
■ The value of scientific digital-image libraries sel-
dom lies in the pixels of images. For large collec-
tions of images, such as those resulting from
astronomy sky surveys, the typical useful product
is an online database cataloging entries of inter-
est. We focus on the automation of the cata-
loging effort of a major sky survey and the avail-
ability of digital libraries in general.

The SKICAT system automates the reduction and
analysis of the three terabytes worth of images,
expected to contain on the order of 2 billion sky
objects. For the primary scientific analysis of these
data, it is necessary to detect, measure, and classi-
fy every sky object. SKICAT integrates techniques
for image processing, classification learning,
database management, and visualization. The
learning algorithms are trained to classify the
detected objects and can classify objects too faint
for visual classification with an accuracy level
exceeding 90 percent. This accuracy level increas-
es the number of classified objects in the final cat-
alog threefold relative to the best results from dig-
itized photographic sky surveys to date. Hence,
learning algorithms played a powerful and
enabling role and solved a difficult, scientifically
significant problem, enabling the consistent,
accurate classification and the ease of access and
analysis of an otherwise unfathomable data set. 

In astronomy and space sciences, we cur-
rently face a data-glut crisis. The problem
of dealing with the huge volume of data

accumulated from a variety of sources, corre-
lating the data, and extracting and visualizing
the important trends is now fully recognized.
This problem will rapidly become more acute
because of the advent of new telescopes,
detectors, and space missions, with the data
flux measured in terabytes. We face a critical
need for information-processing technology
and methodology with which to manage this
data avalanche to produce interesting scien-

tific results quickly and efficiently. The fields
of knowledge discovery in databases and data
mining (Fayyad et al. 1996) are mainly con-
cerned with the extraction of higher-level
knowledge from low-level data. This article
presents a data-mining approach based on
machine-learning classification methods that
represents a good example of how this new
generation of automated analysis tools can
offer novel and effective solutions to classical
problems in the analysis of large data sets in
science. 

Across a variety of disciplines, two-dimen-
sional digital-image data are now a fundamen-
tal component of routine scientific investiga-
tion. The proliferation of image-acquisition
hardware such as multispectral remote-sensing
platforms, medical-imaging sensors, and high-
resolution cameras has led to the widespread
use of image data in fields such as oceanogra-
phy, atmospheric studies, planetary science,
agriculture, glaciology, forestry, astronomy,
and diagnostic medicine. Across all these
fields, the pixel image is but a means to an
end. The investigator is interested in using
the image data to infer some conclusion
about the physical properties of the target
being imaged. Image data rely on the human
visual system’s ability to aid in abstraction
and recognition. 

In the past, both in planetary science and
astronomy, images were painstakingly ana-
lyzed by human inspection, and much inves-
tigative work was carried out using hard-copy
photographs or photographic plates. Howev-
er, the image data sets that are currently being
acquired are so large that simple manual cata-
loging is no longer practical, especially if all
the available data are to be used. We focus on
one such digital image set that results from
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ment a classification algorithm to achieve the
second step, a machine-learning approach
can be used to automatically construct the
classifier based on training examples provid-
ed by the user. Not only does this eliminate
the burden of programming for the user, it
also provides a mechanism for tackling the
often difficult problem of recognizing objects
in feature space.

The Query-Formulation Problem
Work on techniques for digital libraries has
focused mainly on digitization techniques,
storage and retrieval mechanisms, search
mechanisms (especially for text), and data-
base issues dealing with efficient indexing
and query execution. We believe there is an
important and crucial problem that needs to
be addressed before collections of digital
images can be turned into useful digital
libraries, namely, the query-formulation
problem. Users would mainly like to be able
to use a digital-image library to search for
particular targets for cataloging or investiga-
tive purposes. A typical query would be some-
thing like, “In how many images does this
object occur?” Another would be, “Catalog all
occurrences and properties-observations of
objects in images satisfying certain condi-
tions.” Unfortunately, unlike dealing with a
relational database or the text of a book,
there is no easy way for the user to formulate
the required query. This poses a potentially
difficult bottleneck that stands in the way of
making the notion of a digital-image library a
reality.

We propose an approach for developing a
system that learns from examples. Hence,
rather than issuing queries, the user simply
provides training examples. This approach
promises to bypass a crucial bottleneck in the
way humans currently interact with large
databases: query formulation. For most inter-
esting image-analysis tasks, formulating
queries to specify a set of target objects
(regions) requires solving difficult problems
that often involve effectively translating
human visual intuition into pixel-level algo-
rithmic constraints. This task is fairly chal-
lenging in its own right. In many cases, for-
mulating the query can be impractical for a
user to do. Querying a database by providing
examples and counterexamples forms a novel
and powerful basis for a new generation of
intelligent database interface tools. Such tools
could enable order-of-magnitude improve-
ments in both the quantity and the quality of
analyses of digitized image libraries. 

the Second Palomar Observatory Sky Survey
(POSS-II). This digital image library defies
manual-visual analysis capabilities and illus-
trates the need for automated cataloging tools
to allow users to gain access to its content.
Thus, we target the problem of turning a digi-
tal-image data set into a true digital library—
one that can be queried by content and used
for scientific investigation. 

In science image libraries, the typical most
fundamental operation is that of cataloging
content for later retrieval and large-scale statis-
tical analysis. Cataloging and indexing often
involve recognition of objects. We use an
approach that is based on classification learn-
ing algorithms, where the user (astronomer)
trains the system to perform classification
tasks by providing it with training examples.
An example is represented as a vector of fea-
tures. A feature (also called attribute or vari-
able) is a dimension along which some proper-
ty of the example is measured. Features can be
either numeric or continuous (for example,
temperature, intensity) or can be categorical,
with no ordering on the values (for example,
shape that can take the values of circle, trian-
gle, quadrilateral, and so on). The dimensions
define a space, called feature space. 

As an example, suppose the image of an
object is represented by 50 3 50 pixels. One
choice of feature space is the pixels. In this
case, an example would be a feature vector
consisting of 2500 numeric values. This low-
level representation is often referred to as pix-
el space. Clearly, pixel space is high dimen-
sional and contains many highly correlated
dimensions. Hence, it is not a convenient or
compact representation of the information
contained in the pixels. In problems where
the goal is to learn from examples, high
dimensionality is a big problem. If a problem
has 2500 variables, then an algorithm would
need a much higher number of examples to
infer anything about the problem. However,
if one were able to re-express the problem in
a much smaller number of variables (a lower-
dimensional feature space) without losing
essential information, a dramatically smaller
number of examples would be needed to sup-
port sufficient statistics for inference and
induction. 

As every pattern-recognition practitioner
knows, two familiar issues are at the heart of
the problem of inferring a model out of data:
(1) transforming (reducing) the data from
pixels to meaningful or useful features and
(2) recognizing (classifying) the detected
objects in feature space. In our case, rather
than requiring the user to design and imple-
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Encoding Knowledge in 
Pixel-to-Feature Projections

Although it would be convenient to have a
system that can be trained directly from
training data given only pixel values as input
(for example, the work on recognizing volca-
noes on Venus (Burl et al. 1994) or some
approaches to face recognition (Turk and
Pentland 1991), we recognize that domain-
specific knowledge is important and often
crucial to a recognition task. In many cases,
significant domain knowledge can effectively
be provided to a learning algorithm in the
form of transformations from pixel space to
feature space. Hence, a user might be able to
define a large number of features that are like-
ly to contain the necessary information to
perform the recognition task. The features
serve to transform the problem from the
noisy, high-dimensional, and highly correlat-
ed pixel space to a much–lower-dimensional
space. In the process, noise and random vari-
ation are greatly reduced. Note that although
the users might have good features to mea-
sure about targets of interest, they might not
necessarily have effective recognizers
(classifiers) in feature space. This is exactly
the case in our application in astronomy, but
this phenomenon holds true across many
applications—in medicine, engineering, diag-
nosis, process control, and so on. In the
application we are concerned with in this
article, astronomers have a large set of robust
features to measure for each object but no
good classifiers that can distinguish objects of
interest (say, stars from galaxies) in the result-
ing feature space. 

Note that the transformation from pixel to
feature space represents an effective way of
encoding domain-specific prior knowledge
about the problem. Generally speaking,
humans tend to find it easier to define fea-
tures to measure about objects of interest
than to encode recognizers (classifiers) for
these objects. In a strong sense, this repre-
sents an effective way to decompose the
difficult (intuitive) recognition–decision-mak-
ing strategy that is implicitly performed by
the human brain. Nevertheless, simply mea-
suring such features does not give a solution:
One still needs to design a classifier that can
distinguish between classes of interest. This is
still typically difficult because although the
problem has been transformed into a low-
dimensional space (say, 20–80 dimensions), it
is a space in which humans can no longer
“visualize” solutions. We think that the
recognition step is an appropriate stage for

using a supervised learning approach to solve
the classification problem. We use techniques
that can cope with high-dimensional feature
spaces, such as decision trees. Note that many
traditional classification learning algorithms,
for example, K-nearest neighbor (Dasarathy
1991), fitting mixtures of Gaussians, or linear
discriminate analysis (Fukunaga 1990; Duda
and Hart 1973), still have difficulties in these
relatively high dimensions. Hence, in general,
the recognition task being tackled is still fair-
ly difficult and has no classical solutions. 

Sky-Object Cataloging
We target the automation of the tasks of cata-
loging and analyzing objects in digitized sky
images. The sky-image cataloging and analy-
sis tool (SKICAT) (Djorgovski, Weir, and Fayyad
1994) was developed to perform a compre-
hensive analysis of the Second Palomar
Observatory Sky Survey (POSS-II) conducted
by the California Institute of Technology
(Caltech). See Reid et al. (1991) for a detailed
description of the POSS-II effort. The photo-
graphic plates collected from the survey are
digitized at the Space Telescope Science Insti-
tute. This process will result in about 3,000
digital images of 23,040 3 23,040 sixteen-bit
pixels each, totaling over 3 terabytes of data.
When complete, the survey will cover the
entire northern sky in three colors, detecting
virtually every sky object to an equivalent B-
magnitude object intensity of 22.0.1 This
magnitude is at least one magnitude fainter
than previous comparable photographic sur-
veys. We estimate that there are at least 5 3
107 galaxies and 2 3 109 stellar objects
(including over 105 quasars) detectable in this
survey. This data set will be the most compre-
hensive large-scale imaging survey produced
to date and will not be surpassed in scope
until the completion of a fully digital all-sky
survey in the next decade. 

There are three basic functional compo-
nents to SKICAT, serving the purposes of sky-
object catalog construction, catalog manage-
ment, and high-level statistical and scientific
analysis. In this article, we emphasize sky-
object catalog construction, with a special
focus on the use of a supervised classification
learning algorithm to automate object recog-
nition based on training data provided by the
astronomers.

The first step in analyzing the results of a
sky survey is to identify, measure, and catalog
the detected objects in the image into their
respective classes (for example, stars versus
galaxies). Once the objects have been
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therefore, not difficult for domain experts to
interpret (as opposed to a neural network or a
pattern-recognition–based approach). 

In brief, a top-down, nonbacktracking deci-
sion tree algorithm works as follows (Quinlan
1986; Breiman et al. 1984): Assume we are
given a data set of classified examples
expressed in terms of a set of attributes. The
attributes can be nominal (discrete, categori-
cal) or continuous valued (numeric). The
algorithm first discretizes the continuous-val-
ued attributes by partitioning the range of
each into at least two intervals (Fayyad and
Irani 1992a). For each discrete (or discretized)
attribute, the algorithm first formulates a log-
ical test involving the attribute. The test par-
titions the data into several subsets. For
example, in ID3 (Quinlan 1986) and C4.5
(Quinlan 1992), the value of the attribute is
tested, and a branch is created for each value
of the attribute. 

A selection criterion is then applied to
select the attribute that induces the best par-
tition on the data. Once selected, a branch
for each outcome of the test involving the
attribute is created, resulting in at least two
child nodes to the parent node. The algo-
rithm is applied recursively to each child
node. The algorithm refrains from further
partitioning of a given node when all exam-
ples in it belong to one class or when no
more tests for partitioning it can be formulat-
ed. Thus, a leaf node predicts a classification
(sometimes probabilistically). 

Greedy Tree Generation
Because a large number of possible trees are
consistent with the training data, a greedy
search is used. The tree starts at a single root
node containing all the training data. The
algorithm makes a local determination of the
best choice of attribute along which the data
are to be split. The data are then partitioned
along the values of the selected attribute cre-
ating the children. The algorithm is then
applied recursively to each child node. It
takes four rules to specify a greedy tree-grow-
ing algorithm: 

DRule1 selects the best attribute to be used
in splitting a node. 

DRule2 decides how the data are to be split
along the values of the attribute selected by
DRule1. 

DRule3 is a stopping rule that determines
whether a node should not be split any fur-
ther and, hence, be deemed a leaf node. 

DRule4 assigns a class prediction to be
associated with each leaf node. 

In addition to these four rules, numeric

classified, further scientific analysis can pro-
ceed. For example, the resulting catalog can be
used to test models of the formation of large-
scale structure in the universe; probe galactic
structure from star counts as in Weir, Djorgov-
ski, and Fayyad (1995); perform automatic
identifications of radio or infrared sources; and
so forth (Weir, Djorgovski, and Fayyad 1995;
Djorgovski, Weir, and Fayyad 1994; Weir 1994;
Weir et al. 1994). Reducing the images to cata-
log entries is an overwhelming task that inher-
ently requires an automated approach. The
goal of our project is to automate this process,
providing a consistent and uniform methodol-
ogy for reducing the data sets. This will pro-
vide the means for objectively performing
tasks that formerly required subjective and
visually intensive manual analysis. Another
goal of this work is to classify objects whose
brightness (isophotal magnitude) is too faint
for recognition by inspection, thus requiring
an automated classification procedure. We do
this by using a limited set of high-resolution
CCD images in which it is possible for
astronomers to assign classes to faint objects.
The learning algorithm’s job is to find a clas-
sifier that can predict classes of faint objects
(which are the majority of objects on any
plate) based only on measurements from the
lower-resolution images (see the Classifying
Faint Objects section). 

Decision Trees and Rules
A classification learning algorithm is given as
input a set of examples that consist of vectors
of attribute values (feature vectors) and a
class. Hence, an example is a point in feature
space. The goal is to output a classification
scheme, known as a classifier, that will predict
the class variable based on the values of the
attributes. When the class variable is continu-
ous, the problem is a regression problem. In
the case of a categorical class variable, the
problem is a classification problem. A particu-
larly efficient method for producing classifiers
from data is to generate a decision tree. A
decision tree consists of nodes that are tests
on the attributes. The outgoing branches of a
node correspond to all the possible outcomes
of the test at the node. The examples at a
node in the tree are thus partitioned along
the branches, and each child node gets its
corresponding subset of examples. 

Decision tree–based approaches to
classification learning are typically preferred
because they are efficient and, thus, can deal
with large training data sets. In addition, the
final classifier produced is symbolic and,
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attributes need some special handling, which
is done by discretizing the attributes based on
the data at each node (Fayyad and Irani
1992a). Discretization can be viewed as a way
to extract a symbolic condition involving the
attribute. The simplest such condition is to
test against a threshold value in the range of
an attribute, thus turning it into a binary-val-
ued attribute. Discretization can be viewed as
part of DRule2. Figure 1 gives a flowchart for
greedy tree growing and shows where the
four rules fit. 

It is beyond the scope of this article to cov-
er the details of the algorithms. For details
relating to the algorithms used in the applica-
tion covered here, refer to Fayyad, Djorgovski,
and Weir (1996). Commercially available algo-
rithms for tree generation use impurity mea-
sures such as GINI in CART (Breiman et al. 1984)

or mutual information entropy between the
attribute and the class variable (used also by
CART [Breiman et al. 1984] and in ID3-C4.5
[Quinlan 1992]). We use variants of these
algorithms that avoid some of their problems. 

For example, rather than splitting the data
along all values of a selected attribute, as is
customary, the GID3* algorithm (Fayyad 1994)
can branch on arbitrary individual values of
an attribute and lump the rest of the values
in a single default branch representing a sub-
set of the values of an attribute. Unnecessary
subdivision of the data can thus be reduced.
See Fayyad (1994) for more details. We also
use the O-BTREE algorithm (Fayyad and Irani
1992b), which is designed to overcome prob-
lems with the information-entropy selection
measure itself. O-BTREE creates strictly binary
trees and uses a measure from a different fam-
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is, are too specific because they used irrele-
vant conditions). Typically, to overcome
overfit in decision trees, the tree is pruned
(Quinlan 1986; Breiman et al. 1984). 

We use an approach, called RULER, that is
based on extracting multiple trees from a
training set and then pruning the rules
extracted from the trees. A single tree repre-
sents a set of rules. Each path from the root
node to a leaf is a classification rule whose
conditions are the branches traversed and
whose prediction is the class assignment asso-
ciated with the leaf. In multiple passes, RULER

randomly partitions a training set into a train-
ing subset and a test subset. A decision tree is
generated from the training set, and its rules
are tested on the corresponding test set. Using
Fisher’s exact test (Finney et al. 1963) (the
exact hypergeometric distribution), RULER eval-
uates each condition in a given rule’s precon-
ditions for relevance to the class predicted by
the rule. Conditions that are deemed to be
irrelevant are pruned away. This process
results in a large number of redundant rules
obtained from the multitude of (similar) trees.
The basic idea is to pick the best rules (pruned
leaves) from each tree and discard the majori-
ty of the rules that were the result of weakly

ily of measures that detect class separation
rather than class impurity. For details on
problems with entropy measures and empiri-
cal evaluation of O-BTREE, refer to Fayyad and
Irani (1992b) and Fayyad (1991). 

Both O-BTREE and GID3* differ from ID3 and
C4.5 in one additional aspect: the discretiza-
tion algorithm used at each node to locally
discretize continuous-valued attributes.
Whereas CART and C4.5 use a binary interval
discretization algorithm, we use a generalized
version of the algorithm that derives multiple
intervals rather than strictly two. For details
and empirical tests showing that this algo-
rithm does indeed produce better trees, see
Fayyad (1991) and Fayyad and Irani (1993).
We have found that this capability improves
performance considerably in several domains. 

Optimization of Rules from Trees
The very reason that makes decision tree gen-
eration efficient (the fact that data are quickly
partitioned into ever smaller subsets) is also
the reason why overfitting and incorrect clas-
sification occur. As data are divided, chance
correlations in attribute values begin to
appear significant to the algorithm, leading
to generation trees that overfit the data (that
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supported correlations in the data. Figure 2
gives an overview of the RULER system.

A greedy-covering algorithm is then
employed to select a minimal subset of rules
that covers the examples. Using RULER, we can
typically produce a robust set of rules that has
fewer rules than any of the original decision
trees used to create it. The fact that decision
tree algorithms constitute a fast and efficient
method for generating a set of rules allows us
to generate many trees, without requiring
extensive amounts of time and computation. 

The Cataloging Process
Existing computational methods for classify-
ing the images would preclude the
identification of the majority of objects in
each image because they are at levels too
faint for traditional recognition algorithms or
even manual inspection-analysis approaches.
Each of the 3,000 digitized plates, consisting
of 23,0402 pixels, is subdivided into a set of
partially overlapping frames. Each frame rep-

resents a small part of the plate that is small
enough to be manipulated and processed
conveniently. Figure 3 depicts the overall
architecture of the SKICAT catalog construction
and classification process.

Low-level image processing and object sep-
aration are performed by a modified version
of the FOCAS image-processing public-domain
software (Valdes 1982; Jarvis and Tyson
1981). The FOCAS image-processing steps
detect contiguous pixels in the image that are
to be grouped as one object. The grouping is
done using a low-level region-growing algo-
rithm to perform segmentation (object versus
sky). Some specialized segmentation algo-
rithms are then applied to decide whether an
object needs to be split into two (for example,
binary stars, stars that are close on the image,
and problems in region growing). Attributes
are then measured based on this segmenta-
tion. Based on the pixel group constituting a
single detected object, FOCAS produces basic
attributes describing the object. In the section
Normalizing Attributes, we explain the arrow
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Normalizing Attributes
Using the following approach, we compute
four new normalized attributes based on four
base-level attributes: (1) core magnitude; (2)
log of the isophotal area; (3) intensity-weight-
ed first-moment radius; and (4) S, which is a
function of area, core luminosity, and isopho-
tal intensity: 

S = .

First we derive a nonlinear curve (the stellar
locus) in the two dimensions defined by mag-
nitude versus the original base-level attribute
for each frame within a plate. We define the
new attribute to be the distance of each
object from the stellar locus for the plate. We
essentially subtract out the stellar locus to
normalize the attributes. The quantities
described are used by astronomers, and many
of them have physical interpretations. 

The result of this process is a set of features
that exhibit a good degree of invariances
across plates and within different regions on
a plate. For example, a constant shift in back-
ground sky brightness, resulting in differ-
ences in intensity observations would be
removed by such processing. An example of
this normalization process is shown in figure
4, where we can see the stellar locus curve fit
both before and after normalization. In each
figure, a point for every object is plotted in
the two-dimensional space defined by the
total magnitude versus log(area). 

In addition to the four normalized
attributes just described, we compute two
additional attributes that are particularly sta-
ble across images. However, the computation
of these additional attributes requires an
empirical measurement based on a selection
of stars from each frame. This process was
achieved through a second application of the
learning algorithms during the attribute-mea-
surement process; this process is depicted at
the bottom of figure 4 by the arrow going
from “learning” to “attribute definition.” 

Because of turbulence in the earth’s atmo-
sphere, point sources in the sky (stars) appear
as blurred, quasi-Gaussian intensity distribu-
tions. By selecting some of the objects on a
frame that are obviously resolved (sure-thing
stars), one can hope to model this effect and
compensate for it when classifying. To this
end, we fit the pixel values of these sure-
thing stars to define a point-spread–function
(PSF) template. Using the PSF template, the
FOCAS resolution routine determines the best-
fitting scale (α) and fraction (β) values, which
parameterize the fit of a blurred (or sharp-

Area
}}}
log[Lcore/(9 3 Ispht)]

going from the learning algorithm to the
attribute definition box in figure 3, indicating
the fact that we used learning in the attr-
ibute-measurement process. The goal is to
classify objects into four major categories, fol-
lowing the original scheme in FOCAS: (1) star
(s), (2) star with fuzz (sf), (3) galaxy (g), and
(4) artifact (long). 

Feature Extraction and 
Normalization

A total of 40 attributes for each detected
object are measured automatically. These
base-level attributes are generic quantities
typically used in astronomical analyses,
including the following FOCAS-defined
attributes: (1) isophotal, aperture, core, and
asymptotic total magnitudes; (2) isophotal
and total areas; (3) sky brightness and sigma
(variance); (4) peak, intensity-weighted, and
intensity-unweighted positions: xc, yc, icx, icy,
cx, cy; (5) intensity-weighted and intensity-
unweighted image moments: ir1, ir2, ir3, ir4,
r1, r2, ixx, iyy, ixy, xx, yy, xy; and (6) ellipticity
and position angle (orientation).

The base-level attributes are not sufficient
for accurate classification of the fainter
objects that constitute the majority of all
detected objects. Furthermore, the base-level
attributes do not exhibit desirable invariances
that would allow a classifier trained on one
plate to make accurate predictions on a differ-
ent plate that was photographed on a differ-
ent night with different sky conditions.
Hence, a difficult feature-extraction problem
needs to be addressed before we can proceed
with automated classification. 

In classification learning, the choice of
attributes used to define examples is by far the
single most determining factor of the success
or failure of the learning algorithm. Because
the base-level features do not provide a suitable
feature space in which to perform object-accu-
rate classification, it was necessary to derive
additional attributes that have sufficient invari-
ance within a plate (that is, along the borders
versus in the center) and across plates. 

Low-accuracy classifiers and simple analysis
of the value distributions across plates indi-
cated the need for new invariances. For exam-
ple, we determined that the base-level mea-
surements, such as background sky level,
area, and average intensity, are image depen-
dent and, thus, inherently sensitive to plate-
to-plate and even frame-to-frame variation.
For the learning algorithms to be able to pro-
duce robust classifiers, new attributes had to
be derived from the base-level attributes. 
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ened) version of the PSF to each object
(Valdes 1982). The template used to model
each object is of the form

t(ri) = βs(ri/α) + (1 – β) s(ri)  ,

where ri is the position of pixel i, α is the
broadening (sharpening) parameter, β is the
fraction of broadened PSF, and s(ri) represents
the pixel value at position ri. 

To form the PSF template, the sure-thing
stars would normally be hand selected from
an image by the astronomer. We refer to this
process as the star-selection subproblem. To
automate the measurement of these addition-
al attributes, we trained a classifier to detect
the sure-thing stars in each frame using the
four normalized attributes described previous-
ly. We have achieved 98-percent accuracy in
detecting the sure-thing stars used to deter-
mine the PSF template. Once a template is
formed, the resolution attributes are mea-
sured automatically for each object on the
frame. See the Classification Results section
for a discussion of the impact of adding these
derived attributes. 

Classifying Faint Objects
How can a learning algorithm learn to classify
objects too faint for humans to classify? In
addition to the scanned photographic plates,
we have access to CCD images that span sev-
eral small regions in some of the frames. CCD
images are obtained from a separate telescope.
The main advantage of a CCD image is higher
resolution and higher signal-to-noise ratio at

fainter levels. Hence, many of the objects that
are too faint to be classified by inspection on
a photographic plate are easily classifiable in
a CCD image. 

To produce a classifier that classifies faint
objects correctly, the learning algorithm
needs training data consisting of faint objects
labeled with the appropriate class. The class
label is therefore obtained by examining the
CCD frames. This process is illustrated in
figure 5. Once trained on properly labeled
objects, the learning algorithm produces a
classifier that is capable of properly classify-
ing objects based on the values of the
attributes measured from the lower-resolution
plate image. Hence, in principle, the classifier
will be able to classify objects in the photo-
graphic image that are simply too faint for an
astronomer to classify by inspection. With
the class labels, the learning algorithms are
basically being used to solve the more
difficult problem of separating the classes in
the multidimensional space defined by the
set of attributes derived by image processing.
This method is expected to allow us to classi-
fy objects that are at least one magnitude
fainter than objects classified in photographic
all-sky surveys to date.

Classification Results
To assess classifier accuracy, we used data con-
sisting of objects collected from four different
plates from regions for which we had CCD
image coverage. CCD plates provide us with
the “ground truth” because these are the only
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Figure 4. The log(area) Attribute before and after Normalization. 
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through tree generation and rule merging 10
times. 

As a baseline comparison to give the reader
a feel for the degree of difficulty of the prob-
lem, ID3 achieved only 75.6-percent accuracy
on average. If one adds tree pruning and oth-
er optimizations (as in C4.5), improved results
can be obtained. Note that GID3* and O-BTREE

results do not involve any pruning of the
trees. Results with CART, which performs a sig-
nificant amount of pruning using cross-vali-
dation, compare favorably with GID3* and O-
BTREE results. 

For details of data and results and for a
detailed breakdown of accuracy results as a
function of object brightness, the reader is
referred to Weir, Fayyad, and Djorgovski
(1995). Results are provided as magnitude
gets fainter, and accuracy measurements are
broken down into completeness versus con-
tamination for both stars and galaxies (Weir,
Fayyad, and Djorgovski 1995). 

To emphasize the importance of selecting
the right attributes, we report the effect of not
computing the two attributes described in the
section Normalizing Attributes. When the
same experiments were conducted without
using the resolution scale and resolution-frac-
tion attributes, the results were significantly
worse. The error rates jumped above 20 per-
cent for O-BTREE, above 25 percent for GID3*,

data for which true accurate classifications are
available. Each of the learning algorithms is
trained on a data set from three plates and
tested on data from the remaining plate for
cross-validation. This estimates our accuracy
in classifying objects across plates. Note that
the plates cover different regions of the sky
and that CCD frames cover multiple small
portions of each plate. The training data con-
sisted of 1688 objects that were classified
manually by Nicholas Weir by examining the
corresponding CCD frames. It is noteworthy
that for the majority of these objects, the
astronomer would not be able to reliably
determine the classes by examining the corre-
sponding survey (digitized photographic)
images. All attributes used by the learning
algorithms are derived from the survey
images and not, of course, from the higher-
resolution CCD frames. 

The accuracy for RULER averaged 94.2 per-
cent. In comparison, GID3* and O-BTREE

achieved 90.1 percent and 91.2 percent, re-
spectively. These are average accuracy results
obtained using cross-validation over the four
images. Within each cross-validation fold, we
sample a training set 10 times and evaluate
each resulting decision tree on the remaining
subset. The results for RULER quoted here are
with O-BTREE as the decision tree generation
component and were obtained by cycling
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Figure 5. Constructing Training Examples for Faint Objects.
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and above 30 percent for ID3. The respective
sizes of the trees grew significantly as well,
which we took as evidence that the resolution
attributes are important for the classification
task. The strong dependence on the presence
of all relevant features is a facet of the
classification problem that makes it particular-
ly difficult for humans to solve: If one fails to
include one or two critical attributes, the
problem suddenly becomes impossible. How-
ever, a priori one has no idea which subset of
the attributes is the critical one for accurate
classification.

Verification of Results
As mentioned earlier, in addition to using the
CCD frames to derive training data for the
machine-learning algorithms, we also use
them to verify and estimate the performance
of our classification technique. Testing is per-
formed on data sets that are drawn indepen-
dently from the training data. An additional
source of internal consistency checks comes
from the fact that the plates, and the frames
within each plate, are partially overlapping.
Hence, objects inside the overlapping regions
will be classified in more than one context.
By measuring the rate of conflicting
classifications, we can obtain further esti-
mates of the statistical confidence in the
accuracy of our classifier. For the purposes of
the final catalog production, a method is
being designed for resolving conflicts on
objects within regions of overlap. We have
not yet collected reportable results on this
aspect of the problem. 

To demonstrate the difficulty and
significance of the classification results pre-
sented to this point, consider the example
shown in figure 6. This figure shows four
image patches, each centered about a faint
sky object that was classified by SKICAT. These
images were obtained from a plate that was
not provided to SKICAT in the training cycle,
and the objects are part of a region in the sky
containing the Abell 1551 cluster of galaxies
near the North Galactic Pole. SKICAT correctly
classified the top two objects as stars and the
bottom two as galaxies. According to
astronomers, the objects shown in figure 6
are too faint for reliable classification. As a
matter of fact, an astronomer visually
inspecting these images would be hard
pressed to decide whether the object in the
lower right-hand corner is a star or a galaxy.
The object in the upper right-hand corner
appears as a galaxy based on visual inspec-
tion. On retrieving the corresponding higher-

resolution CCD images of these objects, it
was clear that the SKICAT classification was
indeed correct. Note that SKICAT produced the
prediction based on the lower-resolution sur-
vey images (shown in figure 6). This example
illustrates how the SKICAT classifier can cor-
rectly classify the majority of faint objects
that even the astronomers cannot classify.
Indeed, the results indicate that SKICAT has a
better than 90-percent accuracy identifying
objects that are one full magnitude below the
comparable magnitude limit in previous
automated Schmidt plate surveys.

Unsupervised Learning and 
New Scientific Discoveries

An additional form of independent confirma-
tion of these results comes from the use of
the SKICAT catalog in deriving new science
results. For example, using the accurate clas-
sification of faint objects given by SKICAT, we
were able to help a group of astronomers
using SKICAT to discover 16 new high–red-shift
quasars in the universe (Kennefick et al.
1995).2 The search for quasars is an expensive
operation requiring many observations.
Because SKICAT provides accurate
classifications of faint stars, the astronomers
were able to use the classes to significantly
narrow the search. By combining classes and
information from various color attributes, the
new quasars were discovered using at least
one order of magnitude fewer observations
than were required by a comparable effort
conducted by Schmidt, Schneider, and Gunn
(1995). The accurate classes translated into a
small number of false alarms that
astronomers had to cope with. The results
after the first five quasars were discovered are
detailed in Kennefick et al. (1995). 

We have also begun exploring the applica-
tion and implementation of unsupervised
classification techniques such as AUTOCLASS, a
Bayesian clustering technique that models
the data using mixtures of Gaussians (Cheese-
man and Stutz 1996). Unlike the supervised
classification that we have described to this
point, where the algorithm learns how to dis-
tinguish user-specified classes within the
data, unsupervised classification consists of
identifying the statistically significant classes
within the data itself. For example, one could
use this type of method to try to systematical-
ly detect new classes of objects within astro-
nomical catalogs. 

Our own initial experiments in applying
AUTOCLASS to POSS-II appear to confirm the
validity and usefulness of this approach. After
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entirely of galaxies. Note that in its
classification, AUTOCLASS did not mix stars
with galaxies in this well-understood data set.
This result is significant considering that no
class information was given to the program. 

However, to achieve these results, we had to
bin the values of one of the parameters
(isophotal magnitude) before presenting AUTO-
CLASS with the data. Thus, we partitioned the
data by meaningful magnitude ranges before
running AUTOCLASS on each subset. We also
selected the eight-dimensional subspace by
hand. Nevertheless, AUTOCLASS’s success at dis-
tinguishing these apparently physically rele-

supplying AUTOCLASS with eight-dimensional
feature vectors from a sample of several hun-
dred objects from four fields, it analyzed the
distribution of the objects in this parameter
space and suggested four distinct classes with-
in the data. Representative objects from these
four classes are presented in figure 7. Visually,
the classes seem to divide into stellar objects,
stellarlike objects with a low–surface-bright-
ness halo, and diffuse or irregular objects
with and without a central core (DeCarvalho
et al. 1995). The two classes represented by
the top two rows are, in reality, stars. The bot-
tom two rows represent classes that consist
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Figure 6. An Illustrative Example: Four Faint Sky Objects.



vant classes based just on eight image parame-
ters suggests that far richer and innovative
results might be in store when one matches
multiple catalogs together, increasing the
informational dimensionality of the data set
manyfold. Problems of extending clustering
algorithms to high-dimensional spaces and
large data sets still need to be addressed. 

Concluding Remarks and 
Future Directions

With SKICAT, classification learning algorithms
proved to a be useful and powerful tool in the
automation of a significant scientific data
analysis task, producing tangible new scien-
tific results (Weir, Djorgovski, and Fayyad
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Figure 7. A Sampling of the Four Classes Found by AUTOCLASS.



Discoveries section. This involves overcoming
two challenges: (1) developing efficient clus-
tering algorithms that can process millions to
hundreds of millions of data points efficiently
and (2) developing algorithms than can
search for very–low-probability classes in data
rather than treating such occurrences as noise
or negligible outliers.

The second point is particularly important
because new discoveries in astronomy are
likely to be rare objects. For example,
high–red-shift quasars occur with a frequency
of 1 every 10 million. Classical approaches to
clustering would ignore such minority class-
es. Random sampling would completely miss
them. We are pursuing directions along the
lines of specialized iterative sampling
schemes for homing in on a sample that is
likely to contain objects that are different
than the rest of the data. 

The second front of future research is to
pursue tools for searching large image collec-
tions where the user only labels examples.
Unlike the case of SKICAT, where astronomers
provided a rich set of attributes to measure,
we would like to address problems where no
such knowledge is available. An example is
the Jet Propulsion Laboratory (JPL) adaptive
recognition tool (JARTOOL) (Fayyad et al. 1996;
Burl et al. 1994) being developed to catalog
an estimated 1 million small volcanoes in
30,000 synthetic aperture radar images of the
surface of Venus. This image set collected by
the Magellan spacecraft represents a situation
that is becoming commonplace in science
and many other fields. The data are simply
too large to examine manually, and the user
cannot invest resources to develop a recogni-
tion system to automate the task. Our long-
term goal is to develop a tool that can be
trained by example to perform object recog-
nition in large image libraries. Because the
user might not know all the details of the
data, we cannot expect the system to be giv-
en much background knowledge about the
data (for example, in SKICAT in the form of
pixel-to-feature transformations). Other
applications at JPL involve earthquake
measurement, atmospheric modeling,
sunspot classification, and time-seris data
analysis. Information can be obtained by vis-
iting the World Wide Web URL: http://www-
aig.jpl.nasa.gov/mls, the home page of the
Machine-Learning Systems Group at JPL. 

Should the training-by-example approach
advocated in this article prove to be success-
ful and general, the applications would be
truly wide ranging. Finding objects of interest
in large digital-image libraries can range from

1995; Weir, Fayyad, and Djorgovski 1995).
SKICAT can catalog and classify objects that are
at least one magnitude fainter than objects
cataloged in previous surveys. We exceeded
our initial accuracy target of 90 percent. This
level of accuracy is required for the data to be
useful in testing or refuting theories on the
formation of a large structure in the universe
and on other phenomena of interest to
astronomers. The SKICAT tool is now being
used to both process and analyze the survey
images as they arrive from the digitization
instrument. 

By effectively defining robust features, we
were able to derive classifiers with an accura-
cy exceeding that of humans for faint objects.
Because faint objects constitute the majority
of objects on any plate, the number of clas-
sified objects available for further scientific
analysis is dramatically increased. In effect,
the pixels contained important information
that was difficult for the human visual system
to extract. Projection of the high-dimensional
pixel space onto a suitable lower-dimensional
feature space allowed us to transform the
problem into one solvable by a supervised
learning algorithm. By defining additional
normalized image-independent attributes, we
were able to obtain high-accuracy classifiers
within and across photographic plates. 

The implications of a tool such as SKICAT for
astronomy might indeed be profound. One
could reclassify any portion of the survey
using alternative criteria better suited to a
particular scientific goal (for example, star
catalogs versus galaxy catalogs). The catalogs
will also accommodate additional attribute
entries in the event that other pixel-based
measurements are deemed necessary. The cat-
alog generated by SKICAT will eventually con-
tain about two billion entries, representing
hundreds of millions of sky objects. Unlike
the traditional notion of a static printed cata-
log, our target is the development of a new
generation of scientific analysis tools that
render it possible to have a constantly evolv-
ing, improving, and growing catalog. With-
out the availability of these tools for the first
survey (POSS-I) conducted over four decades
ago, no objective and comprehensive analysis
of the data was possible. In contrast, we are
targeting a comprehensive sky catalog that
will be available online for use by the scien-
tific community. 

Future directions for this work are being
pursued along two fronts: The first targets the
automated scientific discovery problem using
clustering techniques, as described in the
Unsupervised Learning and New Scientific

The catalog
generated by

SKICAT will
eventually

contain about
two billion

entries, 
representing
hundreds of
millions of
sky objects. 
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finding a family member in a digital photo
album to searching video libraries for a partic-
ular target to inspecting manufacturing,
surveillance, and remote sensing applica-
tions. In medicine, with the proliferation of
digital medical imagers and digitized histori-
cal image libraries, many opportunities exist,
for example, if a medical researcher notices a
new pattern and would like the libraries of
several hospitals searched for the new pattern
and results correlated with treatments and
outcomes. A tool that can be trained by
example would make such an operation prac-
tical and convenient to execute. Of course,
we remain far from this long-term goal. We
hope the directions we are pursuing will take
us closer to such general adaptive search and
information-gathering tools. This, of course,
is the tempting promise of the new field of
data mining and knowledge discovery in
databases.
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Notes
1. This is a standard astronomical magnitude scale
for measuring relative brightness of astronomical
sources. It is logarithmic, with 1 mag = –4 db; the
brightest stars visible with a naked eye are first
magnitude. Magnitudes are usually defined in a
particular band pass, given by a combination of a
filter and a detector, for example, the blue (B) band.

2. At the time this article was written, only 5
objects had been found. As of April 1996, the count
stood at 20.
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