
■ The National Aeronautics and Space Administra-
tion (NASA) is being challenged to perform more
frequent and intensive space-exploration mis-
sions at greatly reduced cost. Nowhere is this
challenge more acute than among robotic plane-
tary exploration missions that the Jet Propulsion
Laboratory (JPL) conducts for NASA. This article
describes recent and ongoing work on spacecraft
autonomy and ground systems that builds on a
legacy of existing success at JPL applying AI tech-
niques to challenging computational problems in
planning and scheduling, real-time monitoring
and control, scientific data analysis, and design
automation.

AI research and technology development
reached critical mass at the Jet Propul-
sion Laboratory (JPL) about five years

ago. In the last three years, the effort has
begun to bear fruit in the form of numerous
JPL and National Aeronautics and Space
Administration (NASA) applications of AI
technology in the areas of planning and
scheduling, real-time monitoring and control,
scientific data analysis, and design automa-
tion. Such successes, described in detail in
this article, have also set the stage for JPL AI
researchers and technologists to seize an
unprecedented opportunity: the commitment
by NASA to the development of software
technology to realize highly autonomous
space platforms. This strategic shift by NASA,
in which AI technology will play a central
and critical role, includes an important his-
torically missing piece of the picture: the
availability of space missions whose primary
purpose is the validation of new technologies.
NASA’s New Millennium Program fills exactly
this gap. Some of the most important work

described here is in the context of the remote-
agent autonomy technology experiment that
will fly on the New Millennium Deep Space
One Mission in 1998 (a collaborative effort
involving JPL and NASA Ames). Many of the
AI technologists who work at NASA expected
to have the opportunity to build an intelli-
gent spacecraft at some point in their careers;
we are surprised and delighted that it has
come this early.

By the year 2000, we expect to demonstrate
NASA spacecraft possessing on-board automat-
ed goal-level closed-loop control in the plan-
ning and scheduling of activities to achieve
mission goals, maneuvering and pointing to
execute these activities, and detecting and
resolving of faults to continue the mission
without requiring ground support. At this
point, mission accomplishment can begin to
become largely autonomous, and dramatic
cost savings can be achieved in the form of
reduced, shared ground staffing that responds
on demand to beacon-based requests for inter-
action originating from the spacecraft. Indeed,
a New Millennium Program Mission Opera-
tions Study estimated that remote-agent tech-
nology could reduce mission operations cost,
exclusive of data analysis, by as much as 60
percent.

By 2005, we expect that a significant por-
tion of the information routinely returned
from space platforms would not be raw data,
and would not simply and strictly match fea-
tures of stated prior interest, but would be
deemed by the on-board software to be inter-
esting and worthy of further examination by
scientists on the ground. At this point, limit-
ed-communications bandwidth would be used
in an extremely efficient fashion, and science
alerts from various and far-flung platforms
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data from digitized photographic plates of
the night sky collected at the Mt. Palomar
astronomical observatory-identifying and
classifying sky objects indexed into a compre-
hensive catalog containing approximately
three billion entries. SKICAT was able to classify
extremely faint objects that were beyond the
reach of expert-astronomer visual inspection.
It was recently utilized to discover 16 new
quasars, among the most distant objects in
the universe. For the first time, astronomers
have an objective basis for conducting
unprecedented, large-scale cosmological stud-
ies. SKICAT remains one of the most outstand-
ing successes for machine-learning technolo-
gy to date. This work was led by Usama
Fayyad, in collaboration with George Djor-
govski of the Astronomy Department at the
California Institute of Technology (Caltech).

The MVP system (Chien and Mortensen
1996) applied AI planning techniques to the
problem of automatic software configuration
for image analysis. The VICAR set of image-
processing routines has been developed over
a period of many years at JPL. These routines
support image-processing steps such as
mosaicking and color-triplet reconstruction.
Powerful but cumbersome to use, the VICAR
routines support an essential processing
phase before true scientific image analysis can
begin. MVP is a front end for VICAR and
allows scientists and other users to simply
state their image-analysis goals. The system
automatically analyzes data dependencies
and other constraints and configures the
appropriate VICAR routines to achieve these
goals. MVP reduces the time to construct a
typical VICAR job from 4 hours to 15 min-
utes for expert users and from days to hours
for novice users. The system is being used to
support the analysis of images being returned
from the Galileo spacecraft during its current
tour of the Jupiter planetary system. This
work was led by Steve Chien, in collaboration
with Helen Mortensen of JPL’s Multimission
Image-Processing Laboratory.

AI research and development activities at
JPL are conducted primarily by three research
groups: (1) the Artificial Intelligence (AI)
Group, led by Steve Chien, which focuses on
automated planning and scheduling and
design automation; (2) the Machine Learning
Systems (MLS) Group, led by Paul Stolorz;
and (3) the Monitoring and Diagnosis Tech-
nology (MDT) Group, led by Dennis DeCoste.
The effort was once housed in the single AI
group but has steadily grown: Its 30 to 40
practitioners now make up 3 of the 9 groups
in JPL’s Information and Computing Tech-

would be anticipated with great interest.
The first steps toward realizing this vision

are happening now and are described in the
following paragraphs. Although the early goal
for autonomy technology is the reduction of
mission operations costs, the ultimate payoff
will be the enabling of new mission classes
and the launching of a new era of solar sys-
tem exploration, beyond reconnaissance.
Spacecraft missions in this new era will be
characterized by sustained presence and in-
depth scientific studies performed by free
flyers, orbiters, and ground vehicles, some-
times arrayed in constellations. Autonomy
will be the central capability for enabling
long-term scientific studies of a decade or
more, currently prohibited by cost, and
enabling new classes of missions that inher-
ently must be executed without the benefit of
ground support, either because of control
challenges, for example, small-body (asteroid
and comet) rendezvous and landing missions
or because of the impossibility of communi-
cation for extended periods, for example, an
underice explorer at Europa or a Titan aer-
obot. The vision for future NASA missions
based on intelligent space platforms is
tremendously exciting.

The need for autonomy technology is
nowhere greater than in the set of deep space
planetary missions that JPL conducts for
NASA. The extreme remoteness of the targets,
the impossibility of hands-on troubleshoot-
ing or maintenance, and the difficulties of
light-time delayed communication (over four
hours round trip to the outer solar system) all
contribute to make JPL science missions the
focus of the development and application of
autonomy technology (Doyle, Gor, et al.
1997). JPL has been designated the lead NASA
center for spacecraft autonomy not only
because of the nature of its missions but also
because of its unique combination of resident
expertise in AI, spacecraft engineering, space
mission design, and systems engineering.

Not surprisingly, the imperative of cost
constraints as drivers for the development of
autonomy capabilities are balanced against
significant perceived risk in on-board uses of
AI technology. An important ingredient in
making this opportunity credible and real are
the previous successes at JPL in the applica-
tions of AI. Two of the most notable of these
successful applications are the sky-image cata-
loging and analysis tool (SKICAT) and the mul-
timission VICAR (video image communica-
tion and retrieval) planner (MVP). SKICAT

(Fayyad, Djorgovski, and Weir 1996b) com-
pletely automated the process of reducing
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nologies Research Section, led by Richard
Doyle.

In the remainder of the article, we describe
in greater detail the major AI projects at JPL.
In particular, we describe efforts in the areas
of planning and scheduling, monitoring and
diagnosis, knowledge discovery and data
mining, and automated design.

Planning and Scheduling
As the NASA lead for unmanned exploration
of deep space, JPL has led missions to the out-
er reaches of the solar system (as exemplified
by the Voyager, Galileo, and Cassini mis-
sions). Although these missions have
achieved enviable success, NASA is now being
challenged to perform future missions with
smaller budgets, shorter cycle times, and
smaller science and operations teams. One
major element in mission operations is the
problem of command, control, and schedul-
ing. From an applications perspective, this
area encompasses the determination of cor-
rect actions and required resources for mis-
sion operations, both for the spacecraft as
well as for all the elements of the ground sys-
tem necessary to run the mission. From a
technology perspective, this area focuses on
planning, scheduling, and task-execution
architectures.

In this section, we outline ongoing efforts
at JPL in research, development, and deploy-
ment of these technologies to automate com-
mand, control, and resource-allocation func-
tions to reduce operations teams, reduce
command cycle times, and increase the
efficiency of the utilization of scarce resources,
all targeted at enabling increased science and
space exploration at reduced cost. We begin
by first describing efforts in the area of space-
craft commanding and on-board task execu-
tion, describing projects for the New Millenni-
um Deep Space One Mission and the Earth
Orbiter One Mission, the U.S. Navy UFO-1
satellite, and the data-chaser shuttle payload.
We then describe projects in automation of
ground systems—specifically in automating
operations of the deep space network (DSN),
which is used for communicating with space-
craft, navigating spacecraft, and using radio
science. We then describe the MVP Project to
use planning technology to assist in science
data preparation and analysis. Finally, we
describe basic technology work in machine
learning for next-generation planning and
scheduling systems able to automatically
adapt to changing problem distributions and
context.

Planning, Scheduling, and Task Execu-
tion for Spacecraft Commanding
Spacecraft command generation and valida-
tion is an expensive and labor- and knowl-
edge-intensive process. Enabling direct high-
level commanding of spacecraft by
engineering and science personnel greatly
reduces the requirements for highly skilled
spacecraft-cognizant personnel during nomi-
nal operations, thereby cutting down on mis-
sion operations costs. A New Millennium Pro-
gram Mission Operations Study concluded
that automating command and control func-
tions could have resulted in a savings of $14
million a year for a Magellan-class mapping
mission and $30 million a year for a Galileo-
class multiple-flyby mission.

In a ground-based context, direct com-
manding of the spacecraft by science person-
nel also allows for the opportunity to conduct
truly interactive science—an embodiment of
the concept of a virtual spacecraft on the
internet. In certain cases, automated space-
craft commanding can enhance science return
by increasing the efficiency of resource man-
agement (for example, data and power man-
agement). If it is possible to run the planner
on board the spacecraft, additional benefits
can be realized: First, communication with
the spacecraft can be reduced greatly in that
commands do not need to be uplinked, and
reduced spacecraft state information can be
downlinked. Second, by avoiding the commu-
nications loop, autonomous commanding of
the spacecraft with an on-board system allows
for an immediate response to changes in
spacecraft state (for example, faults) or discov-
eries from science analysis.

In a collaborative effort involving the AI
group and the Sequencing Automation
Research Group at JPL and the Computation-
al Sciences Division (Code IC) of the NASA
Ames Research Center, AI planning, schedul-
ing, and intelligent task control techniques
are being developed and applied for on-board
control of highly autonomous spacecraft. The
automated scheduler and task-execution
technologies are being developed for the New
Millennium Deep Space One Mission, the
first of the deep space missions planned for
the New Millennium Program. This small
spacecraft will fly by an asteroid and a comet,
with a launch expected in 1998. The primary
objective of the New Millennium Program is
the demonstration of new technologies that
will greatly advance the state of the art in
space exploration. One of the new technolo-
gies for the Deep Space One Mission is an
autonomy software package, named the
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In addition to the deployment of on-board
planning and task control technology on the
New Millennium Deep Space One Mission,
there are additional projects under way to
deploy planning and scheduling technology
in a ground-based context using the automat-
ed scheduling and planning environment
(ASPEN) and also the data-chaser automated
planning and scheduling system (DCAPS) for
direct-science commanding.

A number of successful applications of
automated planning and scheduling of space-
craft operations have recently been reported
in the literature. However, these applications
have been one-of-a-kind applications that
required a substantial amount of develop-
ment effort. To reduce this development
effort, the AI group at JPL has been working
on ASPEN (Fukunaga et al. 1997a), a modular,
reconfigurable application framework that is
capable of supporting a wide variety of plan-
ning and scheduling applications. ASPEN pro-
vides a set of reusable software components
that implement the elements commonly
found in complex planning-scheduling sys-
tems, including an expressive modeling lan-
guage, a resource-management system, a tem-
poral reasoning system, several search
engines, and a graphic user interface (GUI).

The primary application area for ASPEN is
the spacecraft operations domain. Planning
and scheduling spacecraft operations involves
generating a sequence of low-level spacecraft
commands from a set of high-level science
and engineering goals. ASPEN encodes com-
plex spacecraft operability constraints, flight
rules, spacecraft hardware models, science
experiment goals, and operations procedures
to allow for the automated generation of low-
level spacecraft sequences by using con-
straint-driven planning and scheduling tech-
nology. ASPEN is currently being used in the
development of automated planner-scheduler
systems for commanding the UFO-1 naval
communications satellite and the New Mil-
lennium Earth Orbiter One spacecraft as well
as a scheduler for ground maintenance of the
highly reusable space transportation. 

Figure 1 shows information on the applica-
tion of ASPEN to generating operations plans
for the New Millennium Earth Orbiter One
Mission. The top portion of figure 1 shows
the interface to the scheduler, displaying the
relevant observation activities (the observa-
tion activities shown at the top on the ActTL
timeline), the resources used (the observation
instrument/ETM, data storage device/SSR,
transponder, for example), and relevant
exogenous events (such as sun angle state).

remote agent, that will fly on board the
spacecraft. The remote agent has three compo-
nents: (1) the smart executive, (2) mode iden-
tification and recovery, and (3) the planner-
scheduler; these components work together
to autonomously control the spacecraft (Pell,
Bernard, et al. 1996).

The planner-scheduler (Muscettola et al.
1997) generates a sequence of low-level com-
mands, given an initial state and a set of
high-level goals from the scientists and engi-
neers. Performing this task requires a
significant knowledge of the spacecraft opera-
tions, possible spacecraft states, operability
constraints, and low-level commands that are
executable by the smart executive. In addi-
tion, heuristic knowledge about priorities and
preferences might be required to generate
better-quality solutions in a shorter time. The
planner system builds a schedule while it
respects the encoded spacecraft constraints,
science and engineering preferences, and syn-
chronization with external processes. An
incremental refinement approach is used to
provide an exhaustive search that guarantees
the generation of a solution schedule from
correctly encoded goals and knowledge.

In addition to deliberative planning, an
autonomous spacecraft requires the ability to
execute incompletely specified plans and the
ability to respond quickly and intelligently to
unforeseen run-time contingencies. The MLS
group, in collaboration with the Computa-
tional Sciences Division of the NASA Ames
Research Center, is developing a smart execu-
tive to provide these capabilities for the New
Millennium Deep Space One Mission (Pell,
Gat, et al. 1996).

The executive is implemented using a lan-
guage developed at JPL called the execution
support language (ESL) (Gat 1997). ESL pro-
vides a set of advanced control constructs that
simplify the job of writing code to manage
multiple concurrent tasks in the face of unex-
pected contingencies. It is similar in spirit to
RAPs (reactive action packages), RPL (reactive
plan language), and RS, and its design owes
much to these systems. Unlike its predecessors,
ESL aims for a more utilitarian point in the
design space. It was designed primarily to be a
powerful and easy-to-use tool, not to serve as a
representation for automated reasoning or for-
mal analysis (although nothing precludes its
use for these purposes). ESL consists of several
sets of loosely coupled features, including con-
tingency handling, concurrent task manage-
ment, and a backtracking logical database. A
set of constructs for run-time resource manage-
ment is currently being developed.
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The bottom section of fiigure 1 shows a small
portion of the temporal constraint network
relating to the synchronization of a downlink
activity with ground stations used to derive
the schedule. The squares correspond to
important events (activities, states, and
resource values), and the brackets indicate the
minimum and maximum time between the
events.

DCAPS (Rabideau et al. 1997) is a collabora-
tive effort involving the AI group and the
Sequencing Automation Research Group at
JPL and the Colorado Space Grant Consor-
tium at the University of Colorado at Boulder.
In DCAPS, AI planning and scheduling tech-
niques are being developed and applied to
enable direct goal-based science and engi-
neering commanding.

Data-chaser is a shuttle payload scheduled
for flight in July 1997. Data-chaser contains
three solar science instruments and is part of
the Hitchhiker Student Outreach Program.
DCAPS uses iterative repair planning and
scheduling techniques to automatically gen-
erate the low-level command sequence
involving spacecraft operability constraints,
science and engineering preferences, and syn-
chronization constraints with external pro-
cesses. The iterative repair approach to plan-
ning and scheduling is useful in that it allows
for natural interaction with the user.

Automated Planning and Scheduling
for Operations of the Deep Space 
Network
Each day at sites around the world, NASA’s
DSN antennas and subsystems are used to
perform scores of tracks to support earth-
orbiting and deep space missions (Chien,
Hill, et al. 1996; Hill, Chien, et al. 1996).
However, the actual tracking activity is mere-
ly the culmination of a complex, knowledge-
intensive process that actually begins years
before a spacecraft’s launch. When the deci-
sion is made to fly a mission, a forecast is
made of the DSN resources that the spacecraft
will require. In the resource-allocation pro-
cess, the types of service, frequency, and
duration of the required tracks are deter-
mined as well as high-level (for example,
antenna) resource requirements. Although
the exact timing of the tracks is not known, a
set of automated forecasting tools is used to
estimate network load and assist in ensuring
that adequate network resources will be avail-
able. The Operations Research Group has
developed a family of systems that use opera-
tions research and probabilistic reasoning
techniques to allow forecasting and capacity

planning for DSN resources (Fox and Borden
1994; Loyola 1993).

As the time of the actual tracks approaches,
this estimate of resource loading is converted
to an actual schedule, which becomes more
concrete as time progresses. In this process,
specific project service requests and priorities
are matched up with available resources to
meet communications needs for earth-orbit-
ing and deep space spacecraft. This schedul-
ing process involves considerations of thou-
sands of possible tracks, tens of projects, tens
of antenna resources, and considerations of
hundreds of subsystem configurations. In
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Figure 1. ASPEN-Generated Plans for the New Millennium 
Earth Orbiter One Spacecraft.

Top: Earth Orbiter One operations plan derived by the ASPEN scheduler. Bottom:
Temporal constraint subnetwork used to derive temporal constraints on activi-
ties relating to data transmission to a ground station.



because antennas are the central focus of
resource contention. After establishing a
range of antenna options, DANS considers allo-
cation of the 5 to 13 subsystems (out of the
tens of shared subsystems at each antenna
complex) that are used by each track. DANS

uses constraint-driven, branch-and-bound,
best-first search to efficiently consider the
large set of possible subsystem schedules.

Once a specific equipment and timing
assignment has been made, there is the prob-
lem of determining how to operate the equip-
ment to achieve the requested services.
Because of the complexity of the equipment,
the large set of communications services (in
the tens), and the large number of supported
equipment configurations (in the hundreds),
correctly and efficiently operating this equip-
ment to fulfill tracking goals is a daunting
task.

The DSN antenna operations planner
(DPLAN) (Chien, Govindjee, et al. 1997, 1996)
is an automated planning system developed
by the AI group to automatically generate
antenna-tracking plans to satisfy DSN service
requests. To generate these antenna opera-
tions plans, DPLAN uses the project-generated
service request (planning goals), the track
equipment allocation (initial state), and an
antenna operations knowledge base. DPLAN

uses both hierarchical-task network-planning
techniques and operator-based planning
techniques to synthesize these operations
plans. By allowing both operator-based and
hierarchical-task network representations, the
antenna operations knowledge base allows a
modular, declarative representation of anten-
na operations procedures. In contrast, consid-
er the two non-AI alternatives proposed: (1)
operations script and (2) an exhaustive
library of plans. Neither operations scripts
nor an exhaustive library of plans explicitly
record the generality and context presumed
by operations procedures. Planning represen-
tations’ explicit representation of such infor-
mation should make them easier to maintain
as DSN equipment and operations procedures
evolve.

DPLAN was initially demonstrated in Febru-
ary 1995 for Voyager downlink, telemetry
tracks at the DSS-13 antenna at Goldstone,
California. DPLAN is currently being integrated
into the larger network monitor and control
upgrade being deployed at DSN stations that
will enable automation projected to reduce
DSN operations costs by over $9 million a
year. The current DPLAN system supports the
full range of 34-m and 70-m antenna types,
all standard service-request classes, and

addition to adding the detail of antenna sub-
system allocation, the initial schedule under-
goes continual modification as a result of
changing project needs, equipment availabili-
ty, and weather considerations. Responding
to changing context and minimizing disrup-
tion while rescheduling are key issues. 

In 1993, the OMP-26M scheduling system
was deployed, partially automating the
scheduling of the network of 9-, 11-, and 26-
meter (m) antennas. Use of OMP-26M resulted
in a fivefold reduction of scheduling labor,
and network use doubled. The demand-access
network scheduler (DANS) (Chien, Lam, and
Vu 1997) is an evolution of the OMP-26M sys-
tem designed to deal with the more complex
subsystem and priority schemes required to
schedule the larger 34- and 70-m antennas.
Because of the size and complexity of the
rescheduling task, manual scheduling is pro-
hibitively expensive. Automation of these
scheduling functions is projected to save mil-
lions of dollars a year in DSN operations
costs.

DANS uses priority-driven, best-first, con-
straint-based search and iterative optimiza-
tion techniques to perform priority-based
rescheduling in response to changing net-
work demand. With these techniques, DANS

first considers the antenna-allocation process
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approximately 20 subsystems. Figure 2 shows
a plan generated by DPLAN to perform precali-
bration of a 34-m beam waveguide antenna
to provide a telemetry, commanding, and
ranging services track. Current work on the
DPLAN system focuses on enhancing the sys-
tems replanning capability and its ability to
represent and reason about plan quality
(Chien, Hill, et al. 1996).

Planning Systems for Science Data
Preparation and Analysis
In the MVP (Chien and Mortensen 1996;
Chien 1994) project, planning techniques are
being applied to develop a system to auto-
matically generate procedures to satisfy
incoming science requests for data. MVP

allows a user to input image-processing goals
based on the availability and format of rele-
vant image data and produces a plan to
achieve the image-processing goals. This plan
is then translated into an executable VICAR
program.

In contrast, manual writing of VICAR
scripts is a knowledge-intensive, labor-inten-
sive task requiring knowledge of image-pro-
cessing techniques, knowledge of image Figure 3. Goals, Initial State, and Raw Images.

Figure 4. Subplan.



ence products for the Galileo Jupiter
encounter. For radiometric correction, color-
triplet reconstruction, and simple mosaicking
tasks, MVP reduces the effort to generate an
initial VICAR script for an expert analyst
from 4 hours to 15 minutes and for a novice
analyst from several days to 4 hours.

Figure 3 shows the beginning of the succes-
sion of steps. At the top, the image-process-
ing goals (stated by the user using a GUI),
image state (derived automatically from the
image database), and input raw images are
shown. In figure 4, the plan structure for a
portion of the overall plan is shown. In this
graph, nodes represent image-processing
actions and required image states to achieve
the larger image-processing goal. Figure 5
shows the actual MVP-generated VICAR code,
highlighting the correspondence to the
image-processing steps in the plan. Finally, in
figure 6, we have the produced (output)
science product—a mosaic of Jupiter’s Red
Spot constructed from the raw images
received from the Galileo spacecraft currently
in orbit around Jupiter.

Although MVP successfully automates cer-
tain image-processing tasks, in deploying MVP,
we learned the high cost of knowledge base
maintenance (approximately 0.8 work-years
of effort during the first year of operation).
Correspondingly, current work focuses on
knowledge base analysis tools to assist in the
process of planning knowledge base develop-
ment, validation, and maintenance (Chien
1996).

Machine Learning for Large-Scale
Planning and Scheduling
Although most scheduling problems are NP-
complete in worst-case complexity, in prac-
tice, for specific distributions of problems,
domain-specific search strategies have been
shown to perform in much better than expo-
nential time. However, discovering these
search strategies is a painstaking, time-con-
suming process that requires extensive
knowledge of both the domain and the
scheduler. The goal of adaptive problem solv-
ing (APS) is to automate this process of cus-
tomization by learning heuristics specialized
to a distribution of problems.

Our APS work focuses on statistical learning
methods used to search for and recognize
superior problem-solving customizations and
heuristics (Gratch and Chien 1996; Chien,
Gratch, and Burl 1995). Work to date has
achieved strong results. Using the LR-26
scheduler on scheduling data for 1996 to
1997, statistical machine-learning techniques

database organization and metadata conven-
tions, and knowledge of the VICAR program-
ming environment. Analysts require several
years to become VICAR experts, and produc-
ing each VICAR script takes hours to months
of analyst effort. Automating the filling of
more routine tasks by the MVP system frees up
expert analyst time for more complex, unique
processing requests.

MVP is currently being used to produce sci-
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!! Check if a tiepoint file exists.

!! The following code is in written VMS
!! LOCAL STR STRING INIT = ""
LET _ONFAIL = "CONTINUE" !! Allow the pdf to continue
                           !! if a file is not found.
DCL DEASSIGN NAME
DCL DEFINE NAME 'F$SEARCH("file_list.TP")
LOCAL STR STRING
TRANSLOG NAME STR
LET _ONFAIL = "RETURN" !! Set PDF to return on error

IF (STR = "")
   MANMATCH INP=("file_list.NAV","file_list.OVER") + 
      OUT="file_list.TP" PROJECT="GLL  " 'SEDR FILENAME="file_list.ILIST"

!! If an old tiepoint file exists...
!! The old tpfile is part of input and later overwritten.
ELSE
   MANMATCH INP=("file_list.NAV","file_list.OVER","file_list.TP") + 
      OUT="file_list.TP" PROJECT="GLL  " 'SEDR FILENAME="file_list.ILIST"

!! OMCOR2
OMCOR2 INP=("file_list.NAV","file_list.TP") PROJECT="GLL  " GROUND=@GOOD
OMCOR2 INP=("file_list.NAV","file_list.TP") PROJECT="GLL  " GROUND=@GOOD

get initial navigation 
information

construct initial
overlap pairs

refine initial 
overlap pairs

find previous 
tiepoint file 
(if present)

use manmatch
program to 
construct or
refine tiepoint
file

use tiepoints
to construct
OM matrix

Conceptual Steps VICAR Code

Figure 5. MVP-Produced VICAR Code.

Figure 6. Final Images Produced by MVP.



found strategies that improved on human
expert–derived strategies by decreasing central
processing unit time for solvable problems by
50 percent and increasing solvable problems
by 15 percent. We are currently extending
techniques to allow for specialization of con-
trol strategies as directed by empirical learning
methods and allow for control of constraint
relaxation to improve schedule quality.

Figure 7 illustrates the effectiveness of the
machine-learning techniques. It shows the
probability density functions for the utility of
strategies derived using APS, the human
expert–derived strategy, and randomly select-
ed strategies in the entire encoded strategy
space. In this data set, higher utility corre-
sponds to lower problem-solving time
(toward the left of the graph), and the data
clearly indicate the superiority of the APS-
derived strategies over the human
expert–derived strategy (which is already sig-
nificantly better than an average strategy in
the complete strategy space).

Monitoring and Diagnosis
To address the key NASA goals of faster,
cheaper, and better mission operations, the
MDT group and the MLS group have been
developing a set of complementary methods
that are suitable for both on-board and
ground-based robust anomaly identification.

Both in research and in practice, diagnosis
work on complex analog domains tends to

oversimplify the initial task of symptom iden-
tification. In such work, anomaly detection
typically does little more than limit-sensing
sensor data against static, manually
predefined red lines, or predictions of expen-
sive simulations. However, the smaller bud-
gets and novel challenges of future NASA
missions demand cheap, robust, and early
detection to maximize the opportunities for
low-cost preventive operation. Because com-
plex NASA domains typically contain both
large volumes of both engineering sensor
data and human expertise, our collective
work at JPL pushes both machine-learning
and knowledge engineering methods but
strives to find an effective balance. In the fol-
lowing paragraphs, we summarize our recent
work in these areas.

Initial work in this area focused on the task
of continually identifying which sensors are
currently the most interesting, using informa-
tion-theoretic metrics. This work led to the
selective monitoring (SELMON) system (Doyle
1995; Doyle et al. 1993). SELMON compares
histograms of current data against those of
historic data, identifying sensors whose
binned frequency distributions are more dis-
tinct than historic (expected) ones. It can also
use causal orderings among the sensors to
help conditionalize and isolate anomalies.
SELMON overcomes the oversimplicity of tradi-
tional limit sensing but ignores the sig-
nificance of global context and temporal
ordering. Thus, it is most appropriate for data
sets that are statistically stationary.
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Automating this process involves not only
detecting and summarizing anomalies but
also providing enough detail for ground engi-
neers to verify whether the remaining behav-
ior is truly nominal. Traditional summariza-
tion techniques focus on fixed gross statistics
(for example, mins, maxs, means),
prespecified event logging, and information-
theoretic compression.

The goal of ESUM is to automatically select
subsets of downlink data (that is, specific sen-
sor values for specific times) sufficient for
ground operators to perform diagnosis and
verification tasks. ESUM can also, in part, be
viewed as intelligent prefetching of data that
are likely to be desired if current trends lead
to clear anomalies later. Thus, it might prove
useful for data archive compression manage-
ment (both on board and at ground) as well.
The basic approach is to select those data that
ELMER’s trained and adaptive envelope func-
tions indicate are most relevant to detecting
anomalies and prespecified events. We are
currently exploring this work for two future
NASA missions: a Pluto express flyby and a
beacon experiment on New Millennium Deep
Space One.

The MLS group is applying machine-learn-
ing techniques to the problem of modeling
engineering time-series data as well. The
group has developed a prototype software
package that segments telemetry streams for
individual sensors into distinct and statisti-
cally significant modes of activity. These algo-
rithms provide a basis for an automated
mechanism for identifying and classifying
distinct system modes of operation. The soft-
ware makes use of probabilistic and hierarchi-
cal segmentation algorithms (such as hidden
Markov models) that observe past telemetry
streams and identify distinct regimes of activ-
ity based on elemental features of the sensor
time series. The software has been applied
successfully to various space shuttle and
extreme ultraviolet explorer satellite teleme-
try streams. Currently, we are investigating
the application of this technology to future
spacecraft design and operations, with poten-
tial benefit in the areas of prediction, anoma-
ly detection and diagnosis, query by content,
and data summarization and compression.

Whereas the previous work focused on
data-driven time-series prediction and ma-
chine-learning techniques, it is also impor-
tant to cost-effectively leverage the large base
of human expertise available in NASA
domains—particularly because historic sensor
data for complex systems such as spacecraft
are seldom fully representative of future

The ELMER (envelope learning and monitor-
ing using error relaxation) system, recently
developed by the MDT group (DeCoste 1996),
focuses on the task of automated real-time
detection of anomalies in time-series data. It
specifically addresses the issues of context
dependencies and nonstationary time-series
data. It is being field tested in several NASA
domains, including the space shuttle, the
extreme-ultraviolet explorer, and DSN. Each
such complex real-world domain requires
monitoring thousands of sensors and pro-
vides millions of historic samples of each sen-
sor for training.

ELMER provides a data-driven, iterative,
three-stage approach to multivariant time-
series prediction: (1) systematic selection of
input feature reencodings (for example, time-
windowed mins, maxs, means, derivatives,
lag vectors), (2) greedy (linear-time complexi-
ty) nonlinear feature construction (for exam-
ple, products, sigmoidals), and (3) linear
regression (with relaxed error metrics). ELMER’s
third stage is particularly novel: explicitly
learning two separate functions, for high- and
low-expectation bounds (envelopes) for
future data versus one traditional overall least
squared fit. By starting with each envelope as
the two static red-line values traditionally
used in monitoring operations, ELMER can
incrementally tighten the values toward sim-
ulation-quality function bounds in an any-
time manner.

ELMER differs notably from common alter-
natives, such as neural networks, by being
highly constructive and using novel error
metrics that are particularly appropriate for
the constraint-checking nature of monitoring
tasks (versus prediction as such). In particular,
we can bias the error metrics to avoid false
alarms (which commonly plague other auto-
mated approaches) at the expense of obtain-
ing bounds that are weaker than typical neu-
ral network predictions (but still much tighter
than traditional red lines). We are exploring
several extensions to this work, including
using both hidden Markov model learning
and qualitative reasoning to better guide fea-
ture construction and selection.

We are also extending ELMER to address the
more general problem of summarizing the
behavior of sensor data over large windows of
time, in a project called engineering data sum-
marization (ESUM). For example, a planned
mission to Pluto would spend nearly eight
years in mostly uneventful cruise mode, for
which automated weekly summaries of behav-
ior (with low-downlink bandwidth) would be
critical to achieving low operations costs.

The ELMER
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on the 

task of 
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behaviors. Thus, the MDT group has also
been developing methodologies and semiau-
tomated tools for knowledge engineering,
integrating, and testing of qualitative and
quantitative spacecraft models suitable for
robust monitoring and diagnosis.

Our current work in modeling and testing
focuses on the Deep Space One Mission. We
are streamlining the process of designing and
implementing on-board monitoring software
with the creation of a family of reusable mon-
itoring components that are easily configured
to detect important changes in status. The
resulting status information feeds into the
remote-agent mode-identification module
(Williams and Nayak 1996) for mode tracking
and diagnosis. Our monitoring components
perform functions such as noise and transient
filtering, min-max thresholding, sensor-limit
detection, phase-plane analysis, and summa-
rization for a much-reduced telemetry stream.

In the iterative spiral model of spacecraft
design and development used for Deep Space
One, software and hardware modules need to
be integrated several times through the pro-
ject. By reusing metainformation already avail-
able for defining software interfaces as mes-
sages and function calls, we are exploring the
use of graph-dependency analysis techniques
(Rouquette 1996) for coordinating the integra-
tion of tightly coupled software tasks, tracking
complex multitask software interactions, and
detecting behavioral discrepancies at the level
of message passing and function calls. 

Deep Space One also challenges convention-
al verification and validation because its fast-
paced spiral-development process does not
generate formal testable requirements.
Instead, testing is driven by mission scenar-
ios, and test behavior is filtered through flight
rules and localized episodes of expected
events. A perfect test is one that satisfies posi-
tive flight rules, avoids negative flight rules,
and accounts for every data log as part of an
expected episode. Our objective here is to cre-
ate a scenario-based test methodology (and
tools) that finds the bugs without requiring
hard-to-obtain requirement specifications. 

Flight software in modern spacecraft com-
bines event-driven (reactive) programming
with continuous control. Typically, both have
been implemented in a procedural language
such as C, but reactive designs beg for a situa-
tion-action directive in the language so that
programmers can specify what to do rather
than when and  where to do it. Toward this
goal, we are exploring the use of R++, a tight
integration of C++ and path-based rules
(Crawford et al. 1996).

Knowledge Discovery 
and Data Mining for 

Scientific Data Analysis
The MLS group is heavily involved in a num-
ber of projects designed to understand and
exploit large-scale scientific data sets. These
efforts can roughly be classified into two
groups: One group consists of data-mining
methods focused on the extraction of scien-
tific insight from massive data sets, usually
on the order of gigabytes to terabytes in size.
These data are typically collected by space-
borne and other sensors and are then ar-
chived and managed on the ground. This
work features a mixture of techniques drawn
from machine learning, statistics, databases,
and high-performance computing. The other
major theme is the transference of machine
learning and data-mining successes to the
realm of space-borne computing and autono-
my. By performing intelligent data processing
on board spacecraft, new scientific ex-
periments are enabled that exploit and
enhance the capabilities of autonomous
spacecraft. These science-driven autonomy
ideas complement other work being conduct-
ed in the AI and MDT groups, with the com-
mon goal of enabling efficient autonomous
spacecraft.

The data-mining work covers a broad spec-
trum, including nearly every major scientific
subdiscipline relevant to NASA. These subdis-
ciplines include atmospheric and earth sci-
ence, planetary science, and solar physics.
Several prominent themes are shared by each
of these projects: an emphasis on data-driven
modeling, the application of computationally
intensive statistics as a major tool, and the
use of a number of prominent machine-learn-
ing techniques such as decision trees and
neural networks. At the same time, there are
distinct differences: Some are more crucially
dependent on high-performance computing
than others (although in the long run, all will
be driven in this direction as NASA data sets
dramatically increase in size). Several are
deeply concerned with temporal and spa-
tiotemporal processes, but others focus on
the accurate analysis of spatial patterns only.
A major challenge for the future is to develop
a systematic approach to this range of prob-
lems that allows powerful algorithms to be
applied in many contexts but also accounts
for the subtleties of individual data sets and
problems in the process.

As an example of the scientific insight that
can be obtained by merging data-mining
ideas with scalable computation, consider the
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important scientific information from even
high-resolution images. This process is time
consuming and extremely expensive. In a col-
laboration between the MLS group and the
Terrestrial Science Element at JPL, the
QUAKEFINDER system was developed and imple-
mented as a prototype data-mining system
that dramatically speeds up this process

problem of automatically detecting and cata-
loging important temporal processes in mas-
sive data sets. In general, this task is one of
overwhelming scale that has so far eluded
automation for the great majority of scientific
problems. Historically, careful manual inspec-
tion of images by highly trained scientists has
been the standard method of extracting
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Figure 8. Ground-Displacement Map for Landers Earthquake Region Generated Using Statistical Learning Techniques.
Direction of ground displacement is indicated in grey-scale wheel at left.



(Stolorz and Dean 1996). It tackles the prob-
lem of analyzing the earth’s crustal dynamics
by enabling the automatic detection and
measurement of earthquake faults from satel-
lite imagery. The system has been used to
map the direction and magnitude of ground
displacements that resulted from the 1992
Landers earthquake in southern California
over a spatial region of several hundred
square kilometers at a resolution of 10 m to a
(subpixel) precision of 1 m. Figure 8 shows
this ground-displacement map. The grey-scale
wheel at the bottom left indicates the direc-
tion of inferred ground movement. The fault
itself is clearly shown by the discontinuity in
the ground movement. This calculation is the
first to have been able to extract area-mapped
information about two-dimensional tectonic
processes at this level of detail. It is accom-
plished using a combination of statistical
inference (entropy minimization–style learn-
ing), parallel computing, and global opti-
mization techniques.

Although applied initially to the specific
problem of earthquake fault analysis, the
principals used by QUAKEFINDER are broadly
applicable to a far more general class of calcu-
lations involving subtle change detection in
high-resolution image streams. Success in this
domain points the way to a number of such
data-mining calculations that can directly
and automatically measure important tempo-
ral processes to high precision from massive
data sets such as problems involving global
climate change and natural hazard monitor-
ing as well as general image-understanding
tasks involving target detection and iden-
tification in noisy image streams. Efforts are
now under way to use QUAKEFINDER to analyze
possible activity on the ice-covered surface of
Jupiter’s moon Europa and search for sand
dune activity on Mars. There are also a num-
ber of potential applications in the biomedi-
cal imaging field.

In a collaborative effort with Caltech
astronomers, machine-learning techniques
have also been applied to a problem in the
area of large-image database analysis. SKICAT

(Weir, Fayyad, and Djorgovski 1995; Fayyad,
Djorgovski, and Weir 1996a, 1996b) inte-
grates image processing, high-performance
database management, and AI classification
techniques to automate the reduction of the
second Palomar Observatory sky-survey
image database. Image-processing routines
first detect sky objects and measure a set of
important features for each object, for exam-
ple, brightness, area, extent, and mor-
phology. These features are used to classify

sky objects using the machine-learning com-
ponent of our system. The JPL learning algo-
rithms GID3*, O-B TREE, and RULER have been
used to produce decision trees and
classification rules from training data consist-
ing of astronomer-classified sky objects. These
classifiers are applied to new survey images to
obtain the classifications needed for a com-
plete northern celestial hemisphere survey
database containing on the order of 5 x 107

galaxies, 2 x 109 stars, and more than 105

quasars.
One notable success of the SKICAT system is

its use by Caltech astronomers, with color
and classification information, to select
quasar candidates at red shifts of z > 4
(Kennefick et al. 1995). This approach was 40
times more efficient in terms of the number
of new quasars discovered for each unit of
telescope time than the previous survey for
such objects done at Palomar. To date, some
24 new quasars at these high red shifts have
been found and have been used to constrain
the evolution of their luminosity function,
indicating the epoch of quasar and, probably,
galaxy formation. They have also been used
by many other groups of astronomers to
probe the early universe and the early inter-
galactic medium.

SKICAT is now being extended to perform
unsupervised clustering on the roughly 40-
dimensional feature space produced by the
initial image-processing software. Probabilis-
tic clustering methods are being applied to
systematically explore the parameter space of
object measurements in an unbiased fashion
to search for possible previously unknown
rare groupings. It is quite possible that in a
data set this large, some previously unno-
ticed, new astronomical type of objects or
phenomena can be found by suitable outlier
searches. This result would be major and path
breaking, both displaying scientific interest
and demonstrating the power of machine-
assisted discovery in astronomy.

Although much of the focus of the work at
JPL is focused outward toward the planets and
beyond, there are many important unan-
swered scientific questions concerning the
earth’s geology and climate, which are also
under investigation. The MLS group is devel-
oping novel spatiotemporal data-mining tech-
niques and tools for tapping the vast resources
of earth-observed data. One example is our
ongoing analysis of low-frequency variability
in the upper atmosphere, specifically spatial
grids of 700-megabyte geopotential height
records taken daily since 1947 over the North-
ern Hemisphere (available from the National
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probabilistic method for determining the best number of
clusters (Smyth 1996), we have provided the first objective
proof of the existence of three distinct regimes in the
earth’s upper atmosphere. This result is significant from
both a scientific and a methodological viewpoint: It has
answered a long-standing open question in the field and is
the first application of objective cluster-validation criteria
in this area. Ongoing work is focusing on temporal cluster-
ing using generalized hidden Markov models and exten-
sions to oceanic data and ocean-atmosphere modeling.

The MLS group is also developing statistical pattern-
recognition methods leading to automatic and objective
image-analysis systems for science data sets in astronomy
and solar physics (Turmon and Pap 1997). The system
allows scientists to label active regions on solar images
and combine this information with domain-specific
knowledge to train a pattern recognizer. Data sources
include a 30-year database of ultraviolet intensity images
taken each day on the ground and light images and mag-
netic field maps taken many times daily from the
NASA–European Space Agency SOHO (solar and helio-
spheric observatory) satellite. Our existing recognition
system incorporates information about pixel-level spatial
continuity. Ongoing efforts will allow higher-level con-
structs describing active regions; also, we want to make an
active-region database and correlate it with existing solar-
irradiance data for climatological purposes. Figure 9 illus-
trates the data classification enabled by the statistical pat-

Oceanic and Atmospheric
Administration). A key scientific
question is whether recurrent,
stable regimes of climatic activi-
ty exist. We applied finite-mix-
ture models to the data to see if
we could discover the underly-
ing cluster structure. Combining
the cluster results in a novel
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Figure 9. Automatically Classified Solar Image.
Top Left: Raw solar image. Top Right: Threshold-derived
classifications. Bottom Left: Markov random field–derived
classification.



tern-recognition methods. At the top left is
the input solar data; the top right image is a
classification produced by a simple threshold-
ing algorithm. At the bottom left is the (im-
proved) classification produced using the
Markov random-field pattern-recognition
techniques.

The volume of image data collected by
spacecraft has reached a level that makes the
traditional approach of manually examining
each collected image infeasible. The scien-
tists, who are the end users of the data, can
no longer perform global or comprehensive
analyses effectively. To aid the scientists, we
have developed a trainable pattern-recogni-
tion system, known as JARTOOL (JPL adaptive
recognition tool) (Fayyad et al. 1995; Burl et
al. 1994), for locating features of interest in
remote sensing data. The system has initially
been applied to the problem of locating small
volcanoes in Magellan synthetic aperture
radar imagery of Venus. Scientists train the
system by labeling volcano examples with a
simple GUI. The system then learns an
appearance model for volcanoes and uses this
model to find other instances of volcanoes in
the database. Figure 10 shows the radar-input
image data at the left and volcano-appear-
ance components at the right (in decreasing
strength). It is particularly interesting to note
that the first several appearance components
correspond to descriptive features used by
human experts, such as a pit at the summit
and a shadow opposite the look direction of
the radar.

The MLS group is also applying AI and pat-
tern-recognition techniques to the problem
of conducting on-board science analysis for

space missions. As spacecraft become highly
autonomous, there are increasing opportuni-
ties for in situ analysis of scientific data,
enabling real-time planning of scientific
experiments in response to important events.
In collaboration with planetary scientists at
the Southwest Research Institute in Boulder,
Colorado, a prototype system has been devel-
oped that performs automatic on-board
detection of natural satellites in the vicinity
of asteroids and planets (Stolorz et al. 1997).

The initial system deals with the case of
static objects and is now being extended to
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Figure 10. Volcanoes on Venus.
Top: Volcano-appearance components (in decreas-
ing strength). Right: A 75-kilometer x 75-kilometer
region of Venus containing numerous small volca-
noes labeled by experts.



which is designed to provide high-perfor-
mance low-power multicomputers for space-
borne platforms. The intent is to provide a
scalable family of computing platforms for a
wide range of spacecraft. It is anticipated that
autonomy applications developed by the MLS
group will be used by science instrument
principal investigators on future space mis-
sions. These autonomy applications will
then, in turn, be major users of this future
space-borne scalable computing capability.

Design Automation
Spacecraft design is a knowledge- and labor-
intensive task with demanding requirements.
Spacecraft must survive the most hostile envi-
ronments, operating at great distances and
with little interaction with earth-based per-
sonnel. In synthesizing a design, engineers
must balance rigorous survivability and sci-
ence requirements against mass, power, vol-
ume, and processor limits, all within reduced
mission budgets. To assist spacecraft design
engineers in this challenging task, the AI
group has been developing and deploying
technology in the area of intelligent opti-
mization.

Spacecraft design optimization is difficult
using current optimization methods because
(1) current methods require a significant
amount of manual customization by the
users to be successful and (2) traditional
methods are not well suited for mixed dis-
crete-continuous, nonsmooth, and possibly
probabilistic cost surfaces that can arise in
many design-optimization problems. Of par-
ticular interest are the so-called black-box
optimization problems in which the structure
of the cost function is not directly accessible
(that is, the cost function is computed using a
simulation). 

We are currently developing the optimiza-
tion assistant (OASIS) (Fukunaga, Chien, et al.
1997), a tool for automated spacecraft design
optimization that addresses these two issues.
The goal of OASIS is to facilitate rapid what-if
analysis of spacecraft design by developing a
generic spacecraft design-optimization system
that maximizes the automation of the opti-
mization process and minimizes the amount
of customization required by the user.

OASIS consists of an integrated suite of glob-
al optimization algorithms (including genetic
algorithms, simulated annealing, and auto-
mated response-surface methods) that are
applicable to difficult black-box optimization
problems and an integrated intelligent agent
that decides how to apply these algorithms to

account for parallax effects that result from
both spacecraft and satellite motion.
Accounting for parallax effects involves the
introduction of predictive methods in the
presence of uncertainty as well as careful reg-
istration techniques. Images from a prelimi-
nary demonstration of the static satellite-
detection capability are shown in figure 11.
The top and middle images show two of the
four raw-data input images (each taken with a
different filter). The bottom image is the pro-
cessed image used for satellite detection using
the prediction and registration processing.

Another system deals with the automatic
analysis of ultraviolet spectra to allow deci-
sion making about the optimal way to con-
duct a spectral experiment. By automatically
identifying and removing the main chemical
species present in a scientific target, such as a
cometary tail, decisions can be made about
the optimal data-taking mode, for example,
whether to scan the spectrometer across por-
tions of the tail in a survey mode or to con-
centrate on obtaining high-resolution data
from one area where unexpected species
might have been discovered. 

We believe that in situ machine-learning
applications such as these will have a dramat-
ic effect on the range and quality of science
that can be pursued by spacecraft missions in
the future. They have immediate relevance to
NASA initiatives such as JPL’s New Millenni-
um Program. They also tie in strongly with
longer-term research and development pro-
jects. One of these projects is JPL’s Remote
Exploration and Experimentation Program,
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Figure 11. Automatic Satellite Detection.
Top: Raw-data input for infrared filter. Middle: Raw-data input for green filter.
Bottom: Processed detection image for static satellite detection.



a particular problem. Given a particular
spacecraft design-optimization problem, OASIS

performs a metalevel optimization to (1)
select an appropriate optimization technique
to apply to the problem and (2) automatically
adapt (customize) the technique to fit the
problem. This metalevel optimization is guid-
ed by both domain-independent and
domain-specific heuristics that are automati-
cally acquired through machine-learning
techniques applied to a database of perfor-
mance profiles collected from past optimiza-
tion episodes on similar problems.

We have been applying the OASIS system to
the problem of penetrator design. A penetrator
is a small, robust probe designed to impact a
surface at extremely high velocity with the
goal of performing sample analysis.
Specifically, we have been applying OASIS to
design and simulation data from the New
Millennium Deep Space Two Mission penetra-
tor design in which the design variables are
penetrator diameter and length. The Deep
Space Two Mission consists of a pair of pene-
trators to be launched in 1998, impacting the
planet Mars to perform soil analysis in 1999.
Figure 12 shows optimization surfaces derived
from impact simulations for candidate
designs. Each of the three surfaces represents
the predicted depth of penetration for a dif-
ferent soil consistency; in all three cases, the
surface is highly discontinuous. The negative
values represent physically unrealizable
designs, and the zero values indicate cases in
which the penetrator deflects on impact
(catastrophic mission failure). The goal of the
design problem is to produce a physically
realizable design while it maximizes the
chance of successful penetration over an
expected distribution of soil consistencies
and minimizes design cost

Summary
This article has described ongoing AI activi-
ties at JPL. Because of space, time, and coordi-
nation constraints, we were unable to fully
cover all related areas of work at JPL (most
notably, this article does not cover consider-
able robotics, computer vision, neural net,
fuzzy logic, and pattern-recognition work).
For further information on the projects
described in this article, readers are invited to
visit our web page at www-aig.jpl.nasa.gov/
or the JPL general web page at www.jpl.nasa.
gov// or to contact one of the following indi-
viduals at firstname.lastname @jpl.nasa.gov:
Chester Borden, Operations Research Group;
Dennis DeCoste, Monitoring and Diagnosis
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