
■ Complex, real-world domains require rethinking
traditional approaches to AI planning. Planning
and executing the resulting plans in a dynamic
environment implies a continual approach in
which planning and execution are interleaved,
uncertainty in the current and projected world
state is recognized and handled appropriately, and
replanning can be performed when the situation
changes or planned actions fail. Furthermore,
complex planning and execution problems may
require multiple computational agents and human
planners to collaborate on a solution. In this arti-
cle, we describe a new paradigm for planning in
complex, dynamic environments, which we term
distributed, continual planning (DCP). We argue
that developing DCP systems will be necessary for
planning applications to be successful in these
environments. We give a historical overview of re-
search leading to the current state of the art in DCP
and describe research in distributed and continual
planning.

The increasing emphasis on real-world ap-
plications has led AI planning
researchers to develop algorithms and

systems that more closely match realistic
planning environments, in which planning
activity is often distributed, and plan genera-
tion can happen concurrently with plan execu-
tion. These new research directions have
increased the need for distributed systems of
cooperating agents for continuous planning
and decision support. Multiagent planning
architectures, distributed planning, mixed-ini-
tiative planning, distributed scheduling, and
work-flow management methods are currently
active areas of research.

We argue that a new paradigm is needed to
support this style of planning and that such a
paradigm is beginning to emerge within the
planning research community. We characterize
this new approach to planning as distributed,

continual planning (DCP). Distributed planning
refers to an environment in which planning
activity is distributed across multiple agents,
processes, or sites. Continual planning refers to
an ongoing, dynamic process in which plan-
ning and execution are interleaved.1

An agent should engage in distributed plan-
ning when planning knowledge or re-
sponsibility is distributed among agents or
when the execution capabilities that must be
employed to successfully achieve objectives are
inherently distributed. An agent should plan
continually when aspects of the world can
change dynamically beyond the control of the
agent, aspects of the world are revealed
incrementally, time pressures require execu-
tion to begin before a complete plan can be
generated, or objectives can evolve over time.
Thus, DCP is important for an agent whose
success and efficiency depends on how its cur-
rent actions affect its future choices but that
must operate in a complex, dynamic, and mul-
tiagent environment.

We first present a historical overview of
planning research that emphasizes how the
introduction of more realism into the prob-
lems faced by planning systems has led to cur-
rent approaches that fit the DCP paradigm
more closely. We then survey related research
in distributed and continual planning. We
conclude by outlining some important future
directions that are needed for true DCP to
become a reality.

Distributed, Continual Planning:
A Historical Perspective

In this section, we present a framework for cat-
egorizing planning and execution systems that
centers on how each system handles the con-
text in which its planning and execution are
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assumed that the planning and execution for
one episode have no bearing on the planning
and execution done for previous or future
episodes. The context in which planning and
execution are done is effectively ignored
during the planning and execution processes.

Tolerate Planning and 
Execution Context
In the real world, plans do not always proceed
as expected. In dynamic, uncertain environ-
ments, an agent cannot in general make accu-
rate predictions about the outcomes of its
actions. One approach to handling uncertainty
is to enumerate the possible states (contingen-
cies) that might arise at execution time and
plan for each of them, constructing a (possibly
large) conditional plan that provides alternative
courses of action for each contingency (Boutili-
er, Dean, and Hanks 1999; Schoppers 1987).

If the knowledge available to the agent is
insufficient or suggests an intractably large set
of contingencies, a better approach is plan
monitoring and repair (Ambros-Ingerson and
Steel 1988; Doyle, Atkinson, and Doshi 1986).
In this approach, the agent formulates a nom-
inal plan that looks best given what (little) the
agent knows. As the plan is executed, progress
is monitored to ensure that the predicted or
assumed conditions actually hold. When devi-
ations are detected, the agent halts execution
and revisits its planning decisions, creating a
revised plan. In effect, the episodic nature of
“plan, then execute” is maintained, but
episodes can be terminated prematurely (when
a deviation is detected), and results from one
episode can influence another (such as when
the previous plan is repaired and reused). If no
deviations occur, this approach is equivalent
to traditional planning.

In complex environments, however, the
planning and execution context might change
in ways that suggest a change in future plans
without necessarily violating a currently exe-
cuting plan. Unexpected changes in the world
might provide opportunities to accomplish
goals more efficiently or effectively. Alternative-
ly, an agent’s goals might themselves change, so
that although the current plan could still be car-
ried out, the motivation for doing so is lost
(Cohen and Levesque 1990). When goals and
aspects of the world can evolve continuously
rather than be fixed throughout a planning
episode, an agent should continually evaluate
and revise its plans.

Continual planning recognizes that plan
revision should be an ongoing process rather
than one that is triggered only by failure of
current plans. It also adopts the perspective of

carried out. We place a range of systems within
this framework and discuss where continual
planning, distributed planning, and distrib-
uted, continual planning arise.

The context-centered framework gives us a
structure that we use to provide a historical
perspective on research in this area. We divide
this research into overlapping stages that are
characterized by increasingly sophisticated
treatment of planning and execution context.
The earliest stage consists of systems that
ignore context to simplify the planning prob-
lem. In the next stage, we begin to see systems
that tolerate context by responding to or antic-
ipating events that occur outside the planning
and execution system. The third stage includes
systems that exploit context, by taking advan-
tage of their ability to control the world and
interact with other agents. Finally, the most so-
phisticated systems take the initiative to estab-
lish context by actively interacting with and
configuring the environment.

The characterizations we provide are a sim-
plification of the issues and accomplishments
being addressed in each of the stages. In this
section, we refer to survey treatments and illus-
trative examples of work rather than provide a
comprehensive bibliography of the rich plan-
ning literature. Our purpose is to illustrate the
changing perspectives in the general planning
community that have led to the current inter-
est in DCP.

Ignore Planning and 
Execution Context
Planning is difficult. Even the simplest plan-
ning problem, that of determining how an
agent can move from the current world state to
a world state that satisfies its preferences, is
intractable in the general case. For this reason,
traditional AI planning research (Russell and
Norvig 1995; Hendler, Tate, and Drummond
1990) has introduced assumptions and simplifi-
cations to make planning feasible. An agent is
typically assumed to know everything that is
relevant to the planning problem and to know
exactly how its available actions can change the
world from one state into another. The plan-
ning agent is assumed to be in control of the
world, so that the only changes to the state are
the result of the agent’s deliberate actions. The
agent’s preferred world states are also constant
throughout a planning episode (planning prob-
lem or set of objectives)—it will not “change its
mind” about what goals to achieve in the midst
of planning or while executing the plan.

These simplifications allow the planning
problem to be serialized: A planning agent first
formulates a plan and then executes it. It is
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not planning too much detail too far into the
future because evolving circumstances can ren-
der such details obsolete. Continual planning,
therefore, tolerates the planning and execu-
tion context by maintaining flexibility and
opportunism.

Exploit Planning and 
Execution Context
The approach to continual planning that we
have outlined suggests an environment in
which an agent is working toward accom-
plishing its objectives, despite the world dy-
namically changing in unpredictable ways
that interfere with its plans. Such a pessimistic
mind set need not be adopted, however, if the
agent has knowledge, and the ability to use it,
about its relationship to its environment and
the other agents in the world. In this case, an
agent should not simply tolerate the presence
of other agents but should seek to exploit their
presence by cooperating with them.

One particularly useful source of interaction
is human participants in the planning process.
Humans often have expertise and capabilities
that computational agents lack. Rather than
formulating weak plans based on its limited
expertise and knowledge, therefore, an agent
should, whenever possible, work with people
to formulate more efficient and robust plans. A
planning process that is distributed between
computational and human agents in this way
is referred to as mixed-initiative planning (Fergu-
son, Allen, and Miller 1996; Myers 1996;
Veloso 1996).

A planning agent could also work with other
computational agents. By bringing to bear
complementary capabilities, a set of agents can
collectively formulate a concerted plan of
action for one or more of them to carry out
(Wilkins and Myers 1998; Kambhampati et al.
1993). Similarly, by considering the capabili-
ties of other agents, agents can accomplish
their objectives by exploiting each other’s
strengths through cooperative execution.

Even if the agents do not explicitly co-
operate by sharing expertise or capabilities, by
exploiting the fact that changes to the world
are often a result of other agents’ planned
actions, an agent can reduce its uncertainty,
and increase the quality of its local plan, by
influencing the plans that others adopt.

Establish Planning and 
Execution Context
The approaches to cooperative and negotiated
distributed planning that were alluded to in
the previous subsection are essentially distrib-
uted versions of traditional plan-then-act

approaches. For a system of agents to engage
in distributed, continual planning, however,
each must be a continual planning agent, and
more. As each agent elaborates its ongoing
abstract plans into actions, the elaboration
decisions should be compatible and preferably
mutually supporting. The agents’ distributed
planning mechanisms should continually
evaluate the relationships between refinement
decisions and redirect decisions in cooperative
(or at least compatible) ways.

The idea of allowing agents to exploit the
larger multiagent context for planning (work-
ing together to plan) and execution (taking
actions toward common goals) opens the door
to purposely establishing such a context to im-
prove what agents can accomplish (Stone and
Veloso 1999; Tambe 1997; Shoham and Ten-
nenholtz 1992). Agents that have formulated
abstract plans can analyze potential relation-
ships between their possible plans, commit to
particular constraints on how they will realize
these plans, and then incorporate these influ-
ences in their elaboration decisions in a decen-
tralized way (Clement and Durfee 1999).

Distributed Planning
The problem of constructing plans in a distrib-
uted environment has been approached from
two different directions: One approach has
begun with a focus on planning and how it
can be extended into a distributed environ-
ment, where the process of formulating or exe-
cuting a plan could involve actions and inter-
actions of a number of participants. The other
approach has begun with an emphasis on the
problem of controlling and coordinating the
actions of multiple agents in a shared environ-
ment and has adopted planning representa-
tions and algorithms as a means to an end.
Although these two approaches have led to
common ground in distributed planning, and
indeed many researchers embrace both
approaches (making unequivocal partitioning
into one camp or the other impossible), we
believe that the distinctions still help in under-
standing the state of the field.

We refer to the first approach as cooperative
distributed planning (CDP). Because it places the
problem of forming a competent (sometimes
even optimal) plan as the ultimate objective,
CDP is typically carried out by agents that
have been endowed with shared objectives
and representations by a single designer or
team of designers. Although in some cases the
purpose of the agents is to form a central plan,
more generally the purpose is that the distrib-
uted parts of the developing plan will jointly
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these problems in the following subsections.

Plan Representation and Generation
Much of the research in CDP is built around
notions of abstract plan decomposition, such
as hierarchical task network (HTN) planning
(Erol, Nau, and Hendler 1994). An abstraction-
based plan representation allows a distributed
planning agent to successively refine its plan-
ning decisions as it learns more about other
agents’ plans.

Corkill’s (1979) distributed version of Sacer-
doti’s (1977) NOAH planner was one of the ear-
liest efforts in distributing an HTN planning
algorithm. The basic planning procedure and
plan representation used by Corkill are the
same as those of NOAH: Planning proceeds
through a hierarchy of plan levels, where at
any plan level, a partial plan is a partial order
of goals and primitive actions. Each distributed
agent solves its goals in the same way as NOAH,
at each level expanding each unplanned goal
by finding an applicable operator (called a SOUP

procedure) that solves it. NOAH’s plan represen-
tation is extended to include a special node
type representing a placeholder for another
agent’s plan as well as special primitive actions
for synchronizing multiagent execution.

Just as the SIPE-2 planner (Wilkins 1988) is
conceptually descended from NOAH, DSIPE (dis-
tributed SIPE-2) (see the desJardins and Wolver-
ton article, also in this issue) is conceptually
descended from Corkill’s distributed NOAH.
Both are distributed versions of HTN planners,
and the two systems use similar approaches to
some of the key representational problems in
distributed planning, especially in how the
multiple agents maintain a consistent (albeit
incomplete) picture of each other’s plans. In
DSIPE, the local view of the other agents’ sub-
plans is called a skeletal plan.

Similarly, in Durfee and Lesser’s (1991) par-
tial global planning (PGP), each agent maintains
a partial global plan, which stores its own par-
tial picture of the plans of all the members of
the group. PGP focuses on distributed execution
and run-time planning and uses a specialized
plan representation, where a single agent’s
plan includes a set of objectives, a long-term
strategy (ordered lists of planned actions) for
achieving these objectives, a set of short-term
details (primitive problem-solving operations),
and a number of predictions and ratings. Plan-
ning—both the expansion of objectives into
planned actions and the ordering of these
actions—is based on a set of heuristics. Partial
global planning (PGP) and its descendants, in-
cluding generic PGP (Decker and Lesser 1992),
have been applied to problems that include
distributed acoustic monitoring (Durfee and

execute in a coherent and effective manner.
Thus, in CDP, agents typically exchange infor-
mation about their plans, which they iterative-
ly refine and revise until they fit together well.

The second approach, which we refer to as
negotiated distributed planning (NDP) has a dif-
ferent focus. From the perspective of an indi-
vidual agent engaged in NDP, the purpose of
negotiating over planned activities is not to
form good collective plans but to ensure that
the agent’s local objectives will be met by its
plan when viewed in a global context. The
emphasis is therefore not on cooperatively
defining and searching the space of joint plans
to find the best group plan, as in CDP, but on
having an agent provide enough information
to others to convince them to accommodate
its preferences.

When individual preferences are aligned in
ways where cooperation is in the self-interest
of all concerned, CDP and NDP come together;
thus, a hard-and-fast partitioning between the
two approaches is impossible, and a number of
efforts embrace both perspectives. For exam-
ple, STEAM, which we discuss in Negotiated Dis-
tributed Planning, draws heavily on planning
research; on the other hand, both DIPART and
partial global planning, which are described in
Cooperative Distributed Planning, have a
strong agent flavor. Our purpose in making the
loose division between CDP and NDP is not to
pigeonhole any individual piece of research
but to provide some structure to the research
landscape, ranging from extreme CDP (where
the purpose of distribution is simply to allow
parallel computation of plans) to extreme NDP
(where the purpose of planning is simply to
find resource conflicts) with a rich space of sys-
tems in the middle, involving both sophisti-
cated joint planning and the pursuit of self-in-
terest on the parts of agents.

Cooperative Distributed Planning
In this subsection, we summarize past and cur-
rent work in CDP. Most of the research we
describe here involves two or more computer
processes (agents) cooperating to build either a
single plan or multiple interacting plans. How-
ever, we also mention other related research,
for example, a single planner that has special
capabilities for multiagent execution.

In building a distributed planning system,
some of the key questions to address include (1)
How are plans or partial plans represented? (2)
What is the basic plan-generation method? (3)
How are tasks allocated to agents? (4) How do
agents communicate with one another during
planning? (5) How are the agents’ actions coor-
dinated? We discuss alternative approaches to
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Lesser 1991), cooperative information gather-
ing (Decker et al. 1995), and cooperative robot-
ics (Clement and Durfee 1999; Durfee and
Montgomery 1991).

Task Allocation In cooperative planning
systems, typically an explicit, often central-
ized, mechanism assigns subgoals to the agents
that will be responsible for planning them.

Distributed NOAH and DSIPE have no automat-
ed methods for allocating tasks among the
planning agents; the user specifies which agent
solves which top-level goals. PGP allows agents
to send potential group plans to each other,
essentially allowing agents to propose (and
counterpropose) an assignment of activities
(tasks) to each other (Durfee and Lesser 1989).
Because agents can choose to participate or not
in such plans, such assignments involve mutu-
al selection between agents’ contract nets.

DIPART (Pollack 1996) is an experimental
platform for analyzing a wide range of plan-
ning and execution mechanisms, including
approaches to distributed planning. One of the
key areas studied in DIPART is load balancing
(that is, task allocation) among multiple plan-
ning agents. The load-balancing methods
developed are high-level approaches that are
independent of any particular planning
representation or algorithm. Initial allocation
of tasks to agents is specified by the user, but
tasks can automatically be reallocated at run
time according to load-balancing considera-
tions.

Lansky’s COLLAGE (Lansky and Getoor 1995;
Lansky 1994) is not a multiagent planning sys-
tem as such, but it represents one promising
way of approaching the task-assignment prob-
lem in distributed planning. COLLAGE uses a
technique called localization to decompose a
planning problem into subproblems called re-
gions. Localizations in COLLAGE can be generat-
ed automatically  based on abstraction levels
or scope. A set of heuristics are used to find
regions that minimize the number of interac-
tions between regions, thus permitting COL-
LAGE to solve the subproblems in each region
(relatively) independently. Partitioning sub-
goals among distributed planning agents
according to localization would likewise
improve the overall efficiency of the multia-
gent planning system by minimizing conflicts
and interactions among agents (and reducing
the need to check for them).

Communication Cooperative distributed
planners use a variety of techniques for agents
to share information. At the conclusion of
each planning level, distributed NOAH applies
an extended version of NOAH’s planning critics
to coordinate the planning agents. Each agent

sends the other agents a record of the impor-
tant effects of the newly expanded portions of
its plan (although Corkill does not make it
clear which effects are considered to be impor-
tant). Each agent inserts a record of all new
effects it receives into its local plan.

DSIPE extends distributed NOAH’s approach in
a number of areas, most notably by expanding
the types of planning information that are
shared among the planning agents and devel-
oping irrelevance-based filtering methods for
reducing communication requirements
(Wolverton and desJardins 1998).

In PGP, communication goes through the
channels of a metalevel organization, which
specifies the roles and responsibilities of plan-
ning agents in maintaining plan coordination
(for example, which agents have authority to
reconcile conflicts among agents’ plans), much
like a regular organization specifies how the
agents should be organized to solve a domain-
level problem. The work of Jennings (1995)
codifies such responsibilities into communica-
tion conventions that all agents follow to
ensure sufficient awareness about the pursuit
of collective plans.

Communication among planning agents to
support load balancing in DIPART is generally
done by multicasting to all members of the
agent’s (user-assigned) subgroup. However, in
heavy load situations, agents can trade off com-
plete knowledge of system load in exchange for
preservation of bandwidth by selective unicast-
ing (called focused addressing in contract nets).
In this case, they must rely on estimates of oth-
er nodes’ loads based on their histories.

Coordination   For a group of cooperative
distributed planners to reach a state in which
the individual subplans jointly achieve the
common objectives, the agents must coor-
dinate their decision making.

In distributed NOAH, when an agent’s critics
detect a conflict between one of its own
actions and those of another agent, instead of
adding an ordering constraint as it would if
were not distributed, it inserts a special execu-
tion-time coordination action: either Signal,
which informs another agent of the comple-
tion of an action, or Wait, which waits for a
signal from another agent.

PGP achieves coordination and task as-
signment by a process of negotiation. When
agent A informs another agent about some
portion of its local plan, B merges the new
information about A into its partial global
plan. It then searches for ways to improve the
global plan, for example, by eliminating re-
dundancy or better utilizing the group’s com-
putational resources. It proposes these im-
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The BDI decomposition strategy can also
serve as an implementation-neutral way to
architect an agent and also analyze both indi-
vidual and collective behavior. In contrast to
the previous research, which has largely been
formal in nature, the design of rational-agent
architectures (Haddadi and Sundermeyer 1996;
Bratman, Israel, and Pollack 1988) has been
guided primarily by computational concerns
centered on an agent’s inherent resource limi-
tations (Russell and Subramanian 1995; Simon
1983). Agent architectures augment an agent’s
mental world with a set of processes, each asso-
ciated with a particular architectural module;
processes can either supply input for other
modules or modify the agent’s repository of
beliefs, desires, and intentions. As an example,
an architecture might include a deliberation
module whose role is to weigh alternatives in
light of existing commitments (intentions)
and new observations (beliefs). A connection
between formal theories of mental state and
agent architectures (or implementations) can
be drawn by reifying mental actions, each rep-
resenting the behavior of an architectural
module (Ortiz 1999).

Collaboration Theories of mental state for
individual agents must be extended in impor-
tant ways to model collaborations between
agents. The problem is that a group’s plan to
collaborate on some task is not simply the sum
of the agents’ individual plans (Grosz and
Kraus 1996; Bratman 1992; Searle 1990). In
particular, some notion of an individual’s com-
mitment to (parts of) the group activity must
be captured. The idea of a joint intention can
be introduced to represent the group’s com-
mitment toward some group goal (Sonenberg
1992; Levesque, Cohen, and Nunes 1990). One
can also augment an agent architecture to
include processes that capture behavioral
conventions for modifying commitments and
supporting coordinated behavior (Jennings
1995). One problem with the joint-intentions
model, however, is that communication points
must be built in and cannot be derived auto-
matically.

The theory of SHAREDPLANS is an alternative
approach that builds group plans from ordi-
nary beliefs and intentions, together with a
new attitude called an intention-that (Grosz and
Kraus 1996; see the Grosz, Hunsberger, and
Kraus article, also in this issue). Intentions-that
model commitments to states of the world in-
stead of actions. Such intentions can represent,
among other things, an individual agent’s
commitments to aspects of the world that will
ensure the success of the group activity; vari-
ous stages of partiality of a shared plan can

provements to some subset of the other agents.
Each other agent can accept the new global
plan and incorporate the changes made to its
own local plan, it can reject the new global
plan, or it can respond with a counterproposal.
Throughout the process, each agent continues
to act on its current best assessment of the plan
it should pursue rather than wait to converge
on a plan (which, because of dynamics, might
be quite ephemeral anyway). Thus, this
approach is designed for domains where tem-
porary incoherence among agents is tolerated
as information about unanticipated changes to
plans is propagated. It is not designed for
domains with irreversible actions, where con-
flicts among agents’ plans should be resolved
before any step is taken that could cause other
agents’ plans (and, thus, the system as a
whole) to fail.

Coordination between planning agents in
DIPART is accomplished in two ways: (1) incre-
mental merging of individual agent subplans
(Ephrati, Pollack, and Rosenschein 1995) and
(2) multiagent filtering (Ephrati, Pollack, and Ur
1995), in which each agent commits to the
goals it has already adopted but bypasses new
options that are incompatible with any other
agent’s known or presumed goals.

Negotiated Distributed Planning
Much of the research into the design of
autonomous agents has had as its goal a formal
account of mental state that would serve to
explain the manner in which the attitudes of
belief, desire, and intention (BDI) engender
behavior, both at the individual agent level
and at the group level. A BDI theory could be
viewed as explanatory to the extent that one
felt comfortable in ascribing some sense of
rationality to the behaviors predicted by the
theory that were causally connected to indi-
vidual mental states; in this respect, the term
rational balance, as applied to an agent’s mental
state and as coined by Nils Nilsson, is an apt
one. For example, an intention can be viewed
as reflecting an agent’s commitment to per-
form an action; such a commitment is
assumed to remain in force until it is satisfied,
or the agent no longer believes the action is
possible (Cohen and Levesque 1990; Shoham
1990; Bratman 1987). By virtue of its per-
sistence, an intention will thereby constrain
the options an agent will be disposed to con-
sider; a rationally balanced agent would then be
one that was not continuously reevaluating
each possible option in light of new intentions
or goals. Within such models, plans are deriv-
ative structures built up from elements of the
agent’s mental state (Pollack 1990).
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thereby be modeled (corresponding
to, for example, partial beliefs about
how to perform an action, the identity
of appropriate agents for a group task,
and the knowledge preconditions for
an action). Theories based on this idea
grew from work in natural language
understanding (Grosz and Sidner
1986) and have been applied to dis-
course understanding and the devel-
opment of collaborative user inter-
faces (Lochbaum 1998). Unlike the
irreducible joint-intentions model,
communications are dynamically trig-
gered as a consequence of failed inten-
tions-that.

Some systems have been developed
that combine both approaches; for
example, although the STEAM system
(Tambe 1997) is based on the joint-
intentions model, it also borrows some
ideas from SHAREDPLANS for representing
partial plans and integrates ideas about
teamwork capabilities into the design
of individual agent architectures.

Decision theory provides a com-
putational framework for making deci-
sions about coordination and commu-
nication in a distributed planning
context. Both STEAM and the recursive
modeling method (RMM) approach
(Gmytrasiewicz, Durfee, and Wehe
1991) have used models of the costs
and benefits of communication and
applied decision-theoretic methods to
determine what and when to commu-
nicate. Boutilier (see the article, also in
this volume) describes approaches for
integrating decision-theoretic plan-
ning and multiagent systems.

Negotiation Given a representa-
tion for group plans, the question
remains of how agents should negoti-
ate to reach an agreement over distrib-
ution of tasks and resources. One way
to ensure coordination of agent activ-
ities is to embed them in environ-
ments in which certain social laws
must be adhered to (such as the traffic
laws in Shoham and Tennenholz
[1992]). This approach builds coordi-
nation into the environment by focus-
ing on public behavior rather than on
private preferences. Other approaches
make use of ideas from game theory,
such as notions of solution stability
and equilibrium, and assume that
agents are developed independently
and are self-interested; that is, they

maximize individual utility. Because
agents are not necessarily assumed to
be cooperative, much of the effort is
directed toward developing protocols
that prevent lying. One attractive
strategy is to characterize different do-
mains and identify appropriate proto-
cols for each type of domain (Rosen-
schein and Zlotkin 1994).

Other ideas that have been adapted
from the field of economics include
negotiation strategies that take time into
account, explicitly handling the
resource-constrained nature of agents
(Kraus, Wilkenfield, and Zlotkin 1992;
Osborne and Rubinstein 1990). Agents
are assumed to have a common
metagoal to minimize the amount of
work that each agent must do. In the
case of agents who do not have a com-
mon, fixed goal during negotiation, an
alternative is for agents to construct
arguments that they can use to influ-
ence the decision making of other
agents (Sycara 1990).

Voting schemes, also borrowed from
the field of economics, have been
applied to achieving consensus. For
example, in one multiagent schedul-
ing system, agents first express their
individual preferences, and then a vot-
ing mechanism is used to determine
group choice (Sen, Hayes, and Arora
1997). When the assumption of coop-
eration is dropped, systems can
become susceptible to lying. Many
approaches around this problem have
been proposed: One, for example,
requires that agents pay a tax (such as
the CLARKE tax [Ephrati and Rosen-
schein 1991]) that, in effect, transfers
utility outside the system. Agents are
still assumed to be self-motivated and
maximize their own utility, but it can
be shown that there is only one dom-
inant strategy: telling the truth.

Contract nets (Davis and Smith
1983) represent a market-based ap-
proach to negotiation. Contract nets
provide a high-level communication
protocol in which tasks are distributed
among nodes in a system. Nodes are
classified as either contractor or man-
ager nodes, and contracts to perform
tasks are established through a bidding
process. A similar approach is the con-
sumers and producers approach (Well-
man 1992) in which agents are classi-
fied as either consumers or producers,

and each type of agent tries to maxi-
mize its own utility. Goods have auc-
tions associated with them, and agents
can acquire goods by submitting bids
in the auction for the commodity. A
more dialogue-oriented approach is
found in the collaborative negotiation
system based on argumentation (CON-
SA) (see the Tambe and Jung article,
also in this issue), which uses negotia-
tion methods based on argumentation
structures (Toulmin 1958) to resolve
conflicts.

A major challenge that remains is
the development of models that
encompass aspects of the partiality of
both mental state and the planning
process itself. Methods must be devel-
oped for adapting the various
approaches in a way that is consistent
with the resource-constrained nature of
planning agents: Planning should be a
continuous, incremental process at
both the individual and group levels.

Continual Planning
An agent working in a world where
unexpected hindrances or opportuni-
ties could arise should continually be
on the lookout for changes that could
render its planned activities obsolete.
Because its plans can undergo contin-
ual evaluation and revision, such an
agent will continually be planning,
interleaving planning with execution.

Reactive planning systems (Agre and
Chapman 1987) can be viewed as a
special case of continual planning in
which planning looks ahead only to
the next action. Because of their near-
term focus, such systems generally do
not handle problems that require
complex orderings of actions to
accomplish tasks. The assumption in
these systems is that such orderings
should not be pursued anyway be-
cause the later actions are inappropri-
ate by the time they are reached.

Flexible plan-execution systems
such as PRS (Georgeff and Lansky 1986)
and RAPS (Firby 1987) strike a compro-
mise between looking ahead to
sequences of actions and avoiding
commitments to specific future
actions by exploiting hierarchical plan
spaces. Rather than refine abstract
plan operators into a detailed end-to-
end plan, these systems interleave
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varying levels of abstraction as the
planning horizon is extended, will be
a key capability for continual plan-
ning. Plan-repair methods in current
systems are typically at either the reac-
tive level or the generative level; meth-
ods for smoothly integrating plan-
repair techniques at multiple levels of
abstraction and varying time scales are
needed.

Several articles in this issue describe
ongoing research efforts that are
focused on true DCP, that is, methods
for distributed and continual plan-
ning in dynamic, uncertain domains.
Pollack and Harty describe a plan-
management system that goes be-
yond simply interleaving decisions
about planning and execution by
incorporating techniques for moni-
toring the environment, assessing al-
ternative plans, iteratively elaborat-
ing abstract partial plans, controlling
the metalevel planning process, and
coordinating distributed planning
agents. Durfee describes methods for
continual, cooperative elaboration
and revision of distributed partial
plans in a realistic application do-
main of semiautonomous ground
vehicles. Myers presents a framework
for continuous planning and execu-
tion that is partially distributed (that
is, the planning and execution capa-
bilities are distributed, although the
planning process itself is not).

However, most of this research is
still in its early stages, and many
research challenges remain. Both dis-
tributed planning and continual plan-
ning need to be better understood for
DCP systems to be built, yet simply
combining distributed and continual
planning methods that have been
independently developed might not
be sufficient. The synchronization
problem in distributed planning
becomes even greater when the dis-
tributed agents’ plans are being exe-
cuted concurrently, and better models
of the overall planning and execution
process are needed. Similarly, execu-
tion of plans is complicated by the
presence of other agents, requiring not
only methods for distributed plan exe-
cution but distributed plan repair.

Note
1. The term continuous planning is also used
to describe this style of planning, but

ties is generally a more open-ended
problem. Researchers have explored
trade-offs between having bold agents
that seldom reconsider their plans and
cautious agents that frequently reeval-
uate their plans (Kinny and Georgeff
1991).

Different continual planning ap-
proaches implement ongoing moni-
toring and replanning tasks different-
ly. For example, UM-PRS (Lee et al. 1994)
maintains the hierarchy of plans cur-
rently in progress and, before each
action, traverses this hierarchy from
the top down to ensure that the moti-
vations for the next action are still in
force. If during this process it encoun-
ters a plan abstraction that is now
deemed inappropriate, it considers
alternative ways of achieving the goal
it had been working on and looks for
opportunities for directing its atten-
tion elsewhere. In contrast, the SOAR

architecture (Laird, Newell, and Rosen-
bloom 1987) can also perform contin-
ual planning but does not explicitly
reason over a hierarchy of intentions.
Instead, it has been extended to gener-
ate rules that explicitly monitor the
current plan’s context (Wray and Laird
1998). Because these rules are woven
into SOAR’s rule network, they do not
require explicit periodic polling,
instead triggering interrupts to SOAR

when appropriate.

Future Research Directions
Although distributed planning has
been explored by a few researchers for
many years, the recognition of its
importance in current and future
applications involving networked
agents has triggered a more broad-
based, concerted investigation into
this still maturing field.

Reasoning and negotiation tech-
niques are needed that permit distrib-
uted planning agents to understand
the aspects of the distributed plan that
are relevant for their decisions, identi-
fy and pursue opportunities for coor-
dination, asynchronously refine their
plans as other agents’ plans are evolv-
ing, and modify their plans in re-
sponse to information that arrives
from other agents.

Open-ended planning, in which
plans can continually be refined to

refinement with execution. Plan
refinement is delayed as long as possi-
ble, so that detailed decisions are made
with as much information as possible.
However, this delay can mean that re-
finement decisions at abstract levels
are made, and acted on, before all the
detailed refinements have been made.
If these abstract refinements introduce
unresolvable conflicts at lower levels,
the plan can fail in the middle of exe-
cution. It is therefore critical that the
specifications of abstract plan opera-
tors be rich enough to summarize all
(or at least most) of the relevant refine-
ments to anticipate and avoid such
conflicts (Clement and Durfee 1999).

The continuous planning and
execution framework (CPEF) (see the
Myers article, also in this issue) contin-
ually constructs and revises plans that
evolve in response to a dynamically
changing environment. CPEF integrates
HTN planning techniques, plan ex-
ecution and monitoring, and dynamic
plan-repair methods. Users can inter-
act closely with the system through
the advisable planner (AP). The execu-
tion component can execute plans at
multiple levels of abstraction, permit-
ting an open-ended planning process
in which the level of plan detail can
vary depending on the timing and
nature of the particular planning task
being considered.

The costs of execution monitoring
and opportunistic replanning must be
considered by continual planning sys-
tems. In many respects, execution
monitoring is simpler: As an agent
steps through its planned actions, it
periodically checks to make sure that
the state of the world that it has
reached is consistent with the state
that was predicted by the plan. The
challenge is to keep the costs low
enough so that monitoring does not
consume too much time and effort on
the part of the agent, either by devis-
ing efficient perceptual strategies
(Musliner, Durfee, and Shin 1995;
Doyle, Atkinson, and Doshi 1986) or
by performing the checks less fre-
quently. Looking for new opportu-
nities is more problematic: Unlike sim-
ple monitoring, where the agent
knows what to look for (which condi-
tions are necessary for the rest of the
plan to succeed), finding opportuni-
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because this term is also sometimes used to
refer to planning for continuous problem
spaces (for example, using continuous
models of time and space), we use the less
ambiguous term continual planning.

References 
Agre, P. E., and Chapman, D. 1987. PENGI: An
Implementation of a Theory of Activity. In
Proceedings of the Tenth International Joint
Conference on Artificial Intelligence,
268–272. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Ambros-Ingerson, J. A., and Steel, S. 1988.
Integrating Planning, Execution, and Moni-
toring. In Proceedings of the Seventh
National Conference on Artificial Intelli-
gence, 81–88. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Boutilier, C.; Dean, T.; and Hanks, S. 1999.
Decision-Theoretic Planning: Structural
Assumptions and Computational Leverage.
Journal of Artificial Intelligence Research
11:1–94.

Bratman, M. 1987. Intentions, Plans, and
Practical Reason. Cambridge, Mass.: Harvard
University Press.

Bratman, M. E. 1992. Shared Cooperative
Activity. The Philosophical Review 101(2):
327–341.

Bratman, M. E.; Israel, D. J.; and Pollack, M.
E. 1988. Plans and Resource-Bounded Practi-
cal Reasoning. Computational Intelligence
4(4): 349–355.

Clement, B. J., and Durfee, E. H. 1999. Top-
Down Search for Coordinating the Hierar-
chical Plans of Multiple Agents. In Proceed-
ings of the Third International Conference
on Autonomous Agents, 252–299. New
York: Association of Computing Machinery.

Cohen, P., and Levesque, H. 1990. Intention
Is Choice with Commitment. Artificial
Intelligence 42(2–3): 213–261.

Corkill, D. D. 1979. Hierarchical Planning in
a Distributed Environment. In Proceedings
of the Sixth International Joint Conference
on Artificial Intelligence, 168–175. Menlo
Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Davis, R., and Smith, R. 1983. Negotiation as
a Metaphor for Distributed Problem Solving.
Artificial Intelligence 20(1): 63–109.

Decker, K. S., and Lesser, V. R. 1992.
Generalizing the Partial Global Planning
Algorithm. International Journal of Intelligent
and Cooperative Information Systems 1(2):
319–346.

Decker, K.; Lesser, V.; Prasad, M. N.; and
Wagner, T. 1995. MACRON: An Architecture
for Multiagent Cooperative Information
Gathering. In Proceedings of the Conference
on Information and Knowledge Manage-
ment (CIKM) Workshop on Intelligent

Information Agents. New York: Association
of Computing Machinery.

Doyle, R. J.; Atkinson, D. J.; and Doshi, R. S.
1986. Generating Perception Requests and
Expectations to Verify the Execution of
Plans. In Proceedings of the Fifth National
Conference on Artificial Intelligence, 81–88.
Menlo Park, Calif.: American Association for
Artificial Intelligence.

Durfee, E. H., and Lesser, V. R. 1991. Partial
Global Planning: A Coordination Frame-
work for Distributed Hypothesis Formation.
IEEE Transactions on Systems, Man, and
Cybernetics 1(1): 63–83.

Durfee, E. H., and Lesser, V. R. 1989.
Negotiating Task Decomposition and Allo-
cation Using Partial Global Planning. In Dis-
tributed Artificial Intelligence, Volume 2, eds.
M. Huhns and L. Gasser. San Francisco,
Calif.: Morgan Kaufmann.

Durfee, E. H., and Montgomery, T. A. 1991.
Coordination as Distributed Search in a
Hierarchical Behavior Space. IEEE Transac-
tions on Systems, Man, and Cybernetics 21(6):
1363–1378.

Ephrati, E., and Rosenschein, J. 1991. The
CLARKE Tax as a Consensus Mechanism
among Automated Agents. In Proceedings
of the Ninth National Conference on Artifi-
cial Intelligence, 173–178. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Ephrati, E.; Pollack, M. E.; and Rosenschein,
J. S. 1995. A Tractable Heuristic That Maxi-
mizes Global Utility through Local Plan
Combination. In Proceedings of the First
International Conference on Multiagent
Systems, 94–101. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Ephrati, E.; Pollack, M. E.; and Ur, S. 1995.
Deriving Multiagent Coordination through
Filtering Strategies. In Proceedings of the
Fourteenth International Joint Conference
on Artificial Intelligence, 679–685. Menlo
Park, Calif.: International Joint Conferences
on Artificial Intelligence.

Erol, K.; Nau, D.; and Hendler, J. 1994. HTN
Planning: Complexity and Expressivity. In
Proceedings of the Twelfth National Confer-
ence on Artificial Intelligence, 1123–1128.
Menlo Park, Calif.: American Association for
Artificial Intelligence.

Ferguson, G.; Allen, J.; and Miller, B. 1996.
TRAINS-95: Toward a Mixed Initiative Plan-
ning Assistant. In Proceedings of the Third
International Conference on Artificial Intel-
ligence Planning Systems, 70–77. Menlo
Park, Calif.: American Association for Artifi-
cial Intelligence.

Firby, R. J. 1987. An Investigation into Reac-
tive Planning in Complex Domains. In Pro-
ceedings of the Sixth National Conference
on Artificial Intelligence, 202–206. Menlo

Park, Calif.: American Association for Artifi-
cial Intelligence.

Georgeff, M. P., and Lansky, A. L. 1986.
Procedural Knowledge. Proceedings of the
IEEE 74: 1383–1398.

Gmytrasiewicz, P. J.; Durfee, E. H.; and
Wehe, D. K. 1991. The Utility of Communi-
cation in Coordinating Intelligent Agents.
In Proceedings of the Ninth National Con-
ference on Artificial Intelligence, 166–172.
Menlo Park, Calif.: American Association for
Artificial Intelligence.

Grosz, B. J., and Kraus, S. 1996. Collabora-
tive Plans for Complex Group Action. Arti-
ficial Intelligence 86(1): 269–357.

Grosz, B. J., and Sidner, C. 1986. Attention,
Intentions, and the Structure of Discourse.
Computational Linguistics 12(3): 175–204.

Haddadi, A., and Sundermeyer, K. 1996.
Belief-Desire-Intention Agent Architectures.
In Foundations of Distributed Artificial Intelli-
gence, eds. G. O’Hare and N. Jennings,
169–186. New York: Wiley. 

Hendler, J.; Tate, A.; and Drummond, M.
1990. AI Planning: Systems and Techniques.
AI Magazine 11(2): 61–77.

Jennings, N. 1995. Controlling Cooperative
Problems in Industrial Multiagent Systems
Using Joint Intentions. Artificial Intelligence
75(2): 195–240.

Kambhampati, S.; Cutkosky, M.; Tenen-
baum, J.; and Lee, S. 1993. Integrating Gen-
eral-Purpose Planners and Specialized Rea-
soners: Case Study of a Hybrid Planning
Architecture. IEEE Transactions on Systems,
Man, and Cybernetics 23(6): 1503–1518.

Kinny, D. N., and Georgeff, M. P. 1991.
Commitment and Effectiveness of Situated
Agents. In Proceedings of the Twelfth Inter-
national Joint Conference on Artificial Intel-
ligence, 82–88. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial
Intelligence.

Kraus, S.; Wilkenfeld, J.; and Zlotkin, G.
1992. Multiagent Negotiation under Time
Constraints. Technical Report, CS-TR-2975,
Computer Science Department, University
of Maryland at College Park.

Laird, J. E.; Newell, A.; and Rosenbloom, P. S.
1987. SOAR: An Architecture for General
Intelligence. Artificial Intelligence 33(1): 1–64.

Lansky, A. L. 1994. Located Planning with
Diverse Plan Construction Methods. Techni-
cal Report FIA-TR-9405, NASA Ames
Research Center, Mountain View, California.

Lansky, A. L., and Getoor, L. C. 1995. Scope
and Abstraction: Two Criteria for Localized
Planning. In Proceedings of the Fourteenth
International Joint Conference on Artificial
Intelligence, 1612–1619. Menlo Park, Calif.:
International Joint Conferences on Artificial
Intelligence.

Lee, J.; Huber, M. J.; Durfee, E. H.; and Ken-

Articles

WINTER 1999   21



Wray, I, R. E., and Laird, J. 1998. Maintain-
ing Consistency in Hierarchical Reasoning.
In Proceedings of the Fifteenth National
Conference on Artificial Intelligence,
928–935. Menlo Park, Calif.: American Asso-
ciation for Artificial Intelligence.

Marie desJardins is a
senior computer scientist
in the Artificial Intelli-
gence Center at SRI Inter-
national. Her current re-
search projects focus on
distributed planning and
negotiation, machine
learning, and informa-

tion management. Other research interests
include probabilistic reasoning, decision
theory, and intelligent tutoring systems. Her
e-mail address is marie@ai.sri.com.

Edmund H. Durfee is an
associate professor of
electrical engineering
and computer science at
the University of Michi-
gan, where he also directs
the Artificial Intelligence
Lab and holds a joint
appointment in the

School of Information. His research interests
are in distributed AI, multiagent systems,
planning, and real-time problem solving,
applied to problems ranging from digital
libraries to cooperative robotics, from  assis-
tance technologies to electronic commerce.
His e-mail address is durfee@umich.edu.

Charles Ortiz is a senior
computer scientist in the
Artificial Intelligence
Center at SRI Interna-
tional. He is also the past
director of the Applied AI
Technology Program at
SRI. His e-mail address is
ortiz@ai.sri.com.

Michael Wolverton is a
computer scientist in the
Artificial Intelligence
Center at SRI Interna-
tional. His current re-
search focuses on plan-
ning, distributed AI,
information manage-
ment, and case-based rea-

soning. His e-mail address is mjw@ai.sri.
com.

Cambridge, Mass.: MIT Press.

Sen, S.; Haynes, T.; and Arora, N. 1997.
Satisfying User Preferences While Negotiat-
ing Meetings. International Journal of Human-
Computer Studies 47:407–427.

Shoham, Y. 1990. Agent-Oriented Program-
ming. Technical Report, STAN-CS-90-1335,
Computer Science Department, Stanford
University.

Shoham, Y., and Tennenholtz, M. 1992. On
the Synthesis of Useful Social Laws for Arti-
ficial Agent Societies. In Proceedings of the
Tenth National Conference on Artificial
Intelligence, 276–281. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Simon, H. 1983. Reason in Human Affairs.
Stanford, Calif.: Stanford University Press.

Sonenberg, E.; Tidhar, G.; Werner, E.; Kinny,
D.; Ljungberg, M.; and Rao, A. 1994.
Planned Team Activity. Technical Report,
26, Australian Artificial Intelligence Institute
at Melbourne.

Stone, P., and Veloso, M. 1999. Task
Decomposition, Dynamic Role Assignment,
and Low-Bandwidth Communication for
Real-Time Strategic Teamwork. Artificial
Intelligence 111(1): 241–273.

Sycara, K. 1990. Persuasive Argumentation
in Negotiation. Theory Decision 28(3):
203–242.

Tambe, M. 1997. Toward Flexible Teamwork.
Journal of Artificial Intelligence Research
7:83–124.

Toulmin, S. 1958. The Uses of Argument. Lon-
don: Cambridge University Press.

Veloso, M. M. 1996. Toward Mixed-Initiative
Rationale-Supported Planning. In Advanced
Planning Technology: Technological Achieve-
ments of the ARPA/Rome Laboratory Planning
Initiative, ed. A. Tate, 277–282. Menlo Park,
Calif.: AAAI Press.

Wellman, M. 1992. A General-Equilibrium
Approach to Distributed Transportation
Planning. In Proceedings of the Tenth
National Conference on Artificial Intelli-
gence, 282–289. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Wilkins, D. E. 1988. Practical Planning:
Extending the Classical AI Planning Paradigm.
San Francisco, Calif.: Morgan Kaufmann.

Wilkins, D. E., and Myers, K. L. 1998. A
Multiagent Planning Architecture. In Pro-
ceedings of the Fourth International Conference
on Artificial Intelligence Planning Systems,
154–162. Menlo Park, Calif.: AAAI Press.

Wolverton, M. J., and desJardins, M. 1998.
Controlling Communication in Distributed
Planning Using Irrelevance Reasoning. In
Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence, 868–874.
Menlo Park, Calif.: American Association for
Artificial Intelligence.

ny, P. G. 1994. UM-PRS: An Implementation
of the Procedural Reasoning System for Mul-
tirobot Applications. In Proceedings of the
AIAA/NASA Conference on Intelligent
Robotics in Field, Factory, Service, and
Space, 842–849. Houston, Tex.: NASA Lyn-
don B. Johnson Space Center.

Levesque, H. J.; Cohen, P. R.; and Nunes, J.
H. T. 1990. On Acting Together. In Proceed-
ings of the Eighth National Conference on
Artificial Intelligence, 94–99. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Lochbaum, K. E. 1998. A Collaborative Plan-
ning Model of Intentional Structure. Com-
putational Linguistics 34(4): 525–572.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G.
1995. World Modeling for the Dynamic
Construction of Real-Time Control Plans.
Artificial Intelligence 74:83–127.

Myers, K. L. 1996. Advisable Planning Sys-
tems. In Advanced Planning Technology: Tech-
nological Achievements of the ARPA/Rome Lab-
oratory Planning Initiative, ed. A. Tate,
206–209. Menlo Park, Calif.: AAAI Press.

Ortiz, C. L. 1999. Introspective and Elabora-
tive Processes in Rational Agents. Annals of
Artificial Intelligence and Mathematics
25(1–2): 1–34.

Osborne, M. J., and Rubinstein, A. 1990.
Bargaining and Markets. San Diego, Calif.:
Academic.

Pollack, M. 1990. Plans as Complex Mental
Attitudes. In Intentions in Communication,
eds. P. R. Cohen, J. Morgan, and M. E. Pol-
lack, 77–103. Cambridge, Mass.: MIT Press.

Pollack, M. E. 1996. Planning in Dynamic
Environments: The DIPART System. In
Advanced Planning Technology: Technology
Achievements of the ARPA/Rome Laboratory
Planning Initiative, ed. A. Tate, 218–225.
Menlo Park, Calif.: AAAI Press.

Rosenschein, J. S., and Zlotkin, G. 1994.
Rules of Encounter. Cambridge, Mass.: MIT
Press.

Russell, S. J., and Norvig, P. 1995. Artificial
Intelligence: A Modern Approach. Upper Saddle
River, N.J.: Prentice Hall.

Russell, S. J., and Subramanian, D. 1995.
Provably Bounded-Optimal Agents. Journal
of Artificial Intelligence Research 2:575–609.

Sacerdoti, E. D. 1977. A Structure for Plans
and Behavior. New York: American Elsevier.

Schoppers, M. J. 1987. Universal Plans for
Reactive Robots in Unpredictable Environ-
ments. In Proceedings of the Tenth Interna-
tional Joint Conference on Artificial Intelli-
gence, 1039–1046. Menlo Park, Calif.:
International Joint Conferences on Artificial
Intelligence.

Searle, J. 1990. Collective Intentions and Ac-
tions. In Intentions in Communication, eds. P.
Cohen, J. Morgan, and M. Pollack, 401–415.

Articles

22 AI MAGAZINE




