
■ Modeling various aspects of language—syntax,
semantics, pragmatics, and discourse, among oth-
ers—by the use of constrained formal-computa-
tional systems, just adequate for such modeling,
has proved to be an effective research strategy,
leading to deep understanding of these aspects,
with implications for both machine processing
and human processing. This approach enables one
to distinguish between the universal and stipula-
tive constraints. This is in contrast to an approach
where we start with the most powerful formal-
computational system and then model the phe-
nomena by making all constraints stipulative in a
sense. The use of constrained systems for modeling
leads to some novel ways of describing locality of
structures and brings out the relationship between
the complexity of description of primitives and
local computations over them. These ideas serve to
unify theoretical, computational, and statistical
aspects of natural language processing in AI. It is
expected that this approach will also be productive
in other domains of AI. 

It is indeed an honor to be selected by the
International Joint Conferences on Artifi-
cial Intelligence for the Research Excellence

Award. I am very grateful to all of you, my col-
leagues in AI, and my collaborators over many
years, which include, most importantly, all my
wonderful students. To all of you, I am
immensely indebted. 

I have always had a nagging doubt about
whether I was truly an AI person or not. On
two occasions, for IJCAI-75 and AAAI-97, I

received reviews of my papers with comments
such as, “This work is very interesting and
wonderful but it is not quite AI!” I have always
wondered about that, but now with this award,
I guess, I have the official stamp of AI. Thank
you again for selecting me for this award. 

My talk will not be a survey of the field of
natural language processing. It is not even a
survey of all my own work. I will focus on only
a few topics that illustrate an approach that has
influenced my own work in a significant way.
The particular set of ideas that characterize
these efforts could best be described as the use
of constrained formal-computational systems
for describing various aspects of language—
syntax, semantics, pragmatics, and discourse,
among others. The use of constrained compu-
tational systems is in sharp contrast to starting
with the most general and most powerful com-
putational systems and then making all con-
straints, necessary for description, stipulative
in a sense. The use of such systems allows one
to distinguish between the universal and stip-
ulative constraints. Universal constraints are
properties of languages that are (or claimed to
be) valid across languages and not language
particular. All other properties that may be lan-
guage particular are then stipulative. In this
approach one tries to capture the universal
properties as properties of the constrained sys-
tem itself. On the other hand in the approach
where the underlying system is unconstrained,
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ment. After the dictionary lookup, grammatical
idiom computation, and part-of-speech disam-
biguation, the simple noun phrases are com-
puted by an FST scanning from right to left,
then the prepositional phrases by a left-to-right
FST, and the verb clusters by a left-to-right FST.
The computation of clauses is done by a push-
down store with a depth-first strategy. 

There are several reasons for mentioning
this very early work. First FSTs are an example
of a constrained computational system, but
more importantly, FSTs are once again playing
a very significant role in natural language pro-
cessing, and many of the techniques used in
this early work have close connections to some
very recent work on FSTs. This resurgence of
FST technology in natural language processing
is because of our substantial knowledge of
finite-state calculi; the new techniques for
handling enormous sizes of FSTs and their
determinateness and minimization; and, of
course, techniques for handling stochastic and
weighted FSTs. Some of the key efforts in this
area are Koskenniemi, Tapanainen, and Vouti-
lainen (1992), Karttunen (1996), Hobbs et al.
(1992), and Mohri, Pereira, and Riley (1997).2

FSTs are an example of a constrained system,
but they also serve as an example of a compu-
tational system that is finite state (thus local)
but where the state descriptions can be com-
plex; so, it is an example (no doubt a simple
one) of a computation that I call local compu-
tation on complex structures. I will return to this
theme repeatedly. 

Now I will turn to my second example—lex-
icalized grammars—which also illustrate con-
strained computational systems. A lexicalized
grammar consists of a finite set of elementary
structures (for example, strings, trees, or direct-
ed acyclic graphs), each structure associated
with a lexical anchor. Each anchor may have
more than one associated structure. Further
there is a finite set of composition operations,
which are universal, that is, language indepen-
dent. Thus in a lexicalized grammar, in a sense,
grammar and lexicon are the same thing; in
other words, grammar = lexicon.

A particular example of a lexicalized gram-
mar is the LTAG,3 where each lexical item is
associated with one or more elementary trees
(or directed acyclic graphs). Each elementary
tree encapsulates syntactic and semantic infor-
mation associated with the lexical anchor.4 In
LTAG the elementary trees localize all depen-
dencies including the so-called long-distance
dependencies within the domain of the ele-
mentary trees. The two composition operations
are substitution and adjoining. Substitution is
the obvious operation—substituting a tree at a

all constraints introduced in the descriptions
are stipulative by definition. Ideally we want a
constrained system that captures all and only
the universal properties. Of course, this is not
achievable at present and perhaps may never
be achievable. However, this is the goal of the
constrained systems approach. This approach
has proved to be quite successful in computa-
tional modeling of language and has given
deep insights into the structure of languages.
Moreover, it has also led to efficient processing
techniques. 

I have listed below five topics of my research
that fall under the characterization of the
approach using constrained formal-computa-
tional systems: (1) cascaded finite-state trans-
ducers for parsing; (2) lexicalized grammars—
lexicalized tree-adjoining grammars (LTAGs);
(3) some aspects of bilingual processing; (4)
computation of certain classes of inference, for
example, presupposition and entailments; and
(5) local structure of discourse—centering.

I will only discuss three of these items, items
1, 2, and 5. These examples will serve to illus-
trate the main point of my talk—the role of
constrained computational systems. 

My first topic or example is the use of cas-
caded finite-state transducers (FSTs) for parsing.
It also happens to be the very first work I did
in natural language processing. As far as I
know this is the first use of FSTs for parsing.
This work (carried out during the period
1958–1959) was part of a project called Trans-
formations and Discourse Analysis Project
(TDAP), directed by Professor Zellig Harris at
the University of Pennsylvania.1 

The FST parser consists of a cascade of finite-
state transducers corresponding to the follow-
ing computations: (1) dictionary lookup and
computation of the so-called grammatical
idioms, that is, word clusters that behave as a
single part of speech; (2) part-of-speech disam-
biguation; (3) computation of simple noun
phrases, prepositional phrases, and verb clus-
ters; and (4) computation of clauses (strictly
not an FST computation). Rather than describ-
ing these computations, I will give an example,
which is an actual output from the original
program:

[We] {have found} /that [subsequent
addition] (of [the second inducer]) (of
[either system])  <  after {allowing} [single
induction] {to proceed} +  >  (for [15 min-
utes]) (also) {results} (in [increased repro-
duction] ) +  \  + (of [both enzymes]) 

Here [...] denotes a simple noun phrase, (...)
denotes a simple adjunct, and {...} denotes a
verb cluster. Both  < ... >  and /... \  denote
clauses. + denotes the end of a verb comple-
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frontier node of another tree. Adjoining is a
more complex operation—splicing a tree into
the interior of another tree. In figure 1, the tree
β is substituted at the node X on the frontier of
the tree α resulting in the tree γ. In figure 2, the
tree β with root node labeled X and a frontier
node also labeled X is spliced into, or adjoined
into, the tree α at the node X, resulting in the
tree γ. These two composition operations are
language independent. Thus the entire linguis-
tic or grammatical information is contained in
the set of elementary trees. The linguistic
theory then consists of a specification of this
finite set of elementary structures. 

For a long time I thought that tree adjoining
was really a new idea, but David Weir (now at
the University of Sussex, Brighton, United
Kingdom) pointed out to me some time back
that perhaps Vasily Kandinsky may have
already known something about tree adjoin-
ing, as is clear from his watercolor, Ins Dunkel,5

in figure 3. Fortunately, Kandinsky never wrote
any papers on this topic, so I am quite safe. 

The two operations—substitution and
adjoining—both grow trees. Substitution
grows them at the frontier, and adjoining
grows them in the interior. It is the operation
of adjoining that distinguishes LTAG from all
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Figure 3. Vasily Kandinsky, Ins Dunkel, 1928.
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other systems. Adjoining allows localization of
dependencies including long-distance depen-
dencies, and it allows modification of already
built structures, an aspect to which I will
return later. Some examples of syntactic
dependencies are (1) agreement, person, num-
ber, gender, for example; (2) subcategorization,
different verbs taking different complements,
for example, hit requires noun-phrase (NP)
complement and think requires NP sentence
(S); and (3) filler-gap dependencies, for exam-
ple, who(i) did John ask Bill to invite (i), where
there is dependency between who and the
complement of invite, which can be at an arbi-
trary distance. Some examples of semantic
dependencies are (1) function arguments, the
lexical anchor is treated as a functor, and then
all its arguments are localized within an ele-
mentary tree; (2) word clusters, these are flexible
idioms, for example, take a walk; the noncom-
positional aspects are localized within the ele-
mentary trees; and (3) word cooccurrences and
lexical semantic aspects, these are, of course,
directly related to the statistical dependencies
such as the dependencies between a verb and
the head nouns of its subject and comple-
ments. 

Figure 4 shows some highly simplified repre-
sentations of two lexically anchored structures
associated with the word like.6 The tree  α1 cor-
responds to the transitive construction, and
the tree α2 corresponds to the object-extrac-

tion construction. Of course, there will be
many other trees associated with like, for
example, for subject-extraction, topicalization,
subject relative, object relative, and passive. In
fact there will be an elementary tree for every
minimal syntactic construction in which likes
can appear. Figure 5 shows more examples of
elementary trees. It is easy to see that in each
tree the syntactic and the associated semantic
dependencies have been localized. 

In figures 6 and 7, a very simple example of
a derivation is presented. The elementary trees
that enter the derivation are shown in figure 6
and the derivation of who does Bill think Harry
likes is shown in figure 7. 

We start with the tree α2 corresponding to
likes in the object-extraction construction. The
trees for who and Harry are substituted in α2 as
shown (by solid lines with arrows), resulting in
a tree corresponding to who Harry likes. The
trees for Bill and think are substituted in the
tree β1 for think as shown (again by solid lines),
resulting in a tree corresponding to Bill think S.
Tree β2 for does is adjoined to this tree as
shown by a dotted line with an arrow, result-
ing in a tree for does Bill think S, which is then
adjoined into the tree for who Harry likes as
shown by a dotted line, resulting in the tree
corresponding to who does Bill think Harry
likes? This derivation is shown in figure 8
where the solid lines represent substitution
and the dotted lines represent adjoining. The
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representation in figure 8 is very close to the
so-called dependency diagrams, which directly
represent the dependencies among the lexical
items. 

A very large wide-coverage LTAG grammar
for English has been built together with a pars-
er—the XTAG system. It has been used for pars-
ing a wide range of corpora (for example, the
Wall Street Journal corpus) and also for some
applications such as machine translation,
information retrieval, and information extrac-
tion. I am not going to discuss these aspects
because this is not the topic of my article. I am
concerned here with constrained computa-
tional systems.7 From this perspective I will
focus more on the abstract character of adjoin-
ing. Adjoining, unlike substitution, changes
(modifies) already built structures; that is, it is
a kind of higher-order operation, a higher-
order abstraction. This aspect of LTAG, togeth-
er with the fact that it is a constrained compu-
tational system, has led to many applications
of LTAG beyond parsing. Some examples are
the generation work of Becker, Finkler, and
Kliger (1997) in the VERBMOBIL Project and the
work of Stone and Doran (1997) and Dras
(1997).8 The constrained nature of LTAG is

used for compiling head-driven phrase struc-
ture grammar (HPSG) into LTAG, also in the
VERBMOBIL Project (Kasper et al. 1995) and in
the JPSS project at the University of Tokyo
headed by Professor Tsujii (Tsujii et al. 1997),9

where it has been used to compile LTAG into
an HPSG, leading to a very efficient parser. 

The abstract character of adjoining has also
led to the use of LTAG for modeling incremen-
tal aspects of discourse structure as represent-
ed, for example, in the works of Gardent
(1997) and Cristea and Webber (1997).10 Fur-
ther, in a nonlinguistic domain such as model-
ing complex dependencies in RNA secondary
structures, the abstract character of LTAG has
been exploited by Umeura et al. (1998) and
Abe and Mamitsuka (1994).11

Supertagging
I will now take a completely different perspec-
tive on LTAG. I will treat the elementary trees
associated with a lexical item as if they are a
super part of speech (super POS or supertags)
in contrast to the standard part of speech such
as V (verb) and N (noun). Now it is well known
that local statistical techniques can lead to
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in this sentence by applying local statistical
disambiguation techniques; then for all practi-
cal purposes we have parsed the sentence. It is
not a complete parse because we have not put
the supertags together; hence, we call it almost
parse. 

A supertagging experiment was carried out
using trigrams of supertags and techniques
similar to the standard POS disambiguation
techniques. The corpus used was the Wall
Street Journal corpus. With a training corpus of
1 million words and a test corpus of 47,000
words, the baseline performance was 75 per-
cent (that is, 75 percent of the words received
the correct supertag). The baseline corresponds
to the case where the supertag chosen for a
word is just the most frequent supertag for this
word. We know from the performance of dis-
ambiguators for the standard POS that the
baseline performance is 90 percent or better.
The low-baseline performance for supertag-
ging is because the local ambiguity is very high
(about 8 to 10 on the average) in contrast to
the local ambiguity of the standard POS,
which is about 1.5. The performance of the tri-
gram supertagger, on the other hand, is 92 per-
cent. The improvement from 75 percent to 92
percent is indeed very remarkable. This means
that 92 percent of the words received the cor-
rect supertag. 

In supertagging, we are working with com-
plex (richer) descriptions of primitives (lexical
items in our case). This is quite contrary to the
standard mathematical wisdom or conven-
tion, where we keep the descriptions of the
primitives simple and build complex descrip-
tions out of simple descriptions. The descrip-
tions of primitives (lexical items in our case)
are complex because we try to associate with
each primitive all information relevant to that
primitive. Making descriptions more complex
has two consequences: (1) local ambiguity is
increased, that is, there are many more
descriptions for each primitive, and (2) these
richer descriptions of primitives locally con-
strain each other. There is an analogy here to a
jigsaw puzzle—the richer the description of
each piece the better, in the sense that there
are stronger constraints on what other pieces
can go with a given piece. Making the descrip-
tions of primitives more complex allows us to
compute statistics over these complex descrip-
tions, but more importantly, these statistics are
more meaningful because they capture the rel-
evant dependencies directly (for example,
word-to-word dependencies and word-to-con-
struction dependencies). Local statistical com-
putations over these complex descriptions lead
to robust and efficient processing. Supertag-

remarkably successful disambiguation of stan-
dard POS. Can we apply these techniques for
disambiguating supertags, which are very rich
descriptions of the lexical items? If we can,
then, indeed, this will lead to “almost pars-
ing.” The approach is called supertagging.12

In figure 9 some elementary trees associated
with the lexical item likes are shown. These are
the same trees we have seen before. However,
now we are going to regard these trees as
supertags associated with likes. Given a corpus
parsed by LTAG grammar, we can compute the
statistics of supertags, statistics such as uni-
gram, bigram, and trigram frequencies. Inter-
estingly, these statistics combine not only lex-
ical statistics but the statistics of constructions
(as represented by the elementary trees) in
which the items appear, thus combining lexi-
cal statistics with the statistics of the environ-
ments in which the lexical items appear. 

Thus, for example, consider the string the
purchase price includes two ancillary companies as
shown in figure 10. The supertags associated
with a word appear on top of each word. Some
words have only one supertag associated with
them and others have more than one. In the
current XTAG system there are about 8 to 10
supertags per word on the average, so there is
a very high level of local ambiguity. In figure
11 the same supertags are shown for each
word; however, for each word one supertag has
been identified (in a box). This is the correct
supertag for this word in the sense that this is
the supertag associated with this word in the
correct parse of this sentence. Suppose we are
able to find the correct supertag for each word
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ences are equal in the sense that some are eas-
ier than others. This distinction is related, at
least in part, to the structure of an utterance in
a discourse. If a uniform machinery is used to
subsume all inference mechanisms, then, of
course, we will be able to model all these infer-
ences but we will not learn much about the
language-specific mechanisms that affect the
complexity of inferences. One mechanism of a
constrained inferential system is based on the
local structure of an utterance in discourse,
which is known as centering.15 In my discussion
of centering, I will limit myself to certain
aspects of this work that relate to my particular
position on constrained computational sys-
tems, the major theme of this article.

The basic idea is to start with the observa-
tion that an utterance in a discourse singles
out an individual or entity among all those
that are denoted by the arguments of the main
predicate. This entity is called the backward-
looking center of the utterance, which for the pur-
pose of this article, I will call the center. The
notion of a center is a discourse construct and
not a syntactic or semantic construct. Center-
ing an entity is equivalent to ascribing a prop-
erty to an individual. The property itself may,
of course, involve other individuals. As a sim-
ple example, consider the utterance 

ging is thus an example of a local computation
on complex descriptions. 

These considerations are directly relevant to
AI. I can illustrate this by pointing out interest-
ing relationships to the well-known algorithm
of Waltz (1975) for interpreting line draw-
ings.13 What Waltz did was to make the
descriptions of vertices more complex by
adding information about the number and
types of edge incident on a vertex. Again there
is an analogy here to a jigsaw puzzle: the richer
the description of a piece the better. By making
the descriptions of vertices more complex
(richer), the local ambiguity was increased; for
example, an L junction (a particular kind of
junction in the taxonomy of junctions) has
about 92 physically possible labelings. Howev-
er, local computations on these complex
descriptions are adequate to rapidly disam-
biguate these descriptions; so once again we
have here an example of a local computation
over complex descriptions, which has been my
recurrent theme.14

My last example concerns the use of con-
strained computational systems in the area of
discourse, in particular, complexity of infer-
ences in discourse. To integrate an utterance in
the previous discourse a variety of inferences
need to be made. However, not all these infer-
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John hit Bill.
In a particular discourse, say D1, John
may be the center, which we may repre-
sent as 
(JOHN x)(HIT x BILL) 
In another discourse, say D2, Bill may be
the center, which we may represent as 
(BILL y) (HIT JOHN y)

The main idea is that the notion of center-
ing allows us to describe the rough logical form
of an utterance in a discourse, where an n-ary
predicate is made to look like a monadic predi-
cate (predicate of a single argument) by sin-
gling out one argument as the center and tem-
porarily hiding the other n – 1 arguments. This
leads to a locally monadic structure of an utter-
ance in a discourse, and it is this local monadic
aspect of the logical form that has implications
for the complexity of inference. 

In the predicate calculus representation, all
arguments of a predicate have an equal status.
This is not true for an utterance in a discourse.
It is interesting to note that as early as 1879,
Frege was aware of this distinction and its rel-
evance to the ease of certain inferences. Here is
an interesting quote from Frege (1967):16

In ordinary languages the subject in the
sequence of words has a distinguished
place.… This may, for example, have the
purpose of pointing out a certain relation
of the given judgment to others, and
thereby making it easier for the listener to
grasp the entire context….” 

Of course, Frege is assigning here the special
status to the subject, which is a grammatical
construct. In the centering theory the center is
a discourse construct and not a syntactic con-
struct, and any entity corresponding to an
argument of a predicate can be centered. How-
ever, Frege clearly was aware of the (local)
focus provided to an entity by the structure of
an utterance in a discourse and its influence on
the ease of certain inferences. The notion of
(local) focus is central to all perceptual strate-
gies for controlling inference. Therefore, it is
not surprising that local structuring of an
utterance in a discourse plays a role in control-
ling inferences. 

The actual work on centering involves the
study of the transition of centers from utter-
ance to utterance because a centered entity
does not necessarily remain centered all the
time in a discourse (it would be a boring dis-
course, to be sure). Centers shift, new entities
become centered, previously centered entities
become centered again, and so on. The transi-
tions of centers have to be described as pat-
terns of continuations of the center and shift-
ing of the centers (in other words, mechanisms

for tracking the centers) as the discourse
proceeds. Centering theory also involves the
study of how pronouns and definite descrip-
tions relate to centering. I will not discuss
these details here, but the main observation,
important for my topic here, is that the more
the transitions and the more the entities cen-
tered in a discourse, the more complex the dis-
course becomes (that is, harder to process). 

I will give a simple example to illustrate my
main point. Consider the following two dis-
courses, D1 and D2. In each case assume that
John has been established as the center prior to
D1 or D2. 

D1: (a) John called Bill.

(b) He wanted his advice.

D2: (a) John called Bill.

(b) He was happy to hear from him. 

The he in D1b refers to John and his to Bill.
On the other hand, he in D2b refers to Bill and
him to John. Under the centering characteriza-
tion of an utterance in a discourse, the locally
monadic representation of an utterance in a
discourse leads to a prediction that the dis-
course D2 is harder to process than the dis-
course D1. This is because in centering theory
continuation of a center is preferred to shifting
(the latter leading to more complexity). In D2b
the center has to be shifted from John to Bill. It
is this shifting of the center in D2b that leads
to the increased complexity.17

The main point here is that a discourse has
a locally monadic structure. Monadic calculus
is certainly a constrained system compared to
the full predicate calculus. Thus by using a
constrained system, we are able to capture cer-
tain aspects of inferential complexities in dis-
course. It should be noted that by adopting a
constrained system, we have actually compli-
cated the representation of the structure of an
utterance in a discourse. Instead of having all
the arguments of a predicate with an equal sta-
tus, we have given one of the arguments a spe-
cial status, thus complicating the description
of primitives (utterances in a discourse, in this
case). This situation is similar to the one in my
second example (see Supertagging), in the
sense that complexity of the description of the
primitives is related to the ease of inference.

Conclusion 
I gave three examples of my research relevant
to the topic of this article, namely, the use of
constrained formal-computational systems in
modeling various aspects of language. I will
now briefly discuss some unifying issues that
arise out of these (and other related) examples. 
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Notes
1. The other participants of this project were Lila
Gleitman, Bruria Kauffman, Naomi Sager, and Carol
Chomsky. By a remarkable coincidence, this pro-
gram has recently been reconstructed faithfully from
the original documentation, collaboratively with
Phil Hopely. Two papers based on this work have
also appeared recently: First is Joshi, A. K., and Hope-
ly, P. 1997. A Parser from Antiquity. Natural Language
Engineering 2(4): 291–294. Second is Kornai, A. 1998.
Extended Finite-State Automata. Cambridge, U.K.:
Cambridge University Press. Forthcoming, in which
an extended version of reference 1 appears. This
extended version includes an evaluation of this pars-
er on some corpora, for example, the Wall Street Jour-
nal, IBM computer manuals, and ATIS (several mod-
ern parsers have been evaluated on these corpora
also).

2. Mohri, M.; Pereira, F.; and Riley, M. 1997. Rational
Power Series in Text and Speech Processing, Lecture
Notes, AT&T Laboratories, Murray Hill, New Jersey.

Karttunen, L. 1996. Directed Replacement. In Pro-
ceedings of the Thirty-Fourth Annual Meeting of the
Association for Computational Linguistics (ACL96),
108–115. San Francisco, Calif.: Morgan Kaufmann.

Hobbs, J. R.; Appelt, D. E.; Bear, J. S.; Israel, D.; and
Tyson, W. M. 1992. FAUSTUS: A System for Extracting
Information from Natural Language Text, Technical
Note 257, SRI International, Menlo Park, California.

Koskenniemi, K.; Tapanainen, P.; and Voutilainen, A.
1992. Compiling and Using Finite-State Syntactic
Rules. Paper presented at the Fifteenth International
Conference in Computational Linguistics (COLING-
92), August, Nantes, France.

The use of constrained formal-computation-
al systems for modeling various aspects of lan-
guage allows us to localize complex dependen-
cies. This is one of the crucial results in the
study of these systems. The use of such systems
often requires us to make the descriptions of
primitives more complex. However, this com-
plexity leads to computations that become
more local; in other words, the greater the
complexity of the primitives the more local
the computations over them. Further, statistics
computed over primitives with complex
descriptions are more meaningful in the sense
that they capture the appropriate statistical
dependencies (because of the localization of
dependencies), and these in turn lead to effi-
cient and robust computations. 

Adopting primitives with complex descrip-
tions requires us to have a richly annotated
corpora of texts, dialogues, and various inter-
active situations, either obtained automatical-
ly or, most likely, semiautomatically. Statistics
then have to be computed over these richly
annotated corpora. Statistical techniques tell
us how to count, but the computational mod-
els of various aspects of language tell us what
to count. This is an obvious point but needs to
be emphasized because computational model-
ing of various aspects of language is crucial in
deciding the relevant primitive structures we
want to deal with and count to collect useful
statistical information. A significant result of
this line of research is that local structures
emerging out of the use of constrained formal-
computational systems provide very appropri-
ate units for counting in statistical processing. 

To conclude, I have tried to show that the
use of constrained formal-computational sys-
tems gives us deep insights into various aspects
of language. It leads to appropriate notions of
locality in syntax, semantics, and discourse. I
gave three relevant examples of my
research—one from syntax, one from syntax
and semantics, and one from discourse. I dis-
cussed the relationship between locality and
the complexity of descriptions of
primitives—the more complex the description
the more local the computations over them. I
illustrated the relevance of locality for unifying
theoretical, computational, and statistical
aspects of natural language processing. These
are the aspects that, I believe, make con-
strained formal-computational systems highly
relevant to AI. I believe that this approach will
be productive in other domains of AI also. 
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