
Where’s the AI?

At first, I found this question puzzling.
Everything they do is AI. But apparently, AI
has a specific definition to many people, and
these programs didn’t fit this definition. My
concern was to figure out what this definition
was. And while I am at it, maybe it would be
helpful if the field of AI itself understood the
answer to this question in a more profound
way. It is not that AI needs definition; it is
more that AI needs substance, a distinction
that I discuss later.

Four Viewpoints on AI
When someone who is not in AI asks where
the AI is, what assumptions about AI are
inherent in the question? There seem to be at
least four prevailing viewpoints that I have to
deal with, so this question assumes at least

one of the following four things: (1) AI means
magic bullets, (2) AI means inference engines,
(3) AI means getting a machine to do some-
thing you didn’t think a machine could do
(the “gee whiz” view), and (4) AI means
having a machine learn.

The magic bullet view of AI is as follows:
Intelligence is actually difficult to put into a
machine because it is knowledge dependent.
Because the knowledge-acquisition process is
complex, one way to address it is to finesse it.
Let the machine be efficient computationally
so that it can connect things to each other
without having to explicitly represent any-
thing. In this way, the intelligence comes for
free as a by-product of unanticipated connec-
tions that the machine makes.

An alternate version of this view is that AI
is something that one could, in principle, dis-
cover in one’s garage. What the form of this
discovery might be remains a mystery, but
one would drop the discovered item or tech-
nique into the machine, and it would become
intelligent. This view is held, quite firmly, by
many people who write me letters after
having read my name in a magazine article as
well as by many venture capitalists (and, pos-
sibly, some connectionists).

The inference engine view of AI was
brought forth by a variety of people on the
West Coast (for example, the MYCIN [Shortliffe
1976] and DENDRAL [Buchanan and Feigen-
baum 1978] projects at Stanford University
and the PROSPECTOR [Duda, Gaschnig, and Hart
1979] project at SRI International). Their view
was, I suspect, an answer to this same ques-
tion. When the expert system world began to
explode, AI experts were expert at finding out
what an expert knew and writing down the
knowledge in rules that a machine could
follow (this process came to be known as
knowledge engineering [Feigenbaum 1977]).
Although such expert systems could, in fact,
make some interesting decisions, business
types who were called on to evaluate the
potential of such systems probably asked,
Where’s the AI? The real answer was that the
AI was in the ability of AI people to find out
what the experts knew and to represent the

Articles

WINTER 1991 39

It is not that AI needs definition; it is more that AI needs
substance…

Articles

40 AI MAGAZINE

information in some reasonable way, but this
answer would not impress a venture capital-
ist. There had to be something that could be
labeled AI and that something came to be
known as an inference engine.1 Of course,
much of the AI world understood that infer-
ence was an important part of understanding,
so it made sense that an expert system would
need to make inferences too, but to label the
inference engine as the AI was both mislead-
ing and irrelevant. The business world
believed that it needed this label, however, as
I discuss later on.

Thus, it came to pass that business people
who read about AI and assumed that AI and
expert systems were identical began to expect
inference engines in anything they saw on a
computer that “had AI in it.” Many other
people in AI were left in a quandary, however,
about how to explain that what they did was
also AI, which led to questions such as, What
is AI anyway? This question was never easy to
answer without discussing the nature of intel-
ligence, a subject best left undiscussed in a
business meeting.

I term the next view the gee whiz view.
This view maintains that for a particular task,
if no machine ever did it before, it must be
AI. Two important types of programs to dis-
cuss within this conception of AI are optical
character readers and chess-playing programs.
Are these programs AI? Today, most people
would say that they are not. Years ago, they
were.2 What happened?

The answer is that they worked. They were
AI as long as it was unclear how to make them
work. When all the engineering was done,
and they worked well enough to be used by
real people, they ceased to be seen as AI.
Why? The answer is threefold: First, “gee
whiz” only lasts so long. After a while, people
get used to the idea that a computer can do
something they didn’t know it could do.
Second, people tend to confuse getting a
machine to do something intelligent with
getting it to be a model of human intelligence,
and surely, these programs aren’t intelligent
in any deep sense. Third, the bulk of the work
required to transform an AI prototype into an
unbreakable computer program looks a lot
more like software engineering than it does
like AI to the programmers who are working
on the system, so it doesn’t feel like you are
doing AI even when you are.

The fourth view of AI is one that I myself
have espoused. It is a long-term view. It says
that intelligence entails learning. When your
dog fails to understand his environment and
improve on mistakes he has made, you refer
to him as “dumb.” Intelligence means getting

better over time. No system that is static, that
fails to change as a result of its experiences,
looks smart. Real AI means a machine that
learns. The problem with this definition is
that according to it, no one has actually done
any AI at all, although some researchers have
made some interesting attempts.3 According
to this view, there is no AI, at least not yet.
Thus the question, Where’s the AI? is a tough
one to answer.

Knowing Something Helps,
Knowing a Lot Helps More

Let’s consider the SAM-FRUMP-ATRANS experience.
In 1976, a group of my students and myself
built SAM, a program that summarized, para-
phrased, translated, and answered questions
about newspaper stories (Cullingford 1978,
1981). The program was slow and cumber-
some and was capable of reading only a few
stories in a few domains. Nevertheless, it was
the first program to perform this task, and we
were proud of it. No one asked where the AI
was because no one had ever seen anything
like it. It qualified as AI based on the gee whiz
criterion.

In 1978, we attempted to improve on SAM

in some ways, thus came FRUMP (DeJong
1979b). FRUMP was very fast in comparison to
SAM. By this time, we had even faster machines
of course, but the major speedups were
accomplished by limiting inferencing and
attempting to understand only the gist of any
given story. We were able to blur the distinc-
tion between inferencing and parsing in a
way that made interesting theoretical claims
(DeJong 1979a).

We were excited by FRUMP. It worked on
roughly 50 different domains and succeeded
on about 75 percent of the stories that were
in these domains. The branch of the United
States Department of Defense that had spon-
sored this work wanted to use FRUMP for a par-
ticular task. We were put in the strange
position (for a university research lab) of
having to hire people to code domain knowl-
edge into FRUMP. After a year of this coding,
FRUMP’s robustness had only slightly improved,
and the sponsor was annoyed because it had
actually wanted to use the program. Further, I
was concerned about having to hire more
and more non-AI people to make a piece of
software really work. I had always thought
that our research money was for supporting
graduate students to do research. I was
uneasy about actually trying to develop a
product. And it didn’t interest me all that
much to try. What did it mean to be doing

…the gee
whiz view…

maintains
that…if no

machine ever
did it before,

it must be AI.

AI, I wondered. It meant building theories
and programmed examples of these theories,
it seemed to me, in the attempt to understand
the nature of the mind as part of the ultimate
quest for the learning machine of the fourth
viewpoint given earlier. In 1978, I was not
interested in building products.

By 1982, though, I had become interested
in trying to build AI products. Why? Probably
the main thing that had changed was AI. The
expert system hype had hit, and the venture
capitalists were everywhere. I spoke loudly
and often against this overhype and ran a
panel that year at the National Conference on
Artificial Intelligence (held at Carnegie-Mellon
University in Pittsburgh) on the coming AI
winter that was likely to result from ridicu-
lous expectations.4 At the same time, I had
begun to think more and more about the
FRUMP experience. I realized that AI people
really had to produce something that worked
at some point, that we couldn’t simply write
papers about ideas that might work or worked
on a few examples and satisfied the sponsors
who were pouring real money into AI. With
the increase in money coming from the com-
mercial world, the die was cast. We had to
produce something then, I figured, or we
might not get another chance. Thus, I, too,
started a company, called Cognitive Systems,
with FRUMP as the intended product.

Why FRUMP never was the product of Cogni-
tive Systems is a business discussion not rele-
vant here. What Cognitive Systems did wind
up building was something called ATRANS,
which was a program that read international
bank money transfer messages (Lytinen and
Gershman 1986). The program is working
today in various international banks. It parses
sentences that all have similar content about
how and where money is to be transferred
from country to country. In essence, ATRANS is
a single-domain (and a narrow domain at
that) FRUMP. A version of this program is also
used by the United States Coast Guard. At a
Defense Department meeting three years ago,
ATRANS was identified as one of only three AI
programs actually in use for defense.

Why am I telling you all this? Because there
is 1 important fact to know about ATRANS. It
took something like 30 person-years to make
it work. This number is in addition to any of
the SAM-FRUMP work. There is an important
lesson to be learned here.

To make AI—real AI—programs that do
something someone might want (which is,
after all, the goal of AI for those who fund AI
and for many of those in AI), one must do a
great deal of work that doesn’t look like AI.
Any of Cognitive Systems’ programmers

would have been justified in complaining
that they had come to work there to do AI,
and all they were doing was working on end-
less details about determining various abbre-
viations for bank names. They also asked,
Where’s the AI?

The lesson to be learned from ATRANS is
simple enough. AI entails massive software
engineering. To paraphrase Thomas Edison,
“AI is 1-percent inspiration and 99-percent
perspiration.” AI people will never build any
real AI unless they are willing to make the
tremendously complex effort that is involved
in making sophisticated software work.

But this discussion still doesn’t answer the
original question. Sponsors can still honestly
inquire about where the AI is, even if it is in
only 1 percent of the completed work.

From Three Examples to Many
The answer to Where’s the AI? is that it’s in
the size. Let me explain.

For years, AI people specialized in building
systems that worked on only a few examples
or in a limited domain (or microworld).
Sometimes these systems didn’t really work
on any examples at all; it just seemed plausi-
ble that they would work. The practice of get-
ting AI programs to work on a few examples
is so rooted in the history of AI that it is
rarely discussed. There are many reasons for
this practice, but the simplest explanation is
that until the creation of the various venture
capital backed companies in the early 1980s,
almost all AI programs were Ph.D. theses that
proved the concept of the thesis with a few
examples. It was almost never anyone’s job to
finish the thesis.5 Often, it wasn’t clear what
this finishing meant anyway because these
theses were rarely directed at real problems
for which there was a user waiting. In any
case, even if there was a ready use for the pro-
ject, no one wanted to tackle the inherently
uninteresting task of doing all that software
engineering—at least no one in an AI lab
wanted to. And even if someone did want to
do it, there was no one who wanted to pay
for it or who seriously understood how much
it would really cost to do the other 99 percent.

Nevertheless, there were otherwise intelligent
people claiming that Winograd’s (1972) SHRDLU

program that worked on 31 examples had
solved the natural language problem or that
MYCIN (Shortliffe 1976) had solved the prob-
lem of getting expertise into a computer.6

Prior to 1982, it is safe to say that no one had

Articles

WINTER 1991 41

Articles

42 AI MAGAZINE

really tried to build an AI program that was
more than simply suggestive of what could be
built. AI had a real definition then, and it was
the gee whiz definition given earlier.

But underlying even this definition was the
issue of scaleup. AI people had always agreed
among themselves that scaleup was the true
differentiation of what was AI from what was
not AI. This measure of AI was one of those
things that was so clearly a defining charac-
teristic of the field that there was no need to
actually define it on paper, at least I am
unaware of any specific statement of this view
of what was AI in the 1960s and 1970s that we
all adhered to. So I will say it now. And true
to form, I will say it in the form of a story:

When I arrived at Yale in 1974, there was a
junior faculty member there who, I was told,
was in AI. I looked into what he was doing
and decided that he was not in AI. Here was
what happened: He was working on speech
recognition. He had developed an algorithm
for detecting which of the numbers 1 through
10 had been spoken into a computer. As far as
I could tell, the program did what it claimed
to do. I asked, as any AI person would, how
the program had accomplished the task. The
question was not what he had done but how
he had done it. Here’s why.

Suppose his program had determined
which of the numbers 1 through 10 had been
said by comparing the sound that was received
to a prototype of what each of the 10 num-
bers should sound like and then determining
the best match of the features of the incom-
ing sound to the features of the prototype.
This method seems like a reasonable one for
performing this task, and it should work.
Why then isn’t it AI?

It isn’t AI because it is unlikely that it would
scale up. The key concepts here are “scaleup”
and “unlikely.” If the problem that this man
was working on was the “detection of 10
numbers” problem, it really wouldn’t matter
how he did it. Any algorithm that worked
would be terrific if someone wanted a pro-
gram to do this task. But AI has always been
concerned with the solution of the deep
problem behind the small problem. The issue
in this part of AI was how a program would
detect any word that was spoken, and the
solution being proposed, to be an AI solution,
had to address this issue. In other words, the
question that I asked myself was whether
what he had done for 10 words would work
for any word. That is the AI question.

Now, obviously, I decided that his solution
(which was indeed the one given earlier)
would not scale up. This conclusion was easy
to come to because for it to scale up, he would

be proposing matching any new word to a
database of hundreds of thousands of proto-
types. He had not even begun to think about
this type of matching because he was really
not an AI person in any sense of the word. He
was simply working on a problem that looked
like AI to an outsider.

Suppose he had been thinking about doing
speech recognition as a step-by-step differen-
tiation process. At the time, I would have
said that this approach was silly, that what
was needed was a theory of recognition of
phonemes in the context of predictions
derived from language understanding in real
situations. It is at this point that “unlikely”
comes in. I was, after all, simply guessing
about whether his system would scale up. It
was a good guess because he hadn’t thought
about anything except 10 words, and it is
unlikely that his solution for 10 words was
going to happen to work for all words. What
bothers me about this story today is that
although I would still like to see speech recog-
nition driven by a good theory of language
understanding, it is nevertheless now possible
to conceive of a program that really does
store all the words of English and compare
one to another. Would this program be AI?

Certainly, there are those who would say
that it was AI. This debate aside for the
moment, it is possible to come to a point of
view that defines AI as one of two things:
Either an AI program is one based on a theory
that is likely to scale up, or it is a program
based on an algorithm that is likely to scale up.
Either way, I am talking about best guesses
about promises for the future.

The point here is that the AI is in the size
or at least the potential size. The curiosity
here is that when the size gets big enough, it
all ceases to matter. We merely need to look
at AI work in chess.

Chess was one of the original AI problems.
Getting a machine to do something that only
smart people can do seemed a good area for
AI to work on. Now, many years later, you
can buy a chess-playing program in a toy
store, and no one claims that it is an AI pro-
gram. What happened?

For many years, the popular wisdom was
that AI was a field that killed its own success-
es. If you couldn’t do it, the wisdom went, it
was AI, and when you did it, it no longer was,
which seems to be what happened in chess,
but the reality is somewhat more subtle.
Chess was an AI problem because it represent-
ed one form of intelligent behavior. The task
in AI was to create intelligent machines,
which meant having them exhibit intelligent
behavior. The problem was—and is—that

smaller domains. But the chess work didn’t
scale up at all, so the reasonableness of doing
such work is simply a question of whether
this work was needed by anybody. If there
had been a need for chess programs, then
chess would have been seen as a success of AI
but probably not as actual AI. In the end, AI
was never supposed to be about need, however.
In the 1960s and 1970s, most AI people didn’t
care if someone wanted a particular program
or not. AI was research.

The correct AI question had to do with the
generality of a solution to a problem, and
there was a good reason. It is trivial to build a
program to do what, say, Winograd’s (1972)
SHRDLU program did for 31 sentences. Just
match 31 strings with 31 behaviors. It would
take a day to program. People believed that
Winograd’s program was an AI program
because they believed that his program “did it
right.” They believed it would scale up. They
believed that it would work on more than 31
sentences. (In fact, so did he. See Winograd
[1973]). At the time, when I was asked my
opinion of Winograd’s work, I replied that it
would never work on a substantially larger
number of sentences, nor would it work in
different domains than the one for which it
was designed. I did not reply that his program
was not AI, however.

The fact that a program does not scale up
does not necessarily disqualify it from being
AI. The ideas in Winograd’s program were AI
ideas; they just weren’t correct AI ideas in my
opinion. What then does it mean for a pro-
gram to have AI ideas within it? After all, this
question is a key one in our search to find the
location of the AI.

So to summarize the argument so far, an AI
program exhibits intelligent behavior, but a
non-AI program could as well. An AI program
should scale up, but many do not. And an AI
program has AI ideas in it. Further, an AI pro-
gram is not intended to accomplish a particu-
lar task but rather to help shed light on
solutions for a set of tasks. This summary was,
more or less, the standard view of AI within
AI prior to 1980.

Articles

WINTER 1991 43

exactly what constitutes intelligent behavior
is not exactly agreed on. With my scaleup
measure, the idea in looking at a chess pro-
gram would have been to ask how its solution
to the chess problem scaled up. Or to put it
another way, were people writing chess pro-
grams because they wanted computers to play
chess well, or were they writing them because
they scaled up to other problems of intelli-
gent behavior?

It would seem that no one would want a
chess program for any real purpose, but this
question, after all, is a marketing one. If the
toys made money, well, fine: It doesn’t matter
how they work; it matters that they work. But
if we care about how they work, there are
only two possible questions: First, we need to
know if the solution to making them work
tells us anything at all about human behavior.
Second, we would want to know if it tells us
something that we could use in any program
that did something similar to, but more gen-
eral than, playing chess.

Brute-force, high-speed search through a
table of possible prestored moves is unlikely
to be anything like the human method for
chess playing. Chess players do seem to
understand the game they are playing and are
able to explain strategies, and so on, after all.
Thus, the only other question is whether one
could use these same methods to help tell us
something about how to solve problems in
general. In fact, the original motivation to
work on chess in AI was bound up with the
idea of a general problem solver (for example,
Newell and Simon’s [1963] GPS system). The
difficulty is that what was learned from this
work was that people are really specific prob-
lem solvers more than they are general prob-
lem solvers and that the real generalizations
to be found are in how knowledge is to be
represented and applied in specific situations.
Brute-force chess programs shed no light on
this issue at all and, thus, are usually deemed
not to be AI.

Thus, the scaleup problem can refer to
scaleup within a domain as well as to scaleup
in the greater domains that naturally embody

…an AI program is not intended to accomplish a particular
task but rather to help shed light on solutions for a set of tasks.

smart people and quite good with Lisp (the
programming language used by many AI
researchers), and maybe they could pull it off.
When I heard about the plan that the venture
people had for them, however, I knew they
were doomed.

The plan went like this: If the expert system
people were given a hard problem, enough of
them could build a program that could solve
this problem within reasonable constraints.
But no one solution would have been a prod-
uct. For a certain amount of money, they
could build a program to solve problem A,
but they wouldn’t be a great deal closer to
solving problem B. Venture capitalists would
never invest in a custom software develop-
ment company. They want a company that
makes one thing and then sells that thing
100,000 times. A company that makes one
thing and sells it once isn’t much of an
investment. What the expert system people
knew how to do was build custom software.
But there isn’t much money in doing it.
What they were asked to do instead was build
a shell, an environment for developing soft-
ware. This project made sense to the venture
guys, and the AI guys had to go along. The
problem was that although the shell might be
great to sell, first, it would be wrong, and
second, where was the AI?

The first issue first: Why would it be wrong?
The assumption of the venture capitalists was
that given the right tool, any programmer
could build an expert system. This idea was a
marketable one, so it worked in their terms.
Of course, it wasn’t an idea that had a lot of
reality in it. Building a complex AI system is
certainly made easier by having a good envi-
ronment for programming, but knowing
what to program is the real issue. So one is
left addressing the second issue, namely,
where is the AI? This issue was addressed
from a business point of view with the con-
cept of an inference engine. The idea was that
there was a piece of magic that was the AI
and that this magic, plus a software develop-
ment environment that made it easy to build
these things, was salable. And it was, at least
initially. The problem was that little of a

The Great Expert System
Shell Game

At the beginning of the last section, I said
that the answer to the title question was in
the size. When building FRUMP, my students
and I realized that the difference between
FRUMP and something somebody wanted to
actually use involved a great deal of engineer-
ing of some rather dull information. To build
ATRANS, we had to bite this bullet. Little by
little it became clear to me that to build an AI
program that someone wanted, an idea that
was virtually a contradiction in terms in the
1970s, someone would have to stuff a machine
with a great deal of knowledge. Smart is nice,
but ignorant tends to obviate smart. Gradual-
ly, it was becoming clear that AI would have
to actually work and that making it work
might mean paradoxically, using our own
definitions, not doing AI at all.

This situation was all brought to a head by
the great expert system shell game. When
the venture capitalists discovered AI, they
brought more than just money to the table.
They also brought with them the concept of
a product. Now, it took me a long time to
understand what the word product was sup-
posed to mean, so don’t assume (if you are in
AI) that you understand it. In fact, I am still
not sure I understand it in a profound way. I
thought, for example, that a conceptual
parser (for example, ELI [Riesbeck and Schank
1976] or CA [Birnbaum and Selfridge 1979])
might be a product. It isn’t. I thought that
FRUMP might be a product. It wasn’t. An expert
system shell is a product. Unfortunately, it’s
not always a profitable one (which is, not sur-
prisingly, the standard measure of goodness).
I don’t intend to explain here what a product
is. What is important to understand is why
the venture capitalists insisted that their AI
people build expert system shells.

When the expert system folks went into
business, I was skeptical that they could build
anything that anyone really wanted. After all,
no one had ever done that in AI before, and
as I have said, it was kind of out of the bounds
of AI to even try. But I figured, they were

Articles

44 AI MAGAZINE

The fact that a program does not scale up does not necessarily
disqualify it from being AI.

really complex nature could be built with
these shells. Or in other words, a program-
ming environment plus an inference engine
doesn’t make up all there is to building an
expert system, which might not have been
the thing to be building in the first place.

Where was the AI? It wasn’t in the infer-
ence engine at all. These inference engines
were, after all, pretty simple pieces of software
that tested to see if the logic of the rules that
the knowledge engineers wrote came up with
any conclusions. The AI in complex expert
systems was in the organization and represen-
tation of knowledge, the attempt to under-
stand the domain under study, and the
crystallization of what was important in the
domain and how experts in the domain rea-
soned. Now, I was saying at the time (see, for
example, Schank et al. [1977]) that the AI was
also in collecting the actual experiences of the
experts and indexing them so that reminding
and, hence, learning could take place, but the
expert system folks were in no mood to pay
attention. Those that did were usually not
involved in the shell game. To put it another
way, the AI was where it always was—in the
attempt to understand the intelligent behav-
ior in the system being modeled.

The fact that no expert ever experiences
anything in his(her) domain of expertise
without learning something from the experi-
ence and changing in some way was easily
ignored.7 The hope was that static systems
would model an expert’s reasoning ability at
any moment. But experts don’t remain experts
for long if all they do is blindly apply rules.
The act of creating a shell with which non-AI
people could write rules to be run by an infer-
ence engine was, in a sense, an act of not
doing AI. What had been left out was the skill
that AI people had been learning all this time,
the skill of figuring out what was going on in
a domain and getting a machine to model the
human behavior that occurred in the domain.
What had been left out were the AI ideas.

Some companies tried to remedy this situa-
tion by training the users of these new shells
to become knowledge engineers. But AI is
kind of a funny subject. For years, we have
been taking graduates from the best institu-
tions in the country and teaching them AI.
Often, even after a few years, they just don’t
get it. What don’t they get? They don’t get
what the issues are, how to attack an issue,
how to have an idea about an unsolved prob-
lem, and how to build programs that embody
these ideas. AI is a way of looking at complex
problems, and often, it is difficult to learn to
do. It seemed to me that it was hopeless to try
to teach this area to programmers in a few

weeks when years often didn’t help.
Thus, my claim is that although some

expert systems might well have been AI, few
of those built with inference engines were
likely to be unless one changed the then-
current definition of AI. The change is easy
enough to describe. AI had been the creation
of new ideas about how to represent and use
complex knowledge on a computer. Now, the
definition was changing toward AI being pro-
grams that utilized these AI ideas in some
application that someone wanted.

Where was the AI in the expert system
shells? It was in the assertion that rules would
effectively model expertise and in the programs
that attempted to implement this assertion.
The only problem was that for complex
domains—that is, for AI-like domains of
inquiry—the assertion was wrong.

The Larger the Better
One of the real issues in AI, as I mentioned
earlier, is size. When we talk about scaleup,
we are, of course, talking about working on
more than a few examples. What every AI
person knows is that a program that works on
5 examples is probably not one-tenth the size
of one that works on 50. Outsiders imagine
that it might be the same size or, possibly,
one-half the size. But what is really the case is
that for real domains, the size changes work
the other way. Once you have to account for
all the myriad possibilities, the complexity is
phenomenal. It is critical, if AI is to mean
applications of AI ideas rather than simply
the creation of these ideas, that size issues be
attacked seriously. No one needs a program
that does 5 examples. This approach worked
in 1970 because AI was new and glossy. It
will not work any longer. Too much money
has been spent. AI has to dive headlong into
size issues.

Now, as it turns out, although this issue
might seem to be annoying and, possibly,
dull as dust, the truth is that it is size that is
at the core of human intelligence. In my
recent book, Tell Me a Story (Schank 1990b),
I argue that people are really best seen as
story-telling machines, ready to tell you their
favorite story at a moment’s notice. People
rarely say anything that is new or something
they have never said before. Looked at in this
way, conversation is dependent on the art of
indexing, finding the right thing to say at the
right time.8 This problem is pretty trivial for
someone who only has three stories to tell.
Much like our speech-recognition friend earlier,
it is simply a problem of differentiation.

Articles

WINTER 1991 45

AI in the program they were sponsoring, they
are likely to be rather disappointed.

Five Issues to Think about
Before You Try to Do Real AI

If this answer to the question about where
the AI is makes no sense to an outsider, as it
surely will not, I hope that it makes sense to
people who are in AI. AI is in a rather weird
state these days. AI people are hoping to live
the way they lived in the 1970s but for a vari-
ety of reasons, those days are over. We cannot
continue to build programs that we hope will
scale up. We must scale them up ourselves.

It might be that one can argue that we are
not ready to face the scaleup issue just yet,
that the fundamental problems have not
been solved, that we don’t know all there is
to know about the mind and how to model
it. This statement seems fair enough, not to
mention true enough. Nevertheless, because
of the realities of the 1990s, we must give it a
try. There are things we can do, and there are
some good reasons to try. For one thing,
sponsors will expect it. For another thing, the
problems of AI demand it—we simply must
start to look at the scaleup problems for the
sound theoretical reason that these consider-
ations will force us to address many real AI
problems. But I think the most important
reason is that this is where the action has to
take place. The sheer amount of difficulty
present in the creation of a functioning piece
of software from a prototype that worked on
a few examples is frightening. We simply
must learn how to deal with these issues, or
there never will be any AI. AI people cannot
keep expecting that non-AI people will some-
how magically turn their prototypes into real-
ity. It will simply never happen. The worst
effect of the shell game is that it got AI
people believing what venture capitalists
wanted to believe.

If you buy what I am saying, then the fol-
lowing five issues represent some practical
problems that must be faced before you do
any real (scaled-up) AI:

Real problems are needed for prototyping:
We cannot keep working in toy domains.
Real problems identify real users with real
needs, considerably changing what the inter-
actions with the program will be, but they
must be part of the original design.

Real knowledge that real domain experts
have must be found and stored: This state-
ment does not mean interviewing them and
asking for the rules that they use and ignoring
everything else that fails to fit. Real experts

Many a grandfather has survived many a con-
versation on the same few stories.

But when the numbers get into the thou-
sands, one has to be clever about finding—
and finding quickly—germane stories to tell.
We cannot even begin to attack this problem
until the numbers are large enough. To get
machines to be intelligent, they must be able
to access and modify a tremendously large
knowledge base. There is no intelligence
without real—and changeable—knowledge.

And this thought, of course, brings us back
to the original question: If a system is small,
can there be AI in it? In the 1970s, AI systems
were all, in essence, promises for the future.
They were promises about potential scaleup,
promises that the theoretical basis of the pro-
gram was sound enough to allow scaleup.
Now, the question is, How big is big enough
to declare a system an AI system?

It is fairly clear that although this question
is an important one, it is rather difficult to
answer, which brings us back to the implicit
issue in this discussion—the concept of an AI
idea. When I said earlier that certain programs
have AI ideas within them, I was declaring
that even programs that did not work well
and never did scale up were AI programs.
What could this mean?

AI is about the representation of knowledge.
Even a small functioning computer program
that someone actually wanted could be an AI
program if it were based on AI ideas. If issues
of knowledge representation were addressed
in some coherent fashion within a given pro-
gram, AI people could claim that it was an AI
program. But the key point is that this ques-
tion, Where’s the AI? is never asked by AI
people; it is asked by others who are viewing
a program that has been created in an AI lab.
And the important point is that to these
people, it simply shouldn’t matter. The
answer to the question about where the AI is
to be found in a program that does a job that
someone wanted to do is that the AI was in
the thinking of the program’s designers and is
represented in some way in the programmer’s
code. However, if the reason that they wanted
this program in some way depends on the
answer to this question, that is, if they wanted

Articles

46 AI MAGAZINE

Real problems are needed
for prototyping.

have real experiences, contradictory view-
points, exceptions, confusions, and the ability
to have an intuitive feel for a problem. Get-
ting at these issues is critical. It is possible to
build interesting systems that do not know
what the experts know. Expertise can be cap-
tured in video, stored and indexed in a sound
way, and retrieved without having to fully
represent the content of the expertise (for
example, the ASK TOM system [Schank et al.
1991]). Such a system would be full of AI ideas,
interesting to interact with, and not wholly
intelligent but a far sight better than systems
that did not have such knowledge available.

Software engineering is harder than you
think: I can’t emphasize strongly enough
how true this statement is. AI had better deal
with the problem.

Everyone wants to do research: One seri-
ous problem in AI these days is that we keep
producing researchers instead of builders.
Every new Ph.D. recipient, it seems, wants to
continue to work on some obscure small
problem whose solution will benefit some
mythical program that no one will ever write.
We are in danger of creating a generation of
computationally sophisticated philosophers.
They will have all the usefulness and employ-
ability of philosophers as well.

All that matters is tool building: This
statement might seem odd considering my
comments about the expert system shell game.
However, ultimately, we will not be able to
build each new AI system from scratch. When
we start to build useful systems, the second
one should be easier to build than the first,
and we should be able to train non-AI experts
to build them. I don’t mean that these tools
will allow everyone to do AI on their personal
computers. It does mean that certain standard
architectures should evolve for capturing and
finding knowledge. From this point of view,
the shell game people were right; they just
put the wrong stuff in the shell. The shell
should have had expert knowledge about var-
ious domains in it, knowledge that is avail-
able to make the next system in the domain
that much easier to build.

These five issues are real and important to
think about. They are practical points, not
theoretical ones. A little practicality might
help the field get to the next level of theory.

OK, But What Do You
Really Think?

AI depends on computers that have real
knowledge in them. Thus, the crux of AI is
in the representation of this knowledge, the

content-based indexing of this knowledge,
and the adaptation and modification of this
knowledge through the exercise of this
knowledge. What I really think is that case-
based reasoning (Riesbeck and Schank 1989;
Jona and Kolodner 1991) is a much more
promising area than expert systems ever were
and that within the area of case-based reason-
ing, the most useful and important (and
maybe even somewhat easier) area to work in
is case-based teaching. Building real, large,
case bases and then using them as a means by
which users of a system can learn is a problem
we can attack now that has enormous import
for both AI and the users of such systems.

Case-based teaching depends on solving
the following problems: the indexing of
memory chunks, the setting up of tasks based
on indexing, the matching of student state to
an index, the anticipation of the next question,
knowledge navigation, problem cascades,
Socratic teaching, and button-based interaction.

I will not bother to explain each of these
problems because I have done so elsewhere
(Schank 1991). The major point is that even
though getting machines to tell what they
know at relevant times is a simpler form of AI
than the full-blown AI problem, it is not
simple. Even the kind of practical, develop-
mental form of AI that I am proposing is full
of enough complex problems to keep many a
theoretician busy. I would just like theoreti-
cally minded AI people to stop counting
angels on the head of a pin.

So where is the AI? It is in the size, the
ideas, and the understanding of what is sig-
nificant that contributes to the behavior of
intelligent beings.

Notes

1. Inference engine is just another name for a pro-
duction system; see Davis and King (1977) and
Waterman and Hayes-Roth (1978).

2. For example, in Computers and Thought, one of
the early seminal AI books, there appears a chapter
entitled “Chess-Playing Programs and the Problem
of Complexity” (Newell, Shaw, and Simon 1963). In
the entry for optical character recognition in the
Encyclopedia of Artificial Intelligence, Hull (1987)
states: “The reading of text by computer has been
an AI topic for more than 25 years” (p. 82).

3. For example, see Carbonell (1986); Carbonell and
Gil (1990); DeJong and Mooney (1986); Hammond
(1989); Lenat (1983); Mitchell (1982); Mitchell,
Keller, and Kedar-Cabelli (1986); Quinlan (1986);
and Sussman (1975).

4. Another panel on this same subject that I also

Articles

WINTER 1991 47

An Experiment in Integrated Understanding. Ph.D.
diss., Technical Report, 158, Dept. of Computer Sci-
ence, Yale Univ.

DeJong, G., and Mooney, R. 1986. Explanation-
Based Learning: An Alternative View. Machine
Learning 1:145–176.

Dreyfus, H. 1979. What Computers Can’t Do: The
Limits of Artificial Intelligence, rev. ed. New York:
Harper and Row.

Duda, R.; Gaschnig, J.; and Hart, P. 1979. Model
Design in the PROSPECTOR Consultant System for
Mineral Exploration. In Expert Systems in the Micro-
Electronic Age, ed. D. Michie, 153–167. Edinburgh:
Edinburgh University Press.

Feigenbaum, E. 1977. The Art of Artificial Intelligence:
Themes and Case Studies of Knowledge Engineer-
ing. In Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, 1014–1029.
Menlo Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Hammond, K. 1989. Case-Based Planning: Viewing
Planning as a Memory Task. Boston: Academic.

Hull, J. 1987. Character Recognition: The Reading
of Text by Computer. In Encyclopedia of Artificial
Intelligence, ed. S. Shapiro, 82–88. New York: Wiley.

Goel, V., and Pirolli, P. 1989. Motivating the Notion
of Generic Design within Information-Processing
Theory: The Design Problem Space. AI Magazine
10(1): 18–36.

Jona, M., and Kolodner, J. 1991. Case-Based Rea-
soning. In Encyclopedia of Artificial Intelligence, 2d
ed. New York: Wiley.

Klein, G., and Calderwood, R. 1988. How Do
People Use Analogues to Make Decisions? In Pro-
ceedings of the Case-Based Reasoning Workshop
(DARPA), ed. J. Kolodner, 209–218. San Mateo,
Calif.: Morgan Kaufmann.

Lancaster, J., and Kolodner, J. 1988. Varieties of
Learning from Problem-Solving Experience. In Pro-
ceedings of the Tenth Annual Conference of the Cogni-
tive Science Society, 447–453. Hillsdale, N.J.:
Lawrence Erlbaum.

Lenat, D. 1983. The Role of Heuristics in Learning
by Discovery: Three Case Studies. In Machine Learn-
ing: An Artificial Intelligence Approach , eds. R.
Michalski, J. Carbonell, and T. Mitchell, 243–306.
San Mateo, Calif.: Morgan Kaufmann.

Lytinen, S., and Gershman, A. 1986. ATRANS: Auto-
matic Processing of Money Transfer Messages. In
Proceedings of the Fifth National Conference on
Artificial Intelligence, 1089–1093. Menlo Park, Calif.:
American Association for Artificial Intelligence.

McDermott, D. 1981. Artificial Intelligence Meets
Natural Stupidity. In Mind Design, ed. J. Haugeland,
143–160. Montgomery, Vt.: Bradford.

McDermott, D.; Waldrop, M.; Schank, R.; Chan-
drasekaran, B.; and McDermott, J. 1985. The Dark

participated in, entitled “The Dark Ages of AI,” was
held two years later at the 1984 National Confer-
ence on Artificial Intelligence. For a transcript, see
McDermott et al. (1985).

5. See McDermott’s (1981) essay lamenting this fact
and its effect on the progress of AI.

6. Dreyfus (1979) criticizes these and other overly
ambitious claims of progress made by AI researchers.

7. Now we have some evidence that experts do
indeed learn from and use their experiences in daily
reasoning and decision making (see, for example,
Klein and Calderwood [1988]). For example, both
expert and novice car mechanics were found to use
their past experiences to help generate a hypothesis
about what kind of problem a car might have (Lan-
caster and Kolodner 1988; Redmond 1989). Archi-
tects and mechanical engineers were observed
using old design plans while they created new ones
(Goel and Pirollo 1989).

8. For further discussion on indexing and the
indexing problem, see Jona and Kolodner (1991),
Riesbeck and Schank (1989), and Schank et al.
(1990).

References

Birnbaum, L., and Selfridge, M. 1979. Problems in
Conceptual Analysis of Natural Language, Technical
Report, 168, Dept. of Computer Science, Yale Univ.

Buchanan, B., and Feigenbaum, E. 1978. DENDRAL

and META-DENDRAL: Their Applications Dimension.
Artificial Intelligence 11:5–24.

Carbonell, J. 1986. Derivational Analogy: A Theory
of Reconstructive Problem Solving and Expertise
Acquisition. In Machine Learning: An Artificial Intel-
ligence Approach, volume 2, eds. R. Michalski, J. Car-
bonell, and T. Mitchell, 371–392. San Mateo, Calif.:
Morgan Kaufmann.

Carbonell, J., and Gil, Y. 1990. Learning by Experi-
mentation: The Operator Refinement Method. In
Machine Learning: An Artificial Intelligence Approach,
volume 3, eds. Y. Kordratoff and R. Michalski,
191–213. San Mateo, Calif.: Morgan Kaufmann.

Cullingford, R. 1981. SAM. In Inside Computer Under-
standing, eds. R. Schank and C. Riesbeck, 75–119.
Hillsdale, N.J.: Lawrence Erlbaum.

Cullingford, R. 1978. Script Application: Computer
Understanding of Newspaper Stories. Ph.D. diss.,
Technical Report, 116, Dept. of Computer Science,
Yale Univ.

Davis, R., and King, J. 1977. An Overview of Pro-
duction Systems. In Machine Intelligence 8, eds. E.
Elcock and D. Michie, 300–332. Chichester, Eng-
land: Ellis Horwood.

DeJong, G. 1979a. Prediction and Substantiation: A
New Approach to Natural Language Processing.
Cognitive Science 3:251–273.

DeJong, G. 1979b. Skimming Stories in Real Time:

Articles

48 AI MAGAZINE

Ages of AI: A Panel Discussion at AAAI-84. AI Maga-
zine 6(3): 122–134.

Mitchell, T. 1982. Generalization as Search. Artifi-
cial Intelligence 18:203–226.

Mitchell, T.; Keller, R.; and Kedar-Cabelli, S. 1986.
Explanation-Based Generalization: A Unifying
View. Machine Learning 1:47–80.

Newell, A., and Simon, H. 1963. GPS, A Program
That Simulates Human Thought. In Computers and
Thought, eds. E. Feigenbaum and J. Feldman,
279–293. New York: McGraw-Hill.

Newell, A.; Shaw, J.; and Simon, H. 1963. Chess-
Playing Programs and the Problem of Complexity.
In Computers and Thought, eds. E. Feigenbaum and
J. Feldman, 39–70. New York: McGraw-Hill.

Quinlan, J. 1986. Induction of Decision Trees.
Machine Learning 1:81–106.

Redmond, M. 1989. Combining Explanation Types
for Learning by Understanding Instructional Exam-
ples. In Proceedings of the Eleventh Annual Conference
of the Cognitive Science Society, 147–154. Hillsdale,
N.J.: Lawrence Erlbaum.

Riesbeck, C., and Schank, R. 1989. Inside Case-Based
Reasoning. Hillsdale, N.J.: Lawrence Erlbaum.

Riesbeck, C., and Schank, R. 1976. Comprehension
by Computer: Expectation-Based Analysis of Sen-
tences in Context. In Studies in the Perception of Lan-
guage, eds. W. J. M. Levelt and G. B. Flores d’Arcais,
247–294. Chichester, England: Wiley.

Schank, R. C. 1991. Case-Based Teaching: Four
Experiences in Educational Software Design, Tech-
nical Report, 7, The Institute for the Learning Sci-
ences, Northwestern Univ.

Schank, R. C. 1990a. Teaching Architectures, Tech-
nical Report, 3, The Institute for the Learning Sci-
ences, Northwestern Univ.

Schank, R. C. 1990b. Tell Me a Story: A New Look at
Real and Artificial Memory. New York: Scribner’s.

Schank, R. C., and Jona, M. 1991. Empowering the
Student: New Perspectives on the Design of Teaching
Systems. The Journal of the Learning Sciences 1:7–35.

Schank, R. C.; Osgood, R.; et al. 1990. A Content
Theory of Memory Indexing, Technical Report, 2,
The Institute for the Learning Sciences, Northwest-
ern Univ.

Schank, R. C.; Ferguson, W.; Birnbaum, L.; Barger,
J.; and Greising, M. 1991. ASK TOM: An Experimen-
tal Interface for Video Case Libraries, Technical
Report, 10, The Institute for the Learning Sciences,
Northwestern Univ.

Schank, R. C.; Charniak, E.; Wilks, Y.; Winograd, T.;
and Woods, W. A. 1977. Panel on Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Joint Conference on Artificial
Intelligence, 1007–1008. Menlo Park, Calif.: Inter-
national Joint Conferences on Artificial Intelli-
gence.

Shortliffe, E. 1976. Computer-Based Medical Consul-
tations: MYCIN. New York: American Elsevier.

Sussman, G. 1975. A Computer Model of Skill Acqui-
sition. New York: American Elsevier.

Waterman, D., and Hayes-Roth, F. 1978. Pattern-
Directed Inference Systems. New York: Academic.

Winograd, T. 1973. A Procedural Model of Lan-
guage Understanding. In Computer Models of
Thought and Language, eds. R. Schank and K. Colby,
152–186. San Francisco: Freeman.

Winograd, T. 1972. Understanding Natural Language.
New York: Academic.

Roger C. Schank directs The
Institute for the Learning Sci-
ences at Northwestern Universi-
ty, where he is also John Evans
professor of electrical engineer-
ing and computer science, psy-
chology, and education. The
institute embodies Schank’s
concepts for conducting lead-

ing-edge interdisciplinary research in human learn-
ing, providing software solutions for education,
and accomplishing the successful transfer of AI
technologies from the university environment to
the real world. Schank holds a Ph.D. in linguistics
from the University of Texas at Austin and is the
author of over a dozen books, including Tell Me a
Story, The Cognitive Computer, and the newly
released The Connoisseur’s Guide to the Mind.

Articles

WINTER 1991 49

THE ELECTRONIC ADDRESSES FOR AAAI ARE AS FOLLOWS:

AAAI membership inquiries: membership@aaai.org
AI Magazine subscriptions: membership@aaai.org
AI Magazine editorial queries & letters: engelmore@sumex-aim.stanford.edu
AI Magazine announcements: aimagazine@aaai.org
AI Magazine advertising & press releases: aimagazine@aaai.org
AAAI national conference: ncai@aaai.org
AAAI Press: press@aaai.org
Workshop information: workshops@aaai.org
Innovative Applications conference: iaai@aaai.org
Spring Symposium series: sss@aaai.org
Fall Symposium series: fss@aaai.org
Other inquiries and requests: admin@aaai.org

