
Computino Facilities

A Survey of Present
and Near-Future Options

Scott Fahlman
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

At the recent AAAI conference at Stanford, it became
apparent that many new AI research centers are being
established around the country in industrial and
governmental settings and in universities that have not
paid much attention to Al in the past. At the same time,
many of the established AI centers are in the process of
converting from older facilities, primarily based on
Decsystem-IO and Decsystem-20 machines, to a variety of
newer options. At present, unfortunately, there is no
simple answer to the question of what machines, operating
systems, and languages a new or upgrading AI facility
should use, and this situation has led to a great deal of
confusion and anxiety on the part of those researchers and
administrators who are faced with making this choice. In
this article I will survey the major alternatives available at
present and those that are clearly visible on the horizon,
and I will try to indicate the advantages and disadvantages
of each for AI work. This is mostly information that we
have gathered at CMU in the course of planning for our
own future computing needs, but the opinions expressed
are my own.

Before going on, 1 should note this discussion will be
limited to those machines and systems that are (or will be)
in active use at one or more of the major established
centers of AI research in the United States. This
limitation is deliberate. in my opinion, it would be unwise
for a new center to start from scratch with a machine or
system that has not previously been used for serious AI
research. To do so would be to take on a tool-building
task that would delay the beginning of serious AI research
for several years. Using an odd machine also tends to

16 Al MAGAZINE Winter 1980-81

isolate the research group from the rest of the AI
community. It seems a much wiser course to tie one’s
center in with others, so that tools and results can be
shared

Of course, this does not mean that one cannot do AI
research on practically any machine if there is no other
choice. Good AI research has been done on machines
from Univac, Burroughs, Honeywell, and even IBM, using
unbelievably hostile operating systems, and in languages
ranging from Basic to PL-I. If corporate policy or lack of
independent funds forces some such choice on you, it is
not the end of the world. It should be noted, however,
that the lack of first-rate facilities is very likely to lead to a
lack of first-rate people, and will have a serious impact on
the productivity of the people you do manage to attract.
In this article, then, I will concentrate on the choices that
might be made by centers that have a free choice in the
matter and the funds to obtain facilities that will be
dedicated to AI use.

One other warning must be given: this material will
become obsolete very quickly. If you should encounter
this article a year after publication, much of it will be out
of date. If the time is two years after publication, it will be
totally worthless.

Basic Computing Needs

What does an AI researcher want from his computing
facility? What will make him most productive? Setting

AI Magazine Volume 2 Number 1 (1981) (© AAAI)

aside, for now, the very specialized needs of those doing
signal processing or robotics, the needs of the rest are
relatively straightforward to state, if difficult to satisfy. In
fact, the needs of the Al researcher are not very different
from the needs of any other researcher in computer
science, except that facility-related problems seem to
become acute in AI a few years sooner than they are felt
in other research areas The considerations are roughly as
follows:

0 AI programs tend to be very large because they
contain, in one form or another, a lot of
knowledge. It follows, then, that any machine
used for AI must provide a large virtual
address space in order to insulate the
researcher from having to think about how to
chop up his task into smaller tidbits and
overlays. A 32-bit address space is comfortable
for the forseeable future; a 24-bit (to the 32-bit
word) address space is adequate for the next
couple of years for most purposes; the 1%bit
address space of the Dee-lo/20 series is
woefully inadequate and has seriously impeded
the recent progress of Al. Don’t even think
about using anything smaller.

0 Most AI programs burn a lot of cycles. If your
machine is slow or is too heavily loaded, your
high-powered researchers will be spending all
of their time waiting for something to happen
on their screens They will spend this time
plotting against the management and reading
the help-wanted ads To pack too many
researchers onto a time-shared machine is a
move of very dubious economic value.

q The operating system must be friendly. For
AI, friendliness means flexibility Protection
and quotas must not get in the way, the
utilities must be screen-oriented rather than
paper-oriented, documentation must be on-line
and easy to use, and individ’ual users must
have easy access to multiple processes so that
some of the waiting time can be spent editing
or doing other useful work. Most important,
the system should stay up: when you have
invested an hour of CPU time and eight hours
of your own time in a computation, a crash can
be very irritating. Since most AI researchers
are experienced programmers, a user interface
that is easy for beginners to use is relatively
less important than on a machine for general
use, but remember that you may want to
export your results to an environment with less
sophisticated users.

0 Though AI researchers spend more of their
time computing than most people in computer
science, they still spend most of their time
editing programs, editing text, formatting
documents, and communicating with one

another via computer mail. First-rate facilities
for all these activities must be provided. My
own working definition of “first-rate”, among
systems available today, would be the
combination of Emacs and Scribe. Tastes may
vary in this, but it is clear that the use of a
teletype-oriented editor or a primitive
text-processing system can waste a great deal
of your researchers’ valuable time

0 The programming done in AI is almost always
of an experimental, evolutionary nature, and it
is concerned mostly with symbol manipulation
rather than arithmetic This argues very
strongly for the use of Lisp over other
currently-available languages An AI research
center must provide a well-developed,
well-maintained Lisp system; other languages
are optional. The use of such languages as Sail
for AI research seems to be declining rapidly
now that good Lisps are widely available It
may be, as some researchers argue, that
Smalltalk-like languages are the wave of the
future, but that wave is still well over the
horizon for most of us.

As 1 said, these requirements are simple to state, but
hard and expensive to realize. To equip an AI center in a
way that will help you to attract the best people, you
should probably plan to spend something like $50K-$70K
per researcher in computing equipment. (For serious work
in robotics, plan to spend a lot more > An established
center can get by with less, but if you are trying to start a
new center it will be very hard to recruit people to work
with inferior facilities There are many examples of
well-intentioned efforts that never reached critical mass in
people because the computing environment was wrong.

In providing these facilities, there are two basic
approaches: time-sharing and the use of powerful personal
machines connected by a high-bandwidth network.
Time-sharing has been the mainstay of the field for over a
decade and, as I write this, is still the only option available
from commercial sources. The personal computing option
is expected by most leaders in the field to be the dominant
force of the next decade, starting very soon, but it will be
a year or two before it is a practical option for users who
do not want to do a lot of the development themselves
That is one of the reasons why the field is currently so
unsettled: users must acquire enough time-sharing capacity
to meet their present needs, but they want to save enough
equipment money to allow for a quick move into the
personal-computing world as soon as this becomes
practical. We will consider the options in both of these
worlds in the following sections.

Time-Sharing Options

Two families of time-sharing machines are used by the

Al MAGAZINE Winter 1980-81 17

vast majority of AI researchers: the Decsystem-20 (and its
predecessor, the Decsystem-lo), and the Vax, both
products of the Digital Equipment Corporation. As I said
earlier, it is possible to do AI on other machines, but
anyone with a choice in the matter should probably stick
with these two hardware families.

The Decsystem-20 Family

The Decsystem-20, available in a range of sizes,
provides a mature programming environment and by far
the largest selection of useful software. Unfortunately, an
l&bit address space is woven deeply into the instruction
set of the Dee-20 family. When this family began with the
old PDP-6, this must have seemed like an immense
address space but, as we noted earlier, it is just too small
to meet the needs of AI researchers in the 1980’s. Some
of the newer models of the Dee-20 extend the address
space beyond 18 bits, but the additional address space is
awkward to use and very little of the existing software can
take advantage of it

Despite the inadequate address space, there are some
situations in which the Dee-20 may be the option of
choice. In a crash project that will not be needing more
than the available address space, the user amenities on the
Dee-20 make it very attractive. In a situation where the
research will consist mainly of using and extending
existing AI systems, and where these systems run on the
Dee-20, it is obviously the machine to use. In a large
center, it may be advantageous to have users edit, process
text, and do most of their program development on a large
Dee-20 system, while big Lisp jobs are sent to one or
more Vax machines for service. This option requires a
very good local network if it is to be successful.

If you do use the Dee-20 hardware, you have a choice
of two operating systems from DEC. Tops-10 and Tops-20
Tops-10 is an outmoded system that is totally unsuited to
the needs of AI. Tops-20, based on the Tenex system
developed at Bolt, Beranek, and Newman, is clearly
superior since it provides demand paging, tree structured
directories, multiple processes per user, flexible terminal
handling, and the friendliest user-interface of any system
that I have seen. (Some of these features have been
tacked onto Tops-10 as afterthoughts, but in very clumsy
forms.) All Tops-10 software runs on Tops-20, but the
converse is definitely not true. Tops-20 users can run
Interlisp, Maclisp, Emacs, Scribe, Tex, and most of the
major AI programs that have been developed in the past
decade Some sites still run the older Tenex system; this
is almost equivalent to Tops-20 in its features and available
software. but users are on their own for maintenance.

While DEC states that they are not trying to phase out
the Dee-20 in favor of the Vax, their pricing structure,
especially for main memory, tends to make the Dee-20

family relatively unattractive. An option that some users
may want to consider is a line of machines from Foonly,
Incorporated These machines execute the Dee-20
instruction set and can therefore run most of the same
software They tend to be substantially less expensive
than the comparable machines from DEC, but they must
run Tenex rather than Tops-20, and maintenance may be a
problem in some areas. If you have the staff to do some
of your own hardware and software maintenance, Foonly
seems like a good option; if not, you should carefully
explore the maintenance issues before buying.

In the Tops-20 world there are two major Lisp systems
in use, both with fanatical adherents. Interlisp, developed
at BBN and Xerox PAKC, and Maclisp, developed at MIT.
Interlisp contains a large number of built-in facilities to
provide the user with a total programming environment --
arguably the best programming environment ever provided
for any computer language. Everything from a built-in
program editor to an indexing facility to a spelling
corrector is provided as part of the system All of this is
documented and centrally maintained. Maclisp proponents
point out that this wealth of features in Interlisp can often
be more confusing than helpful and that little address
space is left over for the users’ programs.

Maclisp is a much leaner (some would say more
primitive) system, in which efficiency has received the
primary emphasis Maclisp’s compiler is able to produce
very efficient fast-loading code, especially for arithmetic,
which has traditionally been a weak area for Lisp Many
of Interlisp’s more complex features are available in
Maclisp as optional, user-loadable packages, but these are
not considered part of the Maclisp system itself. Maclisp
code is normally edited externally in the Emacs editor,
which knows about Lisp syntax and pretty-printing; a
special linkage between the two systems makes it easy to
alter individual function definitions in the middle of a run.
This external editing style has some advantages in dealing
with comments and macros in the Lisp source; it can be
awkward to handle these in an internal S-expression editor.
It is also argued that it is easier for users to edit Lisp with
the same editor that they use for everything else. Since
several Tops-20 systems are now in use at MIT, I would
expect future maintenance of Tops-20 Maclisp to be on a
par with Interlisp maintenance. Documentation for
Maclisp has been scandalously poor in the past, but the
situation seems to be improving

I have an opinion in the Maclisp vs. Interlisp debate, but
1 will not express it here. Both systems are very good
programming environments. The dialect you use will be
determined by the tastes of your people (a strong function
of where they were educated) and by the language used by
any collaborators you may have at other sites. It is
relatively easy to transport most code between the two
systems; it is harder to move users from one system to
the other, since the user environments are very different.

18 Al MAGAZINE Winter 1980-81

The Vax Family

Digital Equipment’s Vax family of computers is a newer
design than the Dee-10120 series, and its 32-bit virtual
addressing solves the space problem for the forseeable
future. It would appear that the Vax is destined to be the
next major time-sharing machine for most of the computer
science research community, including AI. If personal
computing develops as quickly many of us believe it will,
the Vax may well be the last time-sharing system that is in
common use in the research community At present,
however, the Vax world is lacking many of the software
amenities that are available on the Dee-20. The software
situation on the Vax is being improved rapidly as Vaxes
come into common use at major research sites. At some
point, perhaps a year or so in the future, the Vax will
become a nicer machine to work on than the Dee-20.
Given comparable software, the Vax’s large address space
will certainly make it a superior machine for AI

There are two major operating systems available for the
Vax. the VMS system, supplied by DEC, and the Unix
system, supplied by Bell Labs but extensively modified by
members of the ARPA-sponsored research community A
third option, the Eunice package from SRI, is an emulator
which disguises VMS to look like Unix to users and to
programs

DEC’s VMS system is a curious mixture of strengths
and weaknesses Some of the system’s internal
mechanisms for paging, process scheduling and switching,
and buffered disk I/O are very good, and are to some
extent tunable to meet the needs of a particular
installation. Unfortunately, the face that this system
presents to users is an unpleasant one, obviously meant to
appeal to the Fortran/Cobol market and not to those users
who want a modern, flexible environment for editing and
program development Users can run only one job at a
time, must contend with a very clumsy system of quotas
and restrictions, must do all their I/O through a complex
Cobol-ish record management system, and must deal with
terminal drivers and system utilities that are strongly
oriented toward the use of old-fashioned line editors.
VMS is a large and complex system written mostly in
assembler, and the sources for the system are expensive to
obtain. This means that it is hard for users to modify the
system except in the ways that DEC anticipated. Many of
the VMS system’s problems require only minor fixes, but
users will have trouble making such fixes and DEC moves
very slowly on such matters

Unix also has its problems. The system was developed
on the PDP-11 many years ago, and was moved to the
Vax without much modification by Bell Labs. The system
is full of concessions to the PDP-11’s tiny address space
and to the printing-terminal mentality that seems to have
permeated Bell Labs until very recently. However, since it
is very simple and is implemented in C, the Unix system
is relatively easily modified to meet the needs of any given

site or the opportunities presented by a new machine. It
was largely because of this flexibility that Vax/Unix was
chosen over VMS for use in the ARPA-sponsored VLSI
and Image Understanding projects. This choice, in turn,
has influenced many other research efforts to use Unix as
well, and to try to coordinate the changes and
improvements that they make

A group at the University of California at Berkeley has
taken the lead in this effort by adding demand paging and
many other useful features to Vax/Unix. This group is
responsible for VI, probably the best screen editor that is
currently available on the Vax, though it lacks the
flexibility of Emacs. They are also responsible for Franz
Lisp, a nearly-compatible version of Maclisp that is written
in C. At present, this is the only serious Lisp that runs on
the Vax. Franz Lisp is still experiencing some growing
pains and bugs, but its users at CMU seem to find it
livable in its present state. It is slower than Maclisp on a
comparable Dee-20, but it does make use of the Vax’s
large address space.

As I said, the Vax/Unix software world is improving
rapidly Franz Lisp and the Berkeley pager are being
worked on to improve their efficiency. A group at
USC/IS1 is working on an Interlisp system for VaxKJnix,
and expects to have a version available by the end of 1981.
Scribe has just been moved to Vax/Unix, and a group at
CMU has implemented an inter-process communication
protocol that solves some long-standing difficulties with
Unix pipes. In my opinion, the major items still missing ,
from Vax/Unix are an editor with the power and flexibility
of Emacs, a tree-structured information system to replace
the present clumsy online manual, and a more intelligible
interface to the operating system and the assorted utilities.
(For some reason there is a tradition on Unix that
programs should have two-letter names and meaningless
single-character option switches. This was ugly but
tolerable on a simple minicomputer system; it is quickly
becoming intolerable in a diverse, software-rich research
environment.)

Meanwhile, back in the VaxlVMS world, a group at
MIT is working on NIL, a reimplementation of Maclisp
with many added features. An emulator for NIL is now
running on top of Maclisp, and the Vax/VMS version is
nearing completion. The system may be ready for outside
users in six months or so according to its developers. A
version of EMACS is being written in NIL, and should be
ready whenever NIL itself is. The NIL project has been
plagued by delays, but when NIL is done it will offer more
features and will probably be faster than Franz Lisp. Since
NIL is a superset of Maclisp, it should be easy to move
code from Maclisp or Franz Lisp into NIL.

The Eunice system from SRI is an attempt to get the
best of both worlds by emulating the Berkeley-modified
Unix system on VMS. I have not yet had a chance to
observe Eunice first-hand, but it is said by its developers

Al MAGAZINE Winter 1980-81 19

to run all Unix software without significant modification,
and to do so at higher speed than on true Unix because of
VMS’s superior paging and file I/O. VMS and Eunice
users can coexist on the same machine. Eunice is running
now and has already been used to make Franz Lisp
available to the VMS world. If all of these claims are true
(and I have no reason to doubt them) then Eunice appears
to be the best system for most users of the Vax. it is faster
than real Unix and gives its users access to software
developed for either of the other two systems. Unix
retains some advantages in the area of user modifiability
and simplicity, for users who need that

In summary, I would say that Eunice or Berkeley Unix
on the Vax looks like the right combination for most new
AI centers to use. The Dee-20 is is a more comfortable
system to use at present, but its address-space problem is
fatal in the long run, and the Vax software situation is
improving rapidly.

Personal-Computing Options

Time-sharing is based on the assumption that computers
powerful enough to be useful for research, especially AI
research, are so expensive that they must be shared
among many users. Advancing technology is rendering
this assumption obsolete Every year the price of
computers and memories comes down and personnel costs
go up. The task of the past two decades was to find ways
to use every precious computer cycle for productive work,
the task of the 80’s is to find ways to improve the
researcher’s productivity, even if some computer cycles are
thrown away in the process This change in the relative
costs of machines and people provides the impetus for the
move to powerful personal computers for AI research.
The compromises inherent in time-sharing are just too
wasteful of scarce human resources

Two major research centers, Xerox PARC and the MIT
Artificial Intelligence Laboratory, have taken the lead in
exploring this new world using machines that they have
built themselves, the Dorado and the Lisp Machine,
respectively. From these two efforts, and from other
efforts that are starting elsewhere, a consistent picture of
the next generation of AI machines is emerging. Their
features include the following:

q

0

0

20

Each user has a machine whose speed is at
least comparable to that of KA-10 processor,
the workhorse time-sharing machine of an
earlier era

Each machine has a high-resolution
raster-scanned display, a keyboard, and a
pointing device such as a “mouse”. A color
display and audio I/O are optional.

Each machine has something like a megabyte
of main memory and 100 megabytes of local

Al MAGAZINE Winter 1980-81

disk storage, which is used as swapping space
to provide a large virtual memory.

The machines provide a large user-writable
microstore, which is used to provide support
for graphics, high-level languages, and
sometimes to accelerate the user’s critical inner
loops.

All of the machines are connected to one
another by a high-bandwidth network -- an
Ethernet or something comparable. This
network also connects the individual machines
to the printers, file-storage machines, and
other shared resources.

The last component, the high-speed network, is an
essential component of this technology. An important
feature of the computing environments that were
developed on time-sharing systems was the easy
communication and the sharing of information and files
among users. The high-speed network, along with
appropriate software, allows us to bring this same ease of
communication and sharing to the personal-computer
world. It also allows for the sharing of the items that are
still too expensive to replicate. printers, file systems,
perhaps even a Cray-I for the occasional job that wants to
crunch lots of numbers

By moving our research to personal computers, we
obtain a number of advantages

Large, cycle-intensive programs can be run
efficiently. In a time-sharing system, it is
possible to meet the demands of the big AI
programs or of a lot of users doing interactive
editing, but it is very hard to satisfy both
groups On a personal machine, the system
can be tuned to the task at hand.

An interactive user interface of very high
quality can be provided. This is due to the
high-resolution display on each machine and to
the instant availability of enough processing
power to update that display when necessary.
It is hard to provide such timely bursts of
processing on a time-shared machine.

The user has access to the full power of his
machine, no matter what other users are doing
No more waiting until 4 a.m. to get cycles.

Reliability is an inherent part of the personal
machine environment. A failure in any one
machine cannot bring down the others. The
critical demonstration or production run can
simply be moved to another machine.

Some AI work requires the use of special,
experimental processing hardware for such
things as image-processing, knowledge-base
searching, control of manipulators, and

complex graphics. Such devices can easily be
added to a personal machine, and can get the
instant service that they may require. It can be
very awkward, both technically and politically,
to add experimental devices to a heavily used
time-shared machine.

11 The computing environment can be extended
in smaller increments than is possible on time-
shared systems. If a few new researchers join
the group, a few new machines can be
added.

Cl Any AI application systems that are developed
on personal machines can be exported easily,
simply by having the customers buy the same
machines that they were used to develop the
program.

Now for the bad news: as of today, you cannot go out
and buy a personal machine of the typed described above.
To date, the only research groups who have been able to
use such machines are those who have built machines for
themselves. Such machines will be marketed soon, but
none have yet been delivered. So, despite all of the
advantages noted above, you will have to live with
time-sharing for another year or two. Still, it would be a
mistake not to keep a close eye on the development of
personal machines for AI, so that you can jump in when
the time is right. In the remainder of this section, I will
describe what I feel are the efforts that should be watched
most closely.

Xerox PARC began the ne’w era of personal computing
with the development of the ALTO, a nice machine for some
uses but too small for use in AI except as a graphics terminal.
Xerox has recently developed a much more powerful machine
called the Dorado. This machine is implemented in ECL and
runs both Interlisp and Smalltalk. A slower and less expensive
machine, the Dolphin, runs much of the same code as the
Dorado and is coming into widespread use within Xerox. This
machine is near the lower boundary of usefulness for AI-
reasonable for many applications, but not for the large, cycle-
intensive ones. Xerox seems to have no interest in producing
the Dorado for outside sale, and is still trying to decide
whether to sell any Dolphins to outsiders. For the near future,
then, it appears that Xerox’s contribution to AI and personal
computing will be mostly in the form of ideas, not hardware.

The only other personal machine that has seen active
service in AI is the Lisp Machine (sometimes called the
CADR, since it is the second iteration of the design) from the
MIT AI Lab. These machines have been in active use for
about two years at MIT; to date, about a dozen have been
built. The Lisp Machine is implemented in TTL, and it runs
Lisp programs at a speed that is somewhere between that of a
dedicated KA-10 and a KL-10. The Lisp system used on this
machine is based on Maclisp, but it has many advanced
features that depend critically on the Lisp Machine’s micro-
codability. In fact, aside from about 9000 words of custom

microcode, all of the code on the Lisp Machine is written in
Lisp. The software includes a complete Lisp system with
debugging aids and a compiler, graphics support, an Emacs-
like editor, support for Smalltalk-like object-oriented pro-
gramming, and a micro-compiler for turning some of the
user’s time-critical functions into Lisp Machine microcode.

After a number of false starts, there is now a company that
is preparing to build and sell the Lisp Machine commercially.
In fact, there are two such companies, reflecting a schism
within the group at MIT. One company, Symbolics Incor-
porated, has signed up most of the Lisp Machine crew at MIT
as employees or consultants and has re-engineered the MIT
design for easier construction and maintenance. They expect
to ship their first machines in the summer of 1981 for about
$150K to $80K, is planned for introduction sometime around
the summer of 1982; it is this machine that Symbolics hopes to
sell in large quantities. Symbolics has a license to market all of
the current MIT software, and plans to augment this software
considerably in the coming months. The company appears to
be quite well financed, with considerable business and
manufacturing expertise, and the chances for their survival
appear to be high.

The second company, Lisp Machines Incorporated, is
primarily the creation of Richard Greenblatt, one of the key
members of the original Lisp Machine group at MIT. LMI
plans to offer the Lisp Machine and its software, exactly as it
exists in the current MIT version, for about $80K per
machine. This leaves LMI with a considerably smaller margin
of profit than is traditional in the computer industry; they
plan to compensate for this by requiring partial payment in
advance and by selling mostly to “sophisticated” users who
can handle some of the hardware maintenance themselves.
LMI has received some firm orders and hopes to ship their
first machine in February, 1981.

Three Rivers Computer Corporation has recently begun to
ship their PERQ machines. These machines, priced around
$30K-$35K, are considerably smaller than those discussed
above, which makes them attractive as editing and office
machines but not adequate for serious AI research. To be
more specific, the PERQ at present offers only a 256K byte
main memory, of which nearly IOOK is dedicated to the
display. The largest available local disk is is 24M bytes. The
microstore is only 4K instructions, compared with 16K of
more efficient microstore on the Lisp Machine. There is no
hardware page map on the PERQ; memory mapping must be
done in microcode. Three Rivers had plans to correct all of
these deficiencies sometime in the future, but at present they
are very busy trying to produce enough of the current
machines to meet the demand for them. Whenever these
extensions arrive, the PERQ will become a more interesting
option for AI applications.

A group at Bolt, Beranek, and Newman has developed a
personal machine called the Jericho. This machine is some-
what less powerful than the Lisp Machine, but it is more

Al MAGAZINE Winter 1980-81 21

powerful than the current PERQ: it can take any amount of
main memory from .5 Megabytes to 2.5 Megabytes, comes
with a 200 Megabyte disk, and offers a variety of display
options, both monochromatic and color. The machine con-
tains a hardware page map, but this is a simple, single-level
map and provides only a 22 bit virtual address space (to the
32-bit word) in the current model. These machines are in use
within BBN running PASCAL, and an Interlisp implementa-
tion is running but not yet polished. BBN will probably
market these machines outside the company within the
coming year, but this decision is still up in the air, as is the
price.

The Spice project at CMU is an attempt to develop an
integrated personal computing environment that will serve the
needs of our entire computer science effort, including the
traditional areas of CS as well as AI and robotics. One of the
novel features of this work is our determination to use only
commercially available hardware, and to make our software
system portable to any machine that fits our general vision of
what personal computers should be. In this way we hope to be
able to take advantage of whatever hardware is most
attractive at any given time, and to mix different1 hardware
options in an integrated system that presents a consistent
environment to the user. Another novel feature is that Spice
supports multiple languages and multiple processes on each
machine, and ties processes on the same or different machines
together with a very flexible set of inter-process communica-
tion protocols. When it is complete, Spice will be a relatively
portable software system containing a complete Lisp environ-
ment (similar to but simpler than Lisp Machine Lisp), a
complete Ada programming environment, editors and text
processing systems, a multi-media message system, software
for a central file system, an extensive user-interface package,
and many other features.

Our initial implementation of Spice will be on the PERQ,
despite its present limitations for AI work. By the end of 1981,
we hope to have a usable first version of Spice running, with
an essentially complete (if rather slow) Lisp environment;
development and improvement of Spice will continue for
several years beyond that date. We plan to move Spice to a
more powerful machine, more suitable for AI work, as soon
as a few copies of such a machine are available to us. Some
companies have expressed a desire to follow our work on
Spice very closely; an industrial affiliates program is being set
up facilitate the sharing of information with these firms.

A few words arc perhaps in order about the specialized
needs of workers in robotics and vision Even more than
most AI researchers, these people need the real-time
response, the microcodability, and ‘the good graphics
interface that is provided by the personal machines. Until
such systems can be obtained, the only good solulion is to
dedicate an entire Vax to the people who arc doing this
work, and to attach some sort of frame-buffer display to
the Vax for work in vision In the past, some of this work
was done on dedicated PDP-11 systems or on local

PDP-I I’s tied to a larger time-shared processor. Such
solutions are extremely awkward in practice. In addition,
of course, robotics research requires II first-rate machine
shop and an electronics shop, with people who know how
to use thcsc facilities properly.

One final consideration raised by the introduction of
personal machines is the building that you part them in
For any AI research, it is important to have a building that
is available (lit and heated or cooled) 24 hours per day, 7
days per week -- even when the contention for cycles is
eliminated, many AI people will be nocturnal. But with
personal machines on the way, it is important to have a
building with adequate wiring and cooling throughout, and
not just in a central machine room. It is not yet cleai
whether the personal machines will work best in offices, in
clusters associated with a group of offices, or in a machine
room with only the displays distributed around the
building, but it would be unwise to lock out any of these
options at this point. Rumor has it that IBM is piping
Freon for cooling into every office in their new buildings
-- can liquid helium pipes be far behind?

For More Information.. .
This brief survey has necessarily been superficial.

Except in a few cases, I have not even tried to indicate
prices, configurations, warranty and service information, or
waiting times for delivery In addition, users who are
counting on items that are not available now will want to
contact the organizations building these items for updates
on the progress of the item 1n question The following list
should help you to find the right person to talk to, or at
least someone who can tell you who the right person is
For readers on the Arpanet, 1 have also included netmail
addresses where these exist. n

For Vax/Unix:
Professor Robert Fabry
Department of Electrical Engineering

and Computer Science
University of California
Berkeley, California 94720
(FABRY @ BERKELEY)

For Foonly machines:
Foonly, Incorporated
999 Independence Ave.
Mountain View, Ca 94043
(415) 969-7815

For Franz Lisp:
Professor Richard Fateman
Department of Electrical Engineering

and Computer Science
University of California
Berkeley, California 94720
(FATEMAN @ BERKELEY)

22 At MAGAZINE Winter 1980-81

For Decsystem-20, Tops-20, Vax, and VMS:
Consult your friendly local DEC salesperson.
Interlisp is available through DECUS.

For Interlisp on VAX:
Mel Pirtle
University of Southern California
Information Sciences Institute
4676 Admiralty Way

/ Marina del Rey, California 90291
(PIRTLE @ ISIB)

For Maclisp and NIL:
Jon L. White
MIT Laboratory for Computer Science
54.5 Technology Square
Cambridge, Mass. 02139
(JONL G MIT-MC)

For Eunice:
David Kashtan (technical questions)
Chuck Untulis (administrative questions)
SRI International
Computer Resources
333 Ravenswood Ave
Menlo Park, California 94025
(KASHTAN @ SRI-KL, UNTULIS @ SRI-KL)

For Lisp Machines:
Russell Nofsket
Symbolics, Incorporated
605 Hightree Road
Santa Monica, Ca. 90402
(2 13) 459-6040

Steve Wyle
Lisp Machines, Incorporated
163 N Mansfield Ave
Los Angeles, Ca 90036
(213) 938-8888

For PERQs:
Three Rivers Computer Corporation
720 Gross St.
Pittsburgh, Pa 15224
(412) 621-6250

For Jericho:
Jim Calvin
Bolt, Beranek, and Newman
50 Moulton St.
Cambridge, Mass. 02138
(617) 491-1850 x4615
CALVIN BBN-TENEXG

For Spice:
Scott E. Fahlman
Department of Computer Science
Carnegie-Mellon University
Schcnley Park
Pittsburgh, Pa. 15213
(FAHLMAN @ ~MuA)

Search
(continued from page 6) References

Amarel, S On representations of problems of reasoning about actions In
D Michic (Ed), Mnchim ln/e//i~mc~e 3 New Yet k: American
Elsevier, 1968 Pp 131-171

Feigenbaum, E A, and Feldman, .I (Eds) Cornpufef s and Thoughr
New York: McGraw-Hill, 1963

Fikes, R E , Harl, P , and Nilsson, N .I Learning and executing
generalized rob@ plans .4,t$ciu/ lnMgcnce, 1972, 3, 25 l-288

Fikes, R E, and Nilsson, N J STRIPS: A new approach to the
application of theorem proving to problem solving At t#icial
f~7tc~/li~~~nc~, 197 1, 2, 189-208

Good, 1 J A five-year plan for automatic chess In E Dale and
D Michie (Eds), Muchble /n/c//igmce 2 New York American
Elseviel, 1968 Pp 89-118

Kowalski, R And-or graphs, theorem-proving graphs, and bi-directional
search In B Meltzer and D Michie (Eds), Machine /n/c//i~~~7c~ 7
New Yolk: Wiley, 1972 Pp 167-194

Minsky, M Steps toward artificial intelligence In Feigenbaum and
Feldman, 1963 PI, 406-450

Newell, A , and Ernst, G The search for generality In W A Kalenich
(Ed) , It~fiumntion Pj o(essi,lg I965 Ptoc IFIP c’ol?‘Wess 65
Washington: Spartan Books, 1965 Pp 17-24

Newcll, A, Shaw, J C , and Simon, H A Empirical explorations with
the logic theory machine: A case history in heuristics In
Feigenbaum and Feldman, 1963 Pp 109-133

Newell, A , and Simon, H A H~/,lrrn Ptohlem .Sohzi!l~ Englewood Cliffs,
N J Prentice-Hall, 1972

Newell, A, and Simon, H. A Compute! science as empirical inquiry
Symbols and search The 1976 ACM Turing Lecture COl,7/il
ACM, 1976, 19, 113-126

Nilsson, N J P/ oh/e~~~-So/vOr~ A4e/hods in A/ tj/k?n/ fm4li~p7ce New York:
McGraw-Hill, 1971

Nilsson, N J Ptinciples of A//jficia/ /tr/r//i~et7ce Palo Alto, Calif : Tioga,
1980

Pohl, 1 Bi-directional search In B Meltzet and D Michie (Eds),
Mnchitre lt7fclligence 6 New York American Elsevier, 1971 Pp
127-140

Polya, G HOW to .SO/W I/ (2nd ed) New Yolk Doubleday Anchor,
1957

Raphael, B Thr Thi&ing Co/?~/~ltc/ San Francisco Freeman, 1976

Sacerdoti, E D Planning in a hierarchy of abstraction spaces At/$ciu/
Itiielli&tlte, 1974, 5, 115-135

Samuel, A L Some studies in machine learning using the game of
checkers In Feigenbaum and Feldman, 1963 Pp 71-105

Shannon, C E Programming a computer for playing chess Philosophitnl
Magazitre (Series 7), 1950, 41, 256-275

Shannon, C E A chess-playing machine In J R Newman (Ed), The
Weld q/ Mathematics (Vol 4) New York: Simon and Schuster,

1956 Pp 2124-2133

Al MAGAZINE Winter 1980-81 23

