
Letters 

Letters 
n Editor: 

The Phoenix project (“Trial by Fire: 
Understanding the Design Require- 
ments for Agents in Complex Envi- 
ronments.” AI Magazine, Vol. 10, No. 
3) presents very interesting work in 
forest fire simulation. I am especially 
glad to see recognition that the “real- 
time, spatially distributed, multia- 
gent, dynamic, and unpredictable fire 
environment” provides an excellent 
opportunity to explore a variety of AI 
issues, such as how complex environ- 
ments constrain the design of intelli- 
gent agents. I hope more AI researchers 
will venture into the complex 
domain of forest fire management. 

However, I am concerned about 
the fire knowledge presented in the 
article. In defending their use of sim- 
ulation, Cohen et al. argue that their 
simulated fire environment is a com- 
plex environment, irrespective of 
whether it is an accurate model of 
how forest fires spread. Yet, they rec- 
ognize the importance of a realistic 
simulation, “the point of using simu- 
lators is to create realistic and chal- 
lenging worlds.” Then they make the 
unsubstantiated claim that the “fire 
environment is an accurate model of 
forest fires.” Mathematical models of 
fire spread have been developed that 
do a reasonably good job of predic- 
tion, if the models are applied within 
the bounds of the simplifying 
assumptions. That is a very big if. To 
state unequivocally that an accurate 
model of fire spread exists is some- 
what of an overstatement. 

Examining the fire simulation 
shown in figures 1 through 4, the fire 
appears to spread from the northwest 
to the southeast in a somewhat ellip- 
tical shape. This appears reasonable 
and is consistent with other models 
of fire spread. However, this would 
mean that the rear of the fire is in the 
northwest corner. The starting posi- 
tion of the bulldozers indicates that 
the rear of the fire is in the northeast 
corner. Something is amiss. In addi- 
tion, the length to width ratio of the 
fire is about 1.5, indicating a mid- 
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flame windspeed of about 3.2 kph. 
For a fire in that fuel complex to 
grow to the size indicated in the time 
indicated would require a midflame 
windspeed of at least 6 kph, even 
under the driest conditions. 

The authors go on to state, “Fire- 
fighting objects are also accurately 
simulated; for example, bulldozers 
move at a maximum speed of. . . 0.5 
kph when cutting a fireline.” In reali- 
ty, sustained fireline production for 
bulldozers is variable (0.1 - 2.0 kph) 
depending on steepness of the slope, 
vegetation, and size of the bulldozer. 
Furthermore, although bulldozers are 
often used to fight large forest fires, 
they are rarely dispatched to initiat- 
ing fires. Sending bulldozers to attack 
an initiating forest fire in a National 
Park is especially unrealistic since 
there are special restrictions on the 
use of mechanized equipment. Bull- 
dozers often inflict more damage on 
the ecosystem than the forest fire! 

The simulation also portrays fire 
bosses (the correct terminology is 
incident commanders) in a remote 
location. For initiating fires, the inci- 
dent commander is always at the fire. 
The simulation appears to confuse 
the roles of a dispatcher with those 
of an incident commander, as well as 
confound tactics used on an initiat- 
ing fire with tactics used against a 
large established fire. 

I recognize that the authors are 
presenting work in progress and I 
applaud their excellent preliminary 
efforts. I look forward to seeing 
future developments. My main con- 
cern is that the authors may think 
they have developed a realistic fire 
environment already or, worse yet, 
they don’t see a need to develop a 
realistic simulation. Although a real- 
istic simulation may not be necessary 
to explore some of the AI related 
issues, such a simulation would 
prove all but useless for work in fire 
science. My hope is that joint pro- 
jects can be undertaken that are 
mutually rewarding for the fields of 
AI and fire science. 

Jim Saveland 
Research Forester 
Associate Editor, AI Application in 
Natural Resource Management 
United States Department of 

Agriculture 
Forest Service 
Southern Forest Fire Laboratory 
Route 1, Box 182A 
Dry Branch, GA 31020 

n Editor: 

Mr. Saveland’s letter focuses our 
attention on the important distinc- 
tion between accuracy and realism. 
We believed the Phoenix fire simula- 
tor to be accurate (with the provisos 
noted in our article). Mr. Saveland 
believes otherwise, and he is certainly 
better qualified than us to judge! We 
can allay some doubts (e.g., fire-fight- 
ing objects actually do move at vari- 
able rates, depending on ground 
cover, as Mr. Saveland notes they 
should), but basically we agree with 
Mr. Saveland that the Phoenix fire 
simulator is not accurate. But we do 
claim it is realistic. Realism is neces- 
sary for our research; accuracy is not. 
Here are some examples of the dis- 
tinction: In a realistic simulation, 
processes become uncontrollable 
after a period of time; in an accurate 
simulation, the period of time is the 
same as it is in the real world. In a 
realistic simulation, agents have lim- 
ited fields of view; in an accurate sim- 
ulation, agents’ fields of view are the 
same as they are in the real world. In 
a realistic simulation, the probabili- 
ties of environmental events such as 
wind shifts are summarized by statis- 
tical distributions; in an accurate 
simulation, the distributions are com- 
piled from real-world data. When 
possible, we use accurate data; for 
example, we replaced our original 
hand-built map with Defense Map- 
ping Agency data of elevation, 
ground cover, and so on. But the goal 
of our research is not to accurately 
simulate forest fires in Yellowstone 
National Park. It is to understand the 
design requirements of agents in real- 
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istic environments-environments in 
which processes get out of hand, 
resources are limited, time passes, 
and information is sometimes noisy 
and limited. Toward this end, we wel- 
come the collaboration suggested by 
Mr. Saveland in his closing para- 
graph. Whether it proves mutually 
rewarding may depend on whether 
our goal is realism or accuracy. 

Paul R. Cohen 
David M. Hart 
Adele E. Howe 

n Editor: 

“The good workman does not blame 
his tools.” 

Verol Akman and Paul J. W. ten 
Hagen, in their article, “The Power of 
Physical Representations” (AI Maga- 
zine, Vol. 10, No. 3), discuss a variety 
of important issues about the relation 
between the scientific enterprise of 
physics and recent AI research on 
qualitative reasoning about physical 
systems. 

However, while doing so, they 
reveal serious misunderstandings 
about QSIM (Kuipers 1986), and 
indeed about the relationship 
between modeling and simulation. 
QSIM is a piece of qualitative mathe- 
matics, in support of the larger enter- 
prise of qualitative reasoning about 
physical systems. QSIM provides a 
language for expressing models- 
qualitative differential equations- 
capable of expressing states of partial 
knowledge that are inexpressible in 
the language of ordinary differential 
equations. It also provides a simula- 
tion algorithm for inferring the possi- 
ble solutions to a given qualitative 
differential equation. 

Any modeler knows that if you 
build the wrong model, the predic- 
tions derived from that model are 
likely to be wrong, too. In the rocket 
problem, for example, if you build a 
model asserting that gravity is con- 
stant, independent of height, the pre- 
dictions derived from that model will 
faithfully report that the rocket will 
fall back to earth, no matter what the 
initial velocity. In that model, there is 
no such thing as escape velocity. 

It is straight-forward to express a 
model with decreasing gravity in 
QSIM, and such a model is one of the 
standard examples included with 
copies of QSIM we distribute to inter- 
ested researchers. As one would 
expect, it predicts three behaviors: 
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fall back to earth; escape with veloci- 
ty decreasing asymptotically to zero; 
and escape with velocity decreasing 
asymptotically to a positive value. 
Since QSIM is a mathematical lan- 
guage for expressing models, rather 
than a physical methodology for 
building correct models, it must be 
able to express both good and bad 
models, both true and false models, 
and faithfully derive their conse- 
quences, to allow other processes to 
discriminate among them. 

In a criticism directed at this issue 
of expressive power, Akman and ten 
Hagen conjecture that QSIM will be 
unable to express energy conserva- 
tion laws. In fact, a model including 
energy conservation (an undamped 
harmonic oscillator with monotonic, 
possibly non-linear, restoring force) 
was described as early as (Kuipers 
1985). Such constraints appear in sev- 
eral of our published and distributed 
models. 

Finally, Akman and ten Hagen 
assert that “Kuipers (1986) believes 
that causality can be taken as value 
propagation with constraints.” This is 
incorrect. 

My position on causality and 
QSIM starts with Karl Popper’s (1935) 
definition of causal explanation: 

To give a causal explanation of an 
event means to deduce a statement 
which describes it, using as premises 
of the deduction one or more univer- 
sal laws, together with certain singu- 
lar statements, the initial conditions. 
Following this definition, I argue 

(Kuipers 1987) that when a set of 
observations about the world match- 
es the prediction derived from a 
QSIM model, then the model can be 
considered a causal explanation of 
the observations. Frequently, of 
course, there are multiple causal 
explanations for a given set of obser- 
vations, leading to the need for more 
observations to discriminate among 
them. (The reader should note 

view QSIM is, first, as a language for 
expressing models consistent with a 
state of incomplete knowledge, and 
second, as an inference tool for deriv- 
ing predictions consistent with such 
a model. Physics, qualitative or quan- 
titative, depends critically on mathe- 
matical methods for deriving 
predictions from models, both cor- 
rect and incorrect. QSIM is one step 
toward providing the degree of 
expressive and inferential power 
necessary for qualitative physics, 
along with the guarantees of mathe- 
matical validity that are necessary for 
any science. 

Benjamin Kuipers 
Artificial Intelligence Laboratory 
College of Natural Science 
The University of Texas at Austin 
Austin, Texas 78712 
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that “causality” 
is a complex and 
multi-faceted set 
of issues. Causal 
explanation, in 
this sense, is 
largely disjoint 
from the issue of 
“causal ordering” 
as discussed by 
Iwasaki & Simon 
and de Kleer & 
Brown.) 

Thus, the 
proper way to 




