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Combining Neural
Networks and
Context-Driven
Search for Online,
Printed Handwriting
Recognition in the
NEWTON

Larry S. Yaeger, Brandyn ]. Webb, and Richard F. Lyon

m While online handwriting recognition is an area of
long-standing and ongoing research, the recent
emergence of portable, pen-based computers has
focused urgent attention on usable, practical solu-
tions. We discuss a combination and improvement
of classical methods to produce robust recognition
of hand-printed English text for a recognizer ship-
ping in new models of Apple Computer’s NEWTON
MESSAGEPAD and EMATE. Combining an artificial
neural network (ANN) as a character classifier with
a context-driven search over segmentation and
word-recognition hypotheses provides an effective
recognition system. Long-standing issues relative
to training, generalization, segmentation, models
of context, probabilistic formalisms, and so on,
need to be resolved, however, to achieve excellent
performance. We present a number of recent inno-
vations in the application of ANNs as character
classifiers for word recognition, including integrat-
ed multiple representations, normalized output
error, negative training, stroke warping, frequency
balancing, error emphasis, and quantized weights.
User adaptation and extension to cursive recogni-
tion pose continuing challenges.

ly dependent on fast and accurate hand-
writing recognition because the pen
serves as the primary means for inputting data
to such devices. Some earlier attempts at hand-

Pen-based hand-held computers are heavi-

writing recognition have utilized strong, limit-
ed language models to maximize accuracy, but
they proved unacceptable in real-world appli-
cations, generating disturbing and seemingly
random word substitutions—known colloqui-
ally within Apple and NEwTON as “The Doones-
bury Effect” because of Gary Trudeau’s satirical
look at first-generation NEWTON recognition
performance. However, the original handwrit-
ing-recognition technology in the NEwTON, and
the current, much-improved cursive-recogniz-
er technology, both of which were licensed
from ParaGraph International, Inc., are not the
subject of this article.

In Apple’s Advanced Technology Group (aka
Apple Research Labs), we pursued a different
approach, using bottom-up classification tech-
niques based on trainable artificial neural net-
works (ANNs) in combination with compre-
hensive but weakly applied language models.
To focus our work on a subproblem that was
tractable enough to lead to usable products in
a reasonable time, we initially restricted the
domain to hand printing so that strokes were
clearly delineated by pen lifts. By simultane-
ously providing accurate character-level recog-
nition, dictionaries exhibiting wide coverage
of the language, and the ability to write entire-

Copyright © 1998, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1998 / $2.00

Articles

SPRING 1998 73



Articles

(x,y) Points and Pen-Lifts Words
Tentative Neural Network Search
> —
Segmentation Character Classifier Character with Context
Segmentation Class
Hypotheses Hypotheses

74 Al MAGAZINE

Figure 1. A Simplified Block Diagram of Our Hand-Print Recognizer.

ly outside these dictionaries, we have pro-
duced a hand-print recognizer that some have
called the “first usable” handwriting-recogni-
tion system. The ANN character classifier
required some innovative training techniques
to perform its task well. The dictionaries
required large word lists, a regular expression
grammar (to describe special constructs such as
date, time, and telephone numbers), and a
means of combining all these dictionaries into
a comprehensive language model. In addition,
well-balanced prior probabilities had to be
determined for in-dictionary and out-of-dictio-
nary writing. Together with a maximum-likeli-
hood search engine, these elements form the
basis of the so-called “Print Recognizer,” which
was first shipped in NEWTON 08 2.0-based MEs-
SAGEPAD 120 units in December 1995 and has
shipped in all subsequent NEWTON devices. In
the most recent units, since the MESSAGEPAD
2000, despite retaining its label as a print rec-
ognizer, it has been extended to handle con-
nected characters (as well as a full Western
European character set).

There is ample prior work in combining
low-level classifiers with dynamic time warp-
ing, hidden Markov models, Viterbi algo-
rithms, and other search strategies to provide
integrated segmentation and recognition for
writing (Tappert, Suen, and Wakahara 1990)
and speech (Renals et al. 1992). In addition,
there is a rich background in the use of ANNs
as classifiers, including their use as low-level
character classifiers in a higher-level word-
recognition system (Bengio et al. 1995). How-
ever, these approaches leave a large number of
open-ended questions about how to achieve
acceptable (to a real user) levels of perfor-
mance. In this article, we survey some of our
experiences in exploring refinements and
improvements to these techniques.

System Overview

Apple’s print recognizer (APR) consists of three
conceptual stages—(1) tentative segmentation,
(2) classification, and (3) context-driven
search—as indicated in figure 1. The primary
data on which we operate are simple sequences
of (x,y) coordinate pairs plus pen-up-pen-
down information, thus defining stroke prim-
itives. The segmentation stage decides which
strokes will be combined to produce segments
—the tentative groupings of strokes that will
be treated as possible characters—and pro-
duces a sequence of these segments together
with legal transitions between them. This
process builds an implicit graph that is then
labeled in the classification stage and exam-
ined for a maximume-likelihood interpretation
in the search stage. The classification stage eval-
uates each segment using the ANN classifier
and produces a vector of output activations
that are used as letter-class probabilities. The
search stage then uses these class probabilities,
together with models of lexical and geometric
context, to find the N most likely word or sen-
tence hypotheses.

Tentative Segmentation

Character segmentation—the process of decid-
ing which strokes make up which characters—
is inherently ambiguous. Ultimately, this deci-
sion must be made, but short of writing in box-
es, it is impossible to do so (with any accuracy)
in advance, external to the recognition
process. Hence, the initial segmentation stage
in APR produces multiple, tentative groupings
of strokes and defers the final segmentation
decisions until the search stage, thus integrat-
ing these segmentation decisions with the
overall recognition process.

APR uses a potentially exhaustive, sequen-
tial enumeration of stroke combinations to



generate a sequence of viable character-seg-
mentation hypotheses. These segments are
subjected to some obvious constraints (such as
“all strokes must be used” and “no strokes can
be used twice”) and some less obvious filters
(to cull impossible segments for the sake of
efficiency). The resulting algorithm produces
the actual segments that will be processed as
possible characters, along with the legal transi-
tions between these segments.

The legal transitions are defined by forward
and reverse delays. The forward delay indicates
the next possible segment in the sequence.
The reverse delay indicates the start of the cur-
rent batch of segments, all of which share the
same leading stroke. Because of the enumera-
tion scheme, a segment’s reverse delay is the
same as its stroke count minus one, unless pre-
ceding segments (sharing the same leading
stroke) were eliminated by the filters men-
tioned previously. These two simple delay
parameters (for each segment) suffice to define
an implicit graph of all legal segment transi-
tions. For a transition from segment number i
to segment number j to be legal, the sum of
segment i's forward delay plus segment j’s
reverse delay must be equal to j — i. Figure 2
provides an example of some ambiguous ink
and the segments that might be generated
from its strokes, supporting interpretations of
dog, clog, cbg, or even %g.

Character Classification

The output of the segmentation stage is a
stream of segments that are then passed to an
ANN for classification as characters. Except for
the architecture and training specifics detailed
later, a fairly standard multilayer perceptron
trained with error backpropagation provides
the ANN character classifier at the heart of
APR. A large body of prior work exists to indi-
cate the general applicability of ANN technol-
ogy as a classifier providing good estimates of
a posteriori probabilities of each class given the
input (Renals and Morgan 1992; Richard and
Lippman 1991; Gish 1990; and others cited
herein). Compelling arguments have been
made for why ANNs providing posterior prob-
abilities in a probabilistic recognition formula-
tion should be expected to outperform other
recognition approaches (Lippman 1994), and
ANNs have performed well as the core of
speech-recognition systems (Morgan and
Bourlard 1995).

Representation

A recurring theme in ANN research is the
extreme importance of the representation of
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Figure 2. Segmentation of Strokes into Tentative Characters, or Segments.

the data that are given as input to the network.
We experimented with a variety of input rep-
resentations, including stroke features both
antialiased (gray scale) and not (binary) and
images both antialiased and not, and with var-
ious schemes for positioning and scaling the
ink within the image input window. In every
case, antialiasing was a significant win. This
result is consistent with others’ findings: ANNs
perform better when presented with smoothly
varying, distributed input than they do when
presented with binary, localized input. Almost
the simplest image representation possible, a
non-aspect-ratio-preserving, expand-to-fill-
the-window image (limited only by a maxi-
mum scale factor to keep from blowing dots up
to the full window size), together with either a
single unit or a thermometer code (some num-
ber of units turned on in sequence to represent
larger values) for the aspect ratio, proved to be
the most effective single-classifier solution.
However, the best overall classifier accuracy
was ultimately obtained by combining multi-
ple distinct representations into nearly inde-
pendent, parallel classifiers joined at a final
output layer. Hence, representation proved not
only to be as important as architecture, but
ultimately, it helped to define the architecture
of our nets. For our final, hand-optimized sys-
tem, we use four distinct inputs, as indicated
in table 1. The stroke-count representation was
dithered (changed randomly at a small proba-
bility) to expand the effective training set, pre-
vent the network from fixating on this simple
input, and thereby improve the network’s abil-
ity to generalize. A schematic of the various
input representations can be seen as part of the
architecture drawing in figure 3.
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Input Feature

Image

Stroke
Aspect Ratio
Stroke Count

Resolution Description
14 X 14 Antialiased, scale to window, scale limited
20 X9 Antialiased, limited-resolution tangent slope, resampled to fixed number of points
1X1 Normalized and capped to [0,1]
5X1 Dithered thermometer code

Table 1. Input Representations Used in the Apple Print Recognizer.
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Figure 3. Final English-Language Net Architecture.

Architecture

As with representations, we experimented
with a variety of architectures, including sim-
ple fully connected layers; receptive fields;
shared weights; multiple hidden layers; and,
ultimately, multiple nearly independent classi-
fiers tied to a common output layer. The final
choice of architecture includes multiple input
representations; a first hidden layer (separate
for each input representation) using receptive
fields; fully connected second hidden layers
(again distinct for each representation); and a
final, shared, fully connected output layer.
Simple scalar features—aspect ratio and stroke
count—connect to both second hidden layers.
The final network architecture, for our original
English-language system, is shown in figure 3.

Layers are fully connected except for the
input to the first hidden layer on the image
side. This first hidden layer on the image side
consists of eight separate grids, each of which
accepts input from the image input grid with
its own receptive field sizes and strides, shown
parenthetically in figure 3 as (x-size X y-size; x-
stride, y-stride). A stride is the number of units
(pixels) in the input image space between
sequential positionings of the receptive fields
in a given direction. The 7 X 2 and 2 X 7 side
panels (surrounding the central 7 X 7 grid) pay
special attention to the edges of the image. The
9 X 1 and 1 X 9 side panels specifically exam-
ine full-size vertical and horizontal features,
respectively. The 5 X 5 grid observes features at
a different spatial scale than the 7 X 7 grid.



Combining the two classifiers at the output
layer, rather than, say, averaging the output of
completely independent classifiers, allows
generic backpropagation to learn the best way
to combine them, which is both convenient
and powerful. However, our integrated multi-
ple-representation architecture is conceptually
related to, and motivated by, prior experi-
ments at combining nets such as Steve Nowl-
an’s “mixture of experts” (Jacobs et al. 1991).

Normalizing Output Error

Analyzing a class of errors involving words
that were misrecognized as a result of, perhaps,
a single misclassified character, we realized
that the net was doing a poor job of represent-
ing second- and third-choice probabilities.
Essentially, the net was being forced to attempt
unambiguous classification of intrinsically
ambiguous patterns due to the nature of the
mean-squared error minimization in back-
propagation, coupled with the typical training
vector, which consists of all Os except for the
single 1 of the target. Lacking any viable
means of encoding legitimate probabilistic
ambiguity into the training vectors, we decid-
ed to try normalizing the “pressure toward 0”
versus the “pressure toward 1” introduced by
the output error during training. We refer to
this technique as NormOutErr because of its
normalizing effect on target versus nontarget
output error.

We reduce the backpropagation error for
nontarget classes relative to the target class by
a factor that normalizes the total nontarget
error seen at a given output unit relative to the
total target error seen at the unit. If the train-
ing set consisted of an equal representation of
classes, then this normalization should be
based on the number of nontarget versus tar-
get classes in a typical training vector or, sim-
ply, the number of output units (minus one).
Hence for nontarget output units, we scale the
error at each unit by a constant

e’ =Ae ,

where e is the error at an output unit, and A is
defined as

A=1/ [d(Noutput_ 1)] ’

where N, ., is the number of output units,
and is our tuning parameter, typically ranging
from 0.1 to 0.2. Error at the target output unit
is unchanged. Overall, this error modulation
raises the activation values at the output units
because of the reduced pressure toward zero,
particularly for low-probability samples. Thus,
the learning algorithm no longer converges to
a least mean-squared error (LMSE) estimate of
P(class | input) but to an LMSE estimate of a

nonlinear function f(P(class | input), A)
depending on the factor A by which we
reduced the error pressure toward zero.

Using a simple version of the technique of
Bourlard and Wellekens (1990), we worked out
the resulting nonlinear function. The net will
attempt to converge to minimize the modified
quadratic error function

(E?) = p =y + A0 - p)y?
by setting its output y for a particular class to

y=plA-Ap+p),

where p = P(class | input), and A is as previously
defined. For small values of p, the activation y
is increased by a factor of nearly 1/A relative to
the conventional case of y = p, and for high
values of p, the activation is closer to 1 by near-
ly a factor of A. The inverse function, useful for
converting back to a probability, is

p=yAl(A+1-y) .
We verified the fit of this function by looking
at histograms of character-level empirical per-
centage correct versus y, as in figure 4. Even for
this moderate amount of output error normal-
ization, it is clear that the lower-probability
samples have their output activations raised
significantly, relative to the 45° line that A =1
yields.

The primary benefit derived from this tech-
nique is that the net does a much better job of
representing second- and third-choice proba-
bilities, and low probabilities in general.
Despite a small drop in top-choice character
accuracy when using NormOutErr, we obtain a
significant increase in word accuracy with this
technique. Figure 5 shows an exaggerated
example of this effect for an atypically large
value of d (0.8), which overly penalizes charac-
ter accuracy; however, the 30-percent decrease
in word error rate is normal for this technique.
(Note: These data are from a multi-year-old
experiment and are not necessarily representa-
tive of current levels of performance on any
absolute scale.)

Negative Training

The previously discussed inherent ambiguities
in character segmentation necessarily result in
the generation and testing of a large number of
invalid segments. During recognition, the net-
work must classify these invalid segments just
as it would any valid segment, with no knowl-
edge of which are valid or invalid. A significant
increase in word-level recognition accuracy
was obtained by performing negative training
with these invalid segments. Negative training
consists of presenting invalid segments to the
net during training with all-zero target vectors.
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We retain control over the degree of negative
training in two ways: First is a negative-training
factor (ranging from 0.2 to 0.5) that modulates
the learning rate (equivalently by modulating
the error at the output layer) for these negative
patterns. Lowering the learning rate for nega-
tive patterns reduces the impact of negative
training on positive training, thus modulating
the impact on whole characters that specifical-
ly look like pieces of multistroke characters (for
example, I, 1, 1, o, O, 0). Second, we control a
negative-training probability (ranging between
0.05 and 0.3), which determines the probabil-
ity that a particular negative sample will actu-
ally be trained on (for a given presentation).
Probabilistically skipping negative patterns
both reduces the overall impact of negative
training and significantly reduces training
time, because invalid segments are more
numerous than valid segments. As with Norm
OutErr, this modification hurts character-level
accuracy a little bit but helps word-level accu-
racy a lot.

Stroke Warping

During training (but not during recognition),
we produce random variations in stroke data,
consisting of small changes in skew, rotation,
and x and y linear and quadratic scalings. This
stroke warping produces alternate character
forms that are consistent with stylistic varia-
tions within and between writers and induces
an explicit aspect ratio and rotation invariance
within the framework of standard backpropa-
gation. The amounts of each distortion to

apply were chosen through cross-validation
experiments as just the amounts needed to
yield optimum generalization. (Cross-valida-
tion is a standard technique for early stopping
of ANN training to prevent overlearning of the
training set. Such overlearning of extraneous
detail in the training samples reduces the
ANN's ability to generalize and, thus, reduces
its accuracy on new data. The technique con-
sists of partitioning the available data into a
training set and a cross-validation set. Then,
during the learning process, the training set is
used in the usual fashion to train the network
while accuracy on the cross-validation set is
simply measured periodically. Training is ter-
minated when accuracy on the cross-valida-
tion set is maximized, despite the fact that fur-
ther training might continue to improve the
accuracy measured on the training set. Cross-
validation is a very effective and widely accept-
ed means of determining the optimal amount
of learning for a given ANN and body of data.)
We chose relative amounts of the various
transformations by testing for optimal final,
converged accuracy on a cross-validation set.
We then increased the amount of all stroke
warping being applied to the training set, just
to the point at which accuracy on the training
set ceased to diverge from accuracy on the
cross-validation set.

We also examined a number of such samples
by eye to verify that they represent a natural
range of variation. A small set of such varia-
tions is shown in figure 6.

Our stroke warping scheme is somewhat
related to the ideas of TANGENT DIST and TANGENT
PrOP (Simard, LeCun, and Denker 1993; Simard
et al. 1992) in terms of the use of predeter-
mined families of transformations, but we
believe it is much easier to implement. It is
also somewhat distinct in applying transfor-
mations on the original coordinate data as
opposed to using distortions of images. The
voice-transformation scheme of Chang and
Lippmann (1995) is also related, but they use a
static replication of the training set through a
small number of transformations rather than
dynamic random transformations of an essen-
tially infinite variety.

Frequency Balancing

Training data from natural English words and
phrases exhibit nonuniform priors for the var-
ious character classes, and ANNSs readily model
these priors. However, as with NormOutErr, we
find that reducing the effect of these priors on
the net in a controlled way and, thus, forcing
the net to allocate more of its resources to low-
frequency, low-probability classes is of signifi-
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cant benefit to the overall word-recognition
process. To this end, we explicitly (partially)
balance the frequencies of the classes during
training. We obtain this frequency balancing
by probabilistically skipping and repeating
patterns based on a precomputed repetition fac-
tor. Each presentation of a repeated pattern is
warped uniquely, as discussed previously.

To compute the repetition factor for a class
i, we first compute a normalized frequency of
this class:

F=S,/S,

where §; is the number of samples in class i,
and S is the average number of samples over all
classes, computed in the obvious way:

_ 1<

§=( C Zl S,
with C the number of classes. Our repetition
factor is then defined as

R;=(a/Fi?,

with a and b as adjustable controls over the
amount of skipping versus repeating and the
degree of prior normalization, respectively.
Typical values of a range from 0.2 to 0.8, and
branges from 0.5 to 0.9. The factor a < 1 lets us
do more skipping than repeating. For example,
for a = 0.5, classes with relative frequency
equal to half the average will neither skip nor
repeat; more frequent classes will skip; and less

frequent classes will repeat. A value of 0.0 for b
would do no balancing, giving R; = 1.0 for all
classes, and a value of 1.0 would provide full
normalization. A value of b somewhat less
than one seems to be the best choice, letting
the net keep some bias in favor of classes with
higher prior probabilities.

This explicit prior-bias reduction is concep-
tually related to Lippmann’s (1994) and Mor-
gan and Bourlard’s (1995) recommended
method for converting from the net’s esti-
mate of posterior probability, p(class | input),
to the value needed in an HMM or Viterbi
search, p(input | class), which is to divide by
p(class) priors. This division, however, may
produce noisier estimates for low-frequency
classes, resulting in a set of estimates that are
not really optimized in an LMSE sense (as the
net output are). In addition, output activa-
tions that are naturally bounded between 0
and 1 because of the sigmoid convert to
potentially large probability estimates, requir-
ing a renormalization step. Our method of
frequency balancing during training elimi-
nates both these concerns. Perhaps more sig-
nificantly, frequency balancing also allows
the standard backpropagation training pro-
cess to dedicate more network resources to
the classification of the lower-frequency class-
es, although we have no current method for
characterizing or quantifying this benefit.
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Phase Epochs Learning Rate Correct Training Negative Training
(Approximate) Probability Probability
1 25 1.0-0.5 0.1 0.05
2 25 0.5-0.1 0.25 0.1
3 50 0.1-0.01 0.5 0.18
4 30 0.01-0.001 1.0 0.3

Table 2. Typical Multiphase Schedule of Learning Rates and Other Parameters for Training a Character-Classifier Net.
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Error Emphasis

Although frequency balancing corrects for
underrepresented classes, it cannot account for
underrepresented writing styles. We use a con-
ceptually related probabilistic skipping of pat-
terns, but of just those patterns that the net
correctly classifies in its forward-recognition
pass, as a form of error emphasis, to address
this problem. We define a correct-train probabil-
ity (ranging from 0.1 to 1.0), which is used as a
biased coin to determine whether a particular
pattern, having been correctly classified, will
also be used for the backward-training pass.
This only applies to correctly segmented, or
positive patterns, and misclassified patterns are
never skipped.

Especially during the early stages of training,
we set this parameter fairly low (around 0.1),
thus concentrating most of the training time
and the net’s learning capability on patterns
that are more difficult to correctly classify. This
error emphasis is the only way we were able to
get the net to learn to correctly classify unusu-
al character variants, such as a three-stroke 5 as
written by only one training writer.

Variants of this scheme are possible in
which misclassified patterns would be repeat-
ed, or different learning rates would apply to
correctly and incorrectly classified patterns. It
is also related to techniques that use a training
subset, from which easily classified patterns are
replaced by randomly selected patterns from
the full training set (Guyon et al. 1992).

Annealing

Although some discussions of backpropaga-
tion espouse explicit formulas for modulating
the learning rate over time, many seem to
assume the use of a single, fixed learning rate.
We view the stochastic backpropagation
process as a kind of simulated annealing, with

a learning rate starting very high and decreas-
ing only slowly to a very low value. However,
rather than using any prespecified formula to
decelerate learning, the rate at which the
learning rate decreases is determined by the
dynamics of the learning process itself. We
typically start with a rate near 1.0 and reduce
the rate by a multiplicative decay factor of 0.9
until it gets down to about 0.001. The rate
decay factor is applied following any epoch in
which the total squared error is increased on
the training set relative to the previous epoch.
This total squared error is summed over all out-
put units and over all patterns in one full
epoch and normalized by these counts. Thus,
even though we are using online or stochastic
gradient descent, we have a measure of perfor-
mance over whole epochs that can be used to
guide the annealing of the learning rate.
Repeated tests indicate that this approach
yields better results than low (or even moder-
ate) initial learning rates, which we speculate
to be related to a better ability to escape local
minima.

In addition, we find that we obtain best
overall results when we also allow some of our
many training parameters to change over the
course of a training run. In particular, the cor-
rect train probability needs to start out very
low to give the net a chance to learn unusual
character styles, but it should finish near 1.0 in
order to avoid introducing a general posterior
probability bias in favor of classes with lots of
ambiguous examples. We typically train a net
in four phases, according to parameters such as
in table 2.

Quantized Weights

The work of Asanovi¢ and Morgan (1991)
shows that 2-byte (16-bit) weights are about
the smallest that can be tolerated in training
large ANNs using backpropagation. However,



memory is expensive in small devices, and
reduced instruction set computer processors,
such as the ARM-610 in the first devices in which
this technology was deployed, are much more
efficient doing one-byte loads and multiplies
than two-byte loads and multiplies; so, we were
motivated to make one-byte weights work.

Running the net for recognition demands
significantly less precision than training the
net. [t turns out that one-byte weights provide
adequate precision for recognition if the
weights are trained appropriately. In particular,
a dynamic range should be fixed, weights lim-
ited to the legal range during training, and
then rounded to the requisite precision after
training. For example, we find that a range of
weight values from (almost) -8 to +8 in steps of
1/16 does a good job. Figure 7 shows a typical
resulting distribution of weight values. If the
weight limit is enforced during high-precision
training, the resources of the net will be adapt-
ed to make up for the limit. Because bias
weights are few in number, however, and very
important, we allow them to use two bytes
with essentially unlimited range. Performing
our forward-recognition pass with low-preci-
sion, 1-byte weights (a +3.4 fixed-point repre-
sentation), we find no noticeable degradation
relative to floating-point, 4-byte, or 2-byte
weights using this scheme.

We have also developed a scheme for train-
ing with one-byte weights. It uses a temporary
augmentation of the weight values with two
additional low-order bytes to achieve precision
in training but runs the forward pass of the net
using only the one-byte high-order part. Thus,
any cumulative effect of the one-byte rounded
weights in the forward pass can be compensat-
ed through further training. Small weight
changes accumulate in the low-order bytes and
only occasionally carry into a change in the
one-byte weights used by the net. In a personal
product, this scheme could be used for adapta-
tion to the user, after which the low-order
residuals could be discarded and the tempo-
rary memory reclaimed.

Context-Driven Search

The output of the ANN classifier is a stream of
probability vectors, one vector for each seg-
mentation hypothesis, with as many poten-
tially nonzero probability elements in each
vector as there are characters (that the system
is capable of recognizing). In practice, we typ-
ically only pass the top 10 (or fewer) scored
character-class hypotheses for each segment to
the search engine for the sake of efficiency. The
search engine then looks for a minimum-cost
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Figure 7. Distribution of Weight Values in a Net
with One-Byte Weights on a Log Count Scale.

Weights with magnitudes greater than four are sparse but important.

path through this vector stream, abiding by
the legal transitions between segments as
defined in the tentative-segmentation step dis-
cussed previously. This minimum-cost path is
the APR system’s best interpretation of the ink
input by the user and is returned to the system
in which APR is embedded as the recognition
result for whole words or sentences of the
user’s input.

The search is driven by a somewhat ad hoc
generative language model that consists of a set
of graphs that are searched in parallel. We use
a simple beam search in a negative-log-proba-
bility (or penalty) space for the best N hypothe-
ses. The beam is based on a fixed maximum
number of hypotheses rather than a particular
value. Each possible transition token (charac-
ter) emitted by one of the graphs is scored not
only by the ANN but by the full language mod-
el, a simple letter-case model, and a geometric-
context model discussed later. The fully inte-
grated search process takes place over a space of
character- and word-segmentation hypotheses
as well as character-class hypotheses.

Lexical Context

Context is essential to accurate recognition,
even if this context takes the form of a broad
language model. Humans achieve just 90-per-
cent accuracy on isolated characters from our
database. Without any context, this character
accuracy would translate to a word accuracy of
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dig
di gnD1

[ 0123456789]
[ 23456789]

acodenuns = (dignD1l [01] dig)

acode ={ ("1-"? acodenuns "-"):40 ,
("1"? "(" acodenunms ")"):60 }
phone = (acode? dignDl1 dig dig "-" dig dig dig dig)

Figure 8. Sample of the Regular-Expression Grammar
Used to Define a Simple Model of Telephone Numbers.

Symbols are defined by the equal operator; square brackets enclose multiple, alternative characters; parentheses
enclose sequences of symbols; curly braces enclose multiple, alternative symbols; an appended colon, followed
by numbers, designates a prior probability of this alternative; an appended question mark means “zero or one
occurrence”; and the final symbol definition represents the graph or grammar expressed by this dictionary.

Bi G ammar Phone

[ Phone.lang 1. 1. 1.]

Figure 9. Sample of a Simple BiGrammar Describing a Telephone-Only Context.

The BiGrammar is first named (Phone) and then specified as a list of dictionaries (Phone.lang) together with
the probability of starting with this dictionary, ending with this dictionary, and cycling within this dictionary

(the three numeric values).

not much more than 60 percent (0.9%), assum-
ing an average word length of 5 characters. We
need to obtain word accuracies much higher
than this 60 percent, despite basing our recog-
nition on character accuracies that may never
reach human levels. We achieve this accuracy
by careful application of our context models.

A simple model of letter case and adjacen-
cy—penalizing case transitions except between
the first and second characters, penalizing
alphabetic-to-numeric transitions, and so
on—together with the geometric-context
models discussed later, is sufficient to raise
word accuracy to around 77 percent.

The next large gain in accuracy requires a
genuine language model. We provide this
model by means of dictionary graphs and
assemblages of these graphs combined into
what we refer to as BiGrammars. BiGrammars

are essentially scored lists of dictionaries
together with specified legal (scored) transi-
tions between these dictionaries. This scheme
allows us to use word lists, prefix and suffix
lists, and punctuation models and enable
appropriate transitions between them. Some
dictionary graphs are derived from a regular-
expression grammar that permits us to easily
model phone numbers, dates, times, and so
on, as shown in figure 8.

All these dictionaries can be searched in par-
allel by combining them into a general-pur-
pose BiGrammar that is suitable for most
applications. It is also possible to combine sub-
sets of these dictionaries, or special-purpose
dictionaries, into special BiGrammars targeted
at more limited contexts. A simple BiGram-
mar, which might be useful to specify context
for a field that only accepts telephone num-



Bi Granmar Fairl yGener al
(.8
(.6
[WordList.dict .5 .8 1. EndPunct.lang . 2]
[ User. dict .5 .8 1. EndPunct.lang . 2]
)
(.4
[ Phone. | ang .5 .8 1. EndPunct.lang . 2]
[ Dat e. | ang .5 .8 1. EndPunct.lang . 2]
)
)
(.2
[ OpenPunct.lang 1. O. 5
(.6
WrdList.dict .5
User . di ct .5
)
(.4
Phone. | ang .5
Dat e. | ang .5
)
]
)
[EndPunct.lang 0. .9 .5 EndPunct.lang .1]

Figure 10. Sample of a Slightly More Complex BiGrammar Describing a Fairly General Context.

The BiGrammar is first named (FairlyGeneral) and then specified as a list of dictionaries (the *.dict and *.lang
entries), together with the probability of starting with this dictionary, ending with this dictionary, and cycling
within this dictionary (the first three numeric values following each dictionary name), as well as any dictio-
naries to which this dictionary can legally transition and the probability of taking this transition. The paren-
theses permit easy specification of multiplicative prior probabilities for all dictionaries contained within them.
Note that in this simple example, it is not possible (starting probability = 0) to start a string with the EndPunct

(end punctuation) dictionary, just as it is not possible to end a string with the OpenPunct dictionary.

bers, is shown in figure 9. A more complex
BiGrammar (although still far short of the
complexity of our final general-input context)
is shown in figure 10.

We refer to our language model as “weakly
applied” because in parallel with all the word
list-based dictionaries and regular-expression
grammars, we simultaneously search both an
alphabetic-character grammar (wordlike) and a
completely general, any-character-anywhere
grammar (symbols). These more flexible mod-
els, although given fairly low a priori probabili-
ties, permit users to write any unusual character
string they might desire. When the prior prob-
abilities for the various dictionaries are properly
balanced, the recognizer is able to benefit from
the language model and deliver the desired lev-

el of accuracy for common in-dictionary words
(and special constructs such as phone numbers)
but can also recognize arbitrary, nondictionary
character strings, especially if they are written
neatly enough that the character classifier can
be confident of its classifications.

We have also experimented with bigrams,
trigrams, N grams, and we are continuing
experiments with other, more data-driven lan-
guage models; to date, however, our generative
approach has yielded the best results.

Geometric Context

We have never found a way to reliably estimate
a baseline or topline for characters, indepen-
dent of classifying these characters in a word.
Non-recognition-integrated estimates of these
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"if" from User versus Table:

Figure 11. The Eight Measurements That Contribute to the
GeoContext Error Vector and Corresponding Score for Each Letter Pair.

line positions, based on strictly geometric fea-
tures, have too many pathological failure
modes, which produce erratic recognition fail-
ures. However, the geometric positioning of
characters most certainly bears information
important to the recognition process. Our sys-
tem factors the problem by letting the ANN
classify representations that are independent
of baseline and size and then using separate
modules to score both the absolute size of indi-
vidual characters and the relative size and posi-
tion of adjacent characters.

The scoring based on absolute size is derived
from a set of simple Gaussian models of indi-
vidual character heights relative to some run-
ning scale parameters computed during both
learning and recognition. This CharHeight
score directly multiplies the scores emitted by
the ANN classifier and helps significantly in
case disambiguation.

We also use a GeoContext module that scores
adjacent characters based on the classification
hypotheses for these characters and their rela-
tive size and placement. GeoContext scores
each tentative character based on its class and
the class of the immediately preceding letter
(for the current search hypothesis). The char-
acter classes are used to look up expected char-
acter sizes and positions in a standardized
space (baseline = 0.0, top line = 1.0). The ink
being evaluated provides actual sizes and posi-
tions that can be compared directly to the

expected values, subject only to a scale factor
and offset, which are chosen to minimize the
estimated error of fit between data and model.
This same quadratic error term, computed
from the inverse covariance matrix of a full
multivariate Gaussian model of these sizes and
positions, is used directly as GeoContext’s
score (or penalty because it is applied in the
negative log probability space of the search
engine). Figure 11 illustrates the bounding
boxes derived from the user’s ink versus the
table-driven model with the associated error
measures for our GeoContext module.

GeoContext’s multivariate Gaussian model
is learned directly from data. The problem in
doing so was to find a good way to train per-
character parameters of top, bottom, width,
space, and so on, in our standardized space
from data that had no labeled baselines or oth-
er absolute referent points. Because we had a
technique for generating an error vector from
the table of parameters, we decided to use a
backpropagation variant to train the table of
parameters to minimize the squared error
terms in the error vectors given all the pairs of
adjacent characters and correct class labels
from the training set.

GeoContext plays a major role in properly
recognizing punctuation and disambiguating
case and a major role in recognition in general.
A more extended discussion of GeoContext
was provided by Lyon and Yaeger (1996).
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Figure 12. Gaussian Density Distributions Yield a Simple Statistical Model of Word-Break Probability,
Which Is Applied in the Region between the Peaks of the StrokeGap and WordGap Distributions.

Hashed areas indicate regions of clear-cut decisions, where Py, .. ... is set to either 0.0 or 1.0 to avoid problems

dealing with tails of these simple distributions.

Integration with Word Segmentation

Just as it is necessary to integrate character seg-
mentation with recognition using the search
process, so is it essential to integrate word seg-
mentation with recognition and search to
obtain accurate estimates of word boundaries
and reduce the large class of errors associated
with missegmented words. To perform this
integration, we first need a means of estimating
the probability of a word break between each
pair of tentative characters. We use a simple sta-
tistical model of gap sizes and stroke-centroid
spacing to compute this probability (spaceProb).
Gaussian density distributions, based on means
and standard deviations computed from a large
training corpus, together with a prior-probabil-
ity scale factor, provide the basis for the word-
gap and stroke-gap (nonword-gap) models, as
illustrated in figure 12. Because any given gap
is, by definition, either a word gap or a non-
word gap, the simple ratio defined in figure 12
provides a convenient, self-normalizing esti-
mate of the word-gap probability. In practice,
this equation further reduces to a simple sig-
moid form, thus allowing us to take advantage
of a lookup-table-based sigmoid derived for use
in the ANN. In a thresholding, non-integrated
word-segmentation model, word breaks would
be introduced when spaceProb exceeds 0.5,
that is, when a particular gap is more likely to
be a word gap than a nonword gap. For our
integrated system, both word-break and

non-word-break hypotheses are generated at
each segment transition and weighted by
spaceProb and (1 - spaceProb), respectively.
The search process then proceeds over this larg-
er hypothesis space to produce best estimates
of whole phrases or sentences, thus integrating
word segmentation as well as character seg-
mentation.

Discussion

The combination of elements described in the
preceding sections produces a powerful, inte-
grated approach to character segmentation,
word segmentation, and recognition. Users’
experiences with APR are almost uniformly
positive, unlike experiences with previous
handwriting-recognition systems. Writing
within the dictionary is remarkably accurate,
yet the ease with which people can write out-
side the dictionary has fooled many people
into thinking that the NEwTON’s Print Recog-
nizer does not use dictionaries. As discussed
previously, our recognizer certainly does use
dictionaries. Indeed, the broad-coverage lan-
guage model, although weakly applied, is
essential for high-accuracy recognition. Curi-
ously, there seems to be little problem with
dictionary perplexity—little difficulty as a result
of using very large, very complex language
models. We attribute this fortunate behavior to
the excellent performance of the neural net-

Articles

SPRING 1998 85



Articles

One of the key reasons for the success of
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especially for underrepresented classes and
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work character classifier at the heart of the sys-
tem. One of the side benefits of the weak appli-
cation of the language model is that even
when recognition fails and produces the
wrong result, the answer that is returned to the
user is typically understandable by the
user—perhaps involving substitution of a sin-
gle character. Two useful phenomena ensue as
a result: First, the user learns what works and
what doesn’t, especially when he/she refers
back to the ink that produced the misrecogni-
tion; so, the system trains the user gracefully
over time. Second, the meaning is not lost the
way it can be, all too easily, with whole-word
substitutions—with that Doonesbury effect
found in first-generation, strong-language-
model recognizers.

Although we provided legitimate accuracy
statistics for certain comparative tests of some
of our algorithms, we deliberately shied away
from claiming specific levels of accuracy in
general. Neat printers, who are familiar with
the system, can achieve 100-percent accuracy
if they are careful. Testing on data from com-
plete novices, writing for the first time using a
metal pen on a glass surface, without any feed-
back from the recognition system and with
ambiguous instructions about writing with dis-
connected characters (intended to mean print-
ing but often interpreted as writing with oth-
erwise cursive characters but separated by large
spaces in a wholly unnatural style), can yield
word-level accuracies as low as 80 percent. Of
course, the entire interesting range of recogni-
tion accuracies lies between these two
extremes. Perhaps a slightly more meaningful
statistic comes from common reports on news
groups and some personal testing that suggest
accuracies of 97 percent to 98 percent in regu-
lar use. For scientific purposes, none of these
numbers have any real meaning because our
testing data sets are proprietary, and the only
valid tests between different recognizers would
have to be based on results obtained by pro-
cessing the exact same bits or analyzing large
numbers of experienced users of the systems in
the field—a difficult project that has not been
undertaken.

One of the key reasons for the success of
APR is the suite of innovative neural
network-training techniques that help the
network encode better class probabilities, espe-
cially for underrepresented classes and writing
styles. Many of these techniques—stroke-
count dithering, normalization of output
errot, frequency balancing, and error empha-
sis—share a unifying theme: Reducing the
effect of a priori biases in the training data on
network learning significantly improves the
network’s performance in an integrated recog-
nition system despite a modest reduction in
the network’s accuracy for individual charac-
ters. Normalization of output error prevents
overrepresented non-target classes from bias-
ing the net against underrepresented target
classes. Frequency balancing prevents overrep-
resented classes from biasing the net against
underrepresented classes. Stroke-count dither-
ing and error emphasis prevent overrepresent-
ed writing styles from biasing the net against
underrepresented writing styles. One could
even argue that negative training eliminates
an absolute bias toward properly segmented
characters and that stroke warping reduces the
bias toward those writing styles found in the
training data, although these techniques also
provide wholly new information to the sys-
tem.

Although we've offered arguments for why
each of these techniques individually helps the
overall recognition process, it is unclear why
prior bias reduction in general should be so
consistently valuable. The general effect might
be related to the technique of dividing out pri-
ors, as is sometimes done to convert from
p(class | input) to p(input | class). However, we
also believe that forcing the net during learn-
ing to allocate resources to represent less fre-
quent sample types might be directly benefi-
cial. In any event, it is clear that paying
attention to such biases and taking steps to
modulate them is a vital component of effec-
tive training of a neural network serving as a
classifier in a maximum-likelihood recognition
system.

The majority of this article describes a sort of
snapshot of the system and its architecture as
it was deployed in its first commercial release,
when it was, indeed, purely a print recognizer.
Letters had to be fully disconnected; that is,
the pen had to be lifted between each pair of
characters. The characters could overlap to
some extent, but the ink could not be contin-
uous. Connected characters proved to be the
largest remaining class of errors for most of our
users because even a person who normally
prints (as opposed to writing in cursive script)



Articles

301

20+

101

Character Error Rate (%)

all 45

. User-Independent Net
. User-Specific Net
D User-Adapted Net

Writer

10.7

Figure 13. User-Adaptation Test Results for Three Individual Writers with Three Different Nets Each
Plus the Overall Results for 45 Writers Tested on a User-Independent Net Trained on All 45 Writers.

might occasionally connect a pair of charac-
ters—the cross-bar of a t with the h in the, the
o and n in any word ending in ion, and so on.
To address this issue, we experimented with
some fairly straightforward modifications to
our recognizer, involving the fragmenting of
user strokes into multiple system strokes, or
fragments. Once the ink representing the con-
nected characters is broken into fragments, we
then allow our standard integrated segmenta-
tion and recognition process to stitch them
back together into the most likely character
and word hypotheses, in the fashion routinely
used in print recognition. This technique has
proven to work well, and the version of the
print recognizer in the most recent NEWTONS,
since the MESSAGEPAD 2000, supports recogni-
tion of printing with connected characters.
This capability was added without significant
modification of the main recognition algo-
rithms as presented in this article. Because of
certain assumptions and constraints in the cur-
rent release of the software, APR is not yet a
full cursive recognizer, although this is an
obvious next direction to explore.

The net architecture discussed earlier and
shown in figure 3 also corresponds to the true
printing-only recognizer. The final output lay-
er has 95 elements corresponding to the full
printable ASCII character set plus the British
pound sign. Initially for the German market,
and now even in English units, we have
extended APR to handle diacritical marks and
the special symbols needed for most European

languages (although there is only limited cov-
erage of foreign languages in the English
units). The main innovation that permitted
this extended character set was an explicit
handling of any compound character as a base
plus an accent. In this way, only a few nodes
needed to be added to the neural network out-
put layer, representing just the bases and
accents rather than all combinations and per-
mutations of the same. In addition, training
data for all compound characters sharing a
common base or a common accent contribute
to the network’s ability to learn this base or
accent as opposed to contributing only to an
explicit base + accent combination. Here
again, however, the fundamental recognizer
technology has not changed significantly from
that presented in this article.

Future Extensions

We are optimistic that our algorithms, having
proven themselves to work essentially well for
connected characters as for disconnected char-
acters, might extend gracefully to full cursive
script. On a more speculative note, we believe
that the technique might extend well to ideo-
graphic languages, substituting radicals for
characters and ideographic characters for
words.

Finally, a note about learning and user adap-
tation: For a learning technology such as
ANNS, user adaptation is an obvious and nat-
ural fit and was planned as part of the system
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from its inception. However, because of ran-
dom-access memory constraints in the initial
shipping product and the subsequent prioriti-
zation of European character sets and connect-
ed characters, we have not yet deployed a
learning system. We have, however, done
some testing of user adaptation and believe it
to be of considerable value. Figure 13 shows a
comparison of the average performance on an
old user-independent net trained on data from
45 writers and the performance for 3 individu-
als using (1) the user-independent net, (2) a
net trained on data exclusively from this indi-
vidual, and (3) a copy of the user-independent
net adapted to the specific user by some incre-
mental training. (Note: These data are from a
multi-year-old experiment and are not neces-
sarily representative of current levels of perfor-
mance on any absolute scale.)

An important distinction is being made here
between user-adapted and user-specific nets.
User-specific nets have been trained with a rela-
tively large corpus of data exclusively from this
specific user. User-adapted nets were based on
the user-independent net with some addition-
al training using limited data from the user in
question. All testing was performed with data
held out from all training sets.

One obvious thing to note is the reduction
in error rate ranging from a factor of two to a
factor of five that both user-specific and user-
adapted nets provide. An equally important
thing to note is that the user-adapted net per-
forms essentially as well as a user-specific
net—in fact, slightly better for two of the three
writers. Given ANNs’ penchant for local mini-
ma, we were concerned that this might not be
the case, but it appears that the features
learned during the user-independent net train-
ing served the user-adapted net well. We
believe that a small amount of training data
from an individual will allow us to adapt the
user-independent net to the user and improve
the overall accuracy for the user significantly,
especially for individuals whose writing is
more stylized or whose writing style is under-
represented in our user-independent training
corpus. Even for writers with common or neat
writing styles, there is inherently less ambigu-
ity in a single writer’s style than in a corpus of
data necessarily doing its best to represent
essentially all possible writing styles.

These results might be exaggerated some-
what by the limited data in the user-indepen-
dent training corpus at the time these tests
were performed (just 45 writers), and at least
two of the three writers in question had partic-
ularly problematic writing styles. We have also
made significant advances in our user-inde-

pendent recognition accuracies since these
tests were performed. Nonetheless, we believe
these results are suggestive of the significant
value of user adaptation, even in preference to
a user-specific solution.
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