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AI: “The agents should be embodied
as mobile robots…the new approach
can be extended to cover the whole
story, both with regards to building
intelligent systems and to under-
standing human intelligence”
(Brooks 1991a, p. 585).

This article argues that even if we
accept Brooks’s first position and seek
to build complete agents in real-
world environments, we need not
accept robotics as the foundation for
AI. Clearly, robotics is an important
enterprise, with much to contribute
to AI. However, I challenge Brooks’s
position that the primary path to
progress in AI is “to study intelli-
gence from the bottom up, concen-
trating on physical systems (e.g.,
mobile robots), situated in the world,
autonomously carrying out tasks of
various sorts” (Brooks 1991a, p. 569).

In this article, I propose real-world

■ In his recent papers, entitled “Intelli-
gence without Representation” and
“Intelligence without Reason,” Brooks
argues for mobile robots as the founda-
tion of AI research. This article argues
that even if we seek to investigate com-
plete agents in real-world environ-
ments, robotics is neither necessary nor
sufficient as a basis for AI research. The
article proposes real-world software
environments, such as operating sys-
tems or databases, as a complementary
substrate for intelligent-agent research
and considers the relative advantages of
software environments as test beds for
AI. First, the cost, effort, and expertise
necessary to develop and systematically
experiment with software artifacts are
relatively low. Second, software envi-
ronments circumvent many thorny but
peripheral research issues that are
inescapable in physical environments.
Brooks’s mobile robots tug AI toward a
bottom-up focus in which the mechan-
ics of perception and mobility mingle
inextricably with or even supersede
core AI research. In contrast, the soft-
bots (software robots) I advocate facili-
tate the study of classical AI problems
in real-world (albeit, software) domains.
For example, the UNIX softbot under
development at the University of Wash-
ington has led us to investigate plan-
ning with incomplete information,
interleaving planning and execution,
and a host of related high-level issues.

In his recent papers, entitled
“Intelligence without Representa-
tion” (Brooks 1991b) and

“Intelligence without Reason”
(Brooks 1991a), Brooks propounds a
number of positions, including the
following:

Complete agents in real-world
environments: “At each step we
should build complete intelligent
systems that we let loose in the real
world with real sensing and real
action” (Brooks 1991b, p. 140).

Robotics as the foundation for

real-world software environments by
issuing commands and interpreting
the environments’ feedback. I refer to
such agents as softbots (software
robots):1 A softbot’s effectors are com-
mands transmitted to the external
environment to change its state (for
example, UNIX shell commands such
as mv or compress). A softbot’s sensors
are commands that provide the soft-
bot with information about its exter-
nal world (for example, pwd or ls in
UNIX). Softbots offer the methodolog-
ical advantages of investigating com-
plete agents in real-world environ-
ments without the overhead
associated with robotic agents.

The remainder of this article is
organized as follows. First, I show
how softbots satisfy Brooks’s desider-
ata for AI research vehicles. Second, I
consider some advantages of softbots
as a substrate for AI research.

Brooks’s Arguments 
and Softbots

Brooks advances a number of argu-
ments for his positions. Here, I con-
sider his methodological arguments
for building complete agents that
operate in real-world environments
and his argument for “embodiment”
as a way to endow internal agent
processing with meaning. In both
cases, I show that these arguments
apply equally well to softbots, a pos-
sibility that Brooks does not consider.
Finally, I review and critique Brooks’s
evolutionary argument for robotics.

Engineering Methodology
Argument
Brooks (1991b, p. 140) writes, “I, and
others, believe that human level
intelligence is too complex and little
understood to be correctly decom-
posed into the right subpieces at the
moment and even if we knew the
subpieces we still wouldn’t know the
right interfaces between them.” As
Mitchell et al. (1991, p. 352) put it,
“[The] reductionist research strategy
has reached the point of diminishing
returns.” Although both statements
are quite strong, it seems clear that
developing complete or integrated
agent architectures has a distinct
methodological advantage: The
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software environments, such as oper-
ating systems or databases, as a sub-
strate for intelligent-agent research.
Over the years, software environ-
ments have been explored as
domains for machine learning (Dent
et al. 1992; Dietterich 1984), intelli-
gent user interfaces (Wilensky et al.
1988), planning (Arens et al. 1993),
distributed AI (Rosenschein 1982;
Shoham 1993), and more. I argue for
a unified conception: complete,
intelligent agents that interact with

I challenge Brooks’s posi-
tion that the primary

path to progress in AI is
“to study intelligence
from the bottom up.…
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researcher is less likely to make unre-
alistic assumptions about what the
interfaces are between different com-
ponents of the architecture and what
each component will compute.

Given that one is committed to
developing complete agents, Brooks
(1991b, p. 150) argues that the agents
should be tested in the real world:
“[W]ith a simplified world…it is very
easy to accidentally build a submod-
ule of the systems which happens to
rely on some of those simplified
properties…the disease spreads and
the complete system depends in a
subtle way on the simplified world.”
The softbot paradigm escapes these
quandaries by committing to full
realism at every step. Softbots operate
in dynamic, real-world environments
that are not engineered by the soft-
bots’ designers. In the UNIX environ-
ment, for example, other agents (par-
ticularly humans) are continually
changing the world’s state by logging
in and out, creating and deleting
files, and so on. Softbots are forced to
cope with changes in their environ-
ment (Where did that file go?) in a
timely fashion. To succeed, softbots
have to make sense of the flow of
information through their limited
bandwidth sensors and respond
appropriately.

Brooks emphasizes that an agent
ought to have some purpose; it ought
to be useful (see Schank [1991]). The
preponderance of problems such as
feature shock (the paralysis a user feels
when facing a bewildering array of
complex, poorly documented features
[Kleinrock 1985]) and information
anxiety (a user’s emotional response to
the increasing volume and diversity
of electronic data [Messinger et al.
1991; Wurman 1989]) suggest that
there is no shortage of useful tasks for
a softbot. Some simple examples are
filtering electronic mail and sending
routine messages such as meeting
reminders and talk announcements,
scheduling meetings (Dent et al.
1992; Maes and Kozierok 1993), and
performing system maintenance tasks
(for example, around-the-clock intru-
sion detection). In short, softbots sat-
isfy every facet of Brooks’s engineer-
ing methodology.

Symbol Grounding Argument

Brooks (1991a, p. 584) claims that
“only through a physical grounding
can any internal symbolic or other
system find a place to bottom out,
and give ‘meaning’ to the processing
going on within the system.” Stan-
dard semantic accounts of representa-
tional languages define ‘meaning’
and ‘truth’ in terms of an underlying
model or logical interpretation. How-
ever, what do the symbols in the
underlying model mean? Brooks
argues that only the physical world
can ground an agent’s internal repre-
sentation. This rather abstract obser-
vation actually has practical ramifica-
tions for intelligent agents.

As Agre and Chapman put it, in
classical AI planners, the truth of a
blocks world proposition, such as
on(a,b) is determined by checking
whether a relation corresponding to
on applies to objects corresponding to
a and b. The check is performed in
the planner’s model, not in the exter-
nal world. Similarly, an agent satisfies
the goal on(a,b) by updating its inter-
nal model to include the effects of
executing the action stack(a,b), not by
interacting with the external world.

This “practice of allowing primitive
actions to traffic in constant symbols”
hides an important problem (Agre
and Chapman 1990). Because physi-
cal entities do not have tags associat-
ed with them saying “I correspond to
internal symbol a,” an agent operat-
ing in the physical world has to devel-
op methods that reliably map from
perceptual experiences in the world to
internal representations, and con-
versely. This process and related prob-
lems of linking perception with inter-
nal representation are ignored by
classical AI planners but have to be
confronted by a robotic agent operat-
ing in a physical environment.

Again, this argument supports the
softbot paradigm equally well. In
contrast to a blocks world–style simu-
lated world, there is no privileged
relationship between a softbot’s inter-
nal symbols and the entities in its
external world. For example, suppose
the softbot is instructed to format
and print the most recent draft of a
particular AI conference paper repre-
sented internally by the phrase file-
object-35. The softbot has to decide

whether the file called learning.tex,
which it perceives in the directory
/ai/papers/, corresponds to its inter-
nal symbol file-object-35. The software
objects in the softbot’s external world
give meaning to its internal symbols.
Although the mechanics of software
perception are more manageable, and
the nuisance of sensory noise is elim-
inated, the fundamental problem of
mapping perceptual experiences to
internal symbols remains.

Evolutionary Time Argument
Brooks points out that biological evo-
lution spent most of its multibillion-
year history developing insects, rep-
tiles, and primates. Humans arrived a
mere 2.5 million years ago and
invented writing only recently.
Brooks (1991b, p. 141) writes, “This
suggests that problem solving behav-
ior, language, expert knowledge and
application, and reason are all pretty
simple once the essence of being and
reacting are available.” Based on this
observation, Brooks advocates study-
ing intelligence from the bottom up,
starting with insects, eventually mov-
ing up to reptiles, and so on.

Whatever the merits of Brooks’s
bottom-up research strategy, his evo-
lutionary argument has to be elabo-
rated. Given that higher cognitive
functions appeared quite recently on
the evolutionary time scale (a mere
2.5 million years ago), Brooks argues
that higher cognitive functions are
“pretty simple” in a sense. This claim
presupposes a direct relationship
between evolutionary time and some
undefined measure of complexity.
However, evolution is not a smooth,
gradual process. Many evolutionary
theorists subscribe to the theory of
punctuated equilibria, which asserts
that the rate of evolutionary change is
highly variable. As Gould (1980, p.
188) puts it in a popular account,
“[T]he fossil record with its abrupt
transitions offers no support for grad-
ual change, and the principle of natu-
ral selection does not require
it—selection can operate rapidly.” We
should not underestimate the amount
of evolutionary change underlying
our higher cognitive functions.

The vagaries of evolutionary theo-
ry aside, Brooks does not explain why
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biological evolution is relevant to AI
research methodology. Suppose natu-
ral selection constrained evolution to
design organisms whose chance to
reproduce is maximal, preferring
quick reflexes to higher cognitive
functions. Are AI systems subject to
the same constraints? Certainly, soft-
bots are not. However, suppose we
accept the relevance of evolution to
AI. Shouldn’t we be emulating evolu-
tion much more closely than Brooks
suggests? Brooks does not justify skip-
ping the billions of years of evolution
spent developing multicelled organ-
isms. Isn’t it equally plausible to
argue that AI should focus on devel-
oping the appropriate hardware (that
is, designing and manufacturing sim-
ple organisms), and the rest will fall
into place relatively quickly? On
what basis does Brooks conclude that
following evolution at a coarse grain
(that is, robotics before higher cogni-
tive functions) is appropriate?

The Argument for Softbots
The previous section showed that
Brooks’s methodological arguments
actually support the softbot paradigm
and called into question his evolu-
tionary argument. This section pre-
sents an independent argument for
softbots. The argument has both
weak and strong versions. The weak
version is straightforward. Software
environments (for example, databas-
es, computer networks, operating sys-
tems) are the subject of intense study
in computer science; software agents
are gaining prominence outside AI
(for example, KNOWBOTS [Kahn and
Cerf 1988]), demonstrating their
intrinsic interest. Software environ-
ments are not idealizations of physi-
cal environments; developing soft-
bots is a difficult and exciting
challenge in its own right. This chal-
lenge necessitates its own research
program; developing mobile robots as
a basis for softbots is about as plausi-
ble as developing softbots as a basis
for mobile robots. Hence, robotics is
not sufficient as a foundation for AI.
Softbotics and robotics are comple-
mentary methodologies for investi-
gating intelligent agents in real-world
environments. Clearly, physically ori-
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A UNIX Softbot

To make the softbot paradigm concrete, I briefly describe a general-pur-
pose UNIX softbot, called RODNEY (Brooks’s early robots were named Her-
bert, Allen, Seymour, and so on), under development at the University
of Washington. (See Etzioni, Lesh, and Segal [1993] for a comprehen-
sive description of RODNEY). RODNEY accepts high-level user goals and
dynamically synthesizes sequences of UNIX commands that satisfy the
goals. RODNEY executes the sequences, recovering from errors and retry-
ing commands if necessary. The following are examples of the types of
user requests that RODNEY handles successfully:

Notification Requests
Notify me if my disk utilization exceeds 80 percent.
Let me know when Neal logs in.
Show me any posts containing the string bicycle that appear on the

market bulletin board this week.
The choice of notification medium (a beep, a message displayed on the
screen, or an e-mail message) is under the softbot’s control, as is the
means of monitoring the events in question.

Enforcing Constraints
Keep all files in the directory /papers group-readable.
Ensure that all my postscript files are current (that is, automatically

generate a new postscript file whenever the corresponding \TeX\ file is
modified).

Locating and Manipulating Objects
Print my file on any nearby printer that is not busy, and tell me

where to find it.
Locate Melanie Mitchell (using whois, netfind, staffdir, finger, and

more).

These classes of requests are neither exhaustive nor mutually exclu-
sive but illustrate my main point: RODNEY enables a user to specify what
to accomplish, leaving the decision of how to accomplish it to the soft-
bot. In essence, RODNEY raises the level of discourse between the user
and the machine. This goal-oriented approach offers a number of
advantages over conventional operating system interfaces. Although
an expert programmer could conceivably write a shell script to satisfy
the individual goals I listed, the programmer could not create a shell
script to accomplish every conceivable user goal or combination of
goals. Furthermore, as new system facilities become available, the shell
scripts would need to continually be updated and modified.

In contrast, the softbot represents UNIX commands (and applications
such as netfind) as STRIPS-style operators and utilizes general-purpose
planning algorithms to dynamically generate a plan that satisfies the
user’s goals (Etzioni et al. 1992; Etzioni, Lesh, and Segal 1993). Once
the softbot knows about a new facility, the facility becomes available to
its planning process and is automatically invoked to satisfy relevant
user goals. Furthermore, unlike a shell script, the softbot is not locked
into a rigid control flow. It fluidly backtracks from one option to the
next based on information collected at run time. If one printer is
jammed, the softbot tries another; if whois fails, the softbot tries
netfind; and so on. The nature and ordering of the softbot’s options are
subject to learning, which enables the softbot to improve its perfor-
mance over time.



ented research issues (for example,
overcoming sensor noise; motion
planning; representing liquids,
shapes) are best studied in physical
environments, and software issues
(for example, responding to error
messages; cloning softbots on remote
machines; modeling databases, users)
are best studied in software.

The strong version of the argument
is that the study of many core AI
issues is facilitated by the softbot
framework and potentially hindered
by robotic test beds.2 An agent test
bed shapes and directs one’s research,
providing a source of intuitions,
motivating examples, simplifying
assumptions, stumbling blocks, test
cases, and so on. Robotic test beds
lead one to focus on robotics. Thus,
many core AI issues, such as planning
with incomplete information,
grounding internal symbols, and
learning from experiments, are better
studied in software domains. Brooks’s
“complete agents in real-world envi-
ronments” methodology is attractive,
but building mobile robots is not
necessary to implement it. In many
ways, softbots are preferable.

Here, I enumerate some of the dif-
ficulties associated with mobile
robotics research. In principle, mobile
robots offer excellent test beds for AI
research. In practice, building intelli-
gent systems that successfully
interact with an unpredictable physi-
cal environment is a rigorous chal-
lenge given existing technology. The
cost of such robots (including laser
range finders, sonars, grippers, televi-
sion cameras) is nontrivial, and the
effort and expertise required to
assemble and operate such an appara-
tus are considerable.

Conducting experiments using
mobile robots is often time consum-
ing and difficult. Experiments are fre-
quently hampered by a wide variety
of hardware difficulties and malfunc-
tions (Brooks 1991b; Tan 1991). Days
and even weeks go by in which the
robot is not operational. Even when
the robot is operational, the mean
time between failures can be short. As
a result, carrying out empirical AI
research using robots can be tedious
and slow. Furthermore, although
robotic task environments are much
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more realistic than the blocks world,
introducing the problems of sensing,
uncertainty, and noise, the environ-
ments often remain highly unrealistic
because of hardware limitations. Real-
ism is lost when the agent’s external
environment is manipulated to
improve the agent’s performance. For
example, Brooks describes how
SHAKEY, the SRI International mobile
robot, operated in rooms where “the
walls were of a uniform color, and
carefully lighted, with dark rubber
baseboards, making clear boundaries
with the lighter colored floor” (Brooks
1991a, p. 577). More recent AI robots
operate in more realistic environ-
ments but are restricted to simple
tasks such as avoiding walls and
fetching soda cans. Much more realis-
tic robots have been built, of course,
but they require orders of magnitude
more investment of time, money, and
expertise in robotics before core AI
research can take place.

Brooks acknowledges the frustra-
tions and pragmatic difficulties atten-
dant on AI research using mobile
robotic agents. The mean time
between failures for one of his robots
was as short as 15 minutes (Brooks
1991a, p. 587). Brooks (1991b, p.
158) himself writes, “[E]xperimental
work with physical Creatures is a
nontrivial and time consuming activ-
ity…as of mid-1987, our work in
learning is held up by the need to
build a new sort of video camera and
high-speed low-power processing box
to run specially developed vision
algorithms at 10 frames per second.”

In contrast, software task environ-
ments have a number of pragmatic
advantages. First, the mean time
between hardware failures is much
greater for a workstation supporting a
software environment than for a
mobile robot. Second, rebooting a
workstation and restoring a softbot
from disk is much easier than fixing a
broken gripper in a physical robot or
identifying and replacing a malfunc-
tioning chip. As a result, software
experiments are easier to perform,
control, and repeat than robotic
experiments, facilitating systematic
experimental research of the sort
advocated by Langley and Drum-
mond (1990) and others. In addition,

software facilitates the dissemination
and replication of research results.
The distribution of multiple copies of
a softbot is straightforward, whereas
the distribution of research prototype
robots is difficult.

Software environments are particu-
larly well suited for agent research.
Providing a softbot with basic execu-
tion and sensing mechanisms is easy.
For example, our UNIX softbots rely
on a simple program that sends and
receives strings from a UNIX shell.
Once the low-level problems associat-

ed with vision (edge detection, stere-
oscopy, occlusion, sensory noise, and
so on) and other physical sensing
modalities are eliminated, fascinating
high-level problems (for example,
how to plan sensory operations)
emerge. Many difficult representation
and reasoning problems (for exam-
ple, liquids, shapes, physical actions)
are avoided, which is a disadvantage
if you want to study these problems
but an advantage if you want to focus
on agent research and find the for-
malization of physical knowledge to
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be a distraction. Finally, many soft-
ware environments are benign, giv-
ing a softbot an opportunity to sur-
vive and engage in useful activities
over time. To summarize, software
environments have three main
advantages over physical ones:

Pragmatic convenience: The cost,
effort, and expertise necessary to
develop and systematically experi-
ment with physical artifacts far
exceeds that associated with software
artifacts.

Research focus: Software environ-
ments circumvent many thorny but
peripheral research issues that have
to be addressed in physical environ-
ments.

Easy embodiment: As a conse-
quence of the first two items, provid-
ing an agent with effective sensors
and actuators is relatively easy in
software environments.

Yet, in contrast to simulated physi-
cal worlds, software environments are
readily available (sophisticated simu-
lations can take years to develop and
perfect) and intrinsically interesting.
Furthermore, software environments
are real.

Conclusion
This article argued that bottom-up
research on mobile robots, although
valuable, is neither necessary nor suf-

ficient as a foundation for core AI
research. Robotics is not sufficient for
AI because the challenge of develop-
ing intelligent software agents (or
softbots) dictates its own research
agenda; robotics is not necessary
because many AI issues can be stud-
ied profitably in real-world software
environments, such as operating sys-
tems or databases.

In fact, software environments are
particularly well suited for the study
of complete intelligent agents. The
pragmatic convenience of software
environments facilitates rapid devel-
opment of, and systematic experi-
mentation with, software agents. Pro-
viding a softbot with effective sensors
and actuators is relatively straightfor-
ward, enabling researchers to focus
on high-level issues and circumvent-
ing many thorny but peripheral prob-
lems that are inescapable in physical
environments.

A priori arguments only carry so
much weight, though. The real test of
the softbot paradigm is whether it
will yield fundamental contributions
to core AI. The University of Wash-
ington language for planning with
incomplete information (UWL)
(Etzioni et al. 1992) is a modest
example, but the jury is still out. To
paraphrase Brooks (1991b, p. 158),
only experiments with real softbots
in real software worlds can answer
the natural doubts about our
approach. Time will tell.
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Notes
1. See the paper by myself and Richard
Segal in the working notes for the 1992
AAAI Spring Symposium on Knowledge
Assimilation, “Softbots as Test Beds for
Machine Learning.”

2. Note that in contrast to Brooks (1991a,
p. 578), I believe that classical approaches
(for example, current work on knowledge
representation and planning) still have
much to contribute to AI.
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