
■ In a complex, dynamic multiagent setting, coher-
ent team actions are often jeopardized by conflicts
in agents’ beliefs, plans, and actions. Despite the
considerable progress in teamwork research, the
challenge of intrateam conflict resolution has
remained largely unaddressed. This article presents
CONSA, a system we are developing to resolve con-
flicts using argumentation-based negotiations.
CONSA focuses on exploiting the benefits of argu-
mentation in a team setting. Thus, CONSA casts con-
flict resolution as a team problem, so that the
recent advances in teamwork can be brought to
bear during conflict resolution to improve argu-
mentation flexibility. Furthermore, because team-
work conflicts sometimes involve past teamwork,
teamwork models can be exploited to provide
agents with reusable argumentation knowledge.
Additionally, CONSA also includes argumentation
strategies geared toward benefiting the team,
rather than the individual, and techniques to
reduce argumentation overhead.

Teamwork is a critical capability in a large
number of multiagent applications, such
as virtual environments for education

and training (Tambe 1997), robotic teams
(Kitano et al. 1997), and teams on the internet.
In these applications, agents must act together
despite the uncertainties of their complex
dynamic environment. Considerable progress
has indeed been made in teamwork research.
For example, recent advances in teamwork
models (Tambe 1997; Jennings 1995), which
explicitly outline agents’ commitments and
responsibilities in teamwork, have significantly
improved flexibility in teamwork coordination
and communication. However, this research
has so far not addressed the challenge of
resolving conflicts within a team.

However, as agent applications advance to
meet the requirements of scale and autonomy,
interagent conflicts become increasingly in-

evitable. For example, while autonomously
reacting to dynamic events, agents can unin-
tentionally interfere in others’ actions, or
faulty sensors can provide them with conflict-
ing information or lead them to conflicting
inferences. Although such conflict resolution is
difficult in general, it is even more problematic
in teams if intrateam conflicts are not antici-
pated.

To address the problem of conflict resolution
in team settings, we are building a system
called CONSA (COllaborative negotiation system
based on argumentation). In argumentation,
agents negotiate by providing arguments
(which can be justifications or elaborations) in
support of their proposals to one another. CON-
SA builds on past work in argumentation
(Kraus, Sycara, and Evenchik 1998; Parsons
and Jennings 1996; Chu-Carroll and Carberry
1995), but our focus here is to exploit the ben-
efits of argumentation in a team setting. Thus,
given CONSA’s roots in past teamwork research
(Tambe 1997), a key idea is to cast conflict res-
olution as an explicit common team goal. As a
result, the recent advances in teamwork mod-
els are brought to bear during conflict resolu-
tion, improving flexibility of agent behaviors
during negotiations. For example, in dynamic
environments, it’s important to react to unan-
ticipated events that can occur during negotia-
tions. Thus, if a team member privately discov-
ers an event that renders the current team
conflict irrelevant, it will now react by appro-
priately informing its teammates. Additionally,
with an explicit common team goal, novel
argumentation strategies emerge; for example,
agents might attempt to improve the quality of
teammates’ arguments. Furthermore, because
team conflicts can be rooted in past teamwork,
CONSA enables agents to argue effectively about
teamwork by exploiting the teamwork models

Articles

WINTER 1999    85

The Benefits of Arguing 
in a Team

Milind Tambe and Hyuckchul Jung

Copyright © 1999, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1999 / $2.00

AI Magazine Volume 20 Number 4 (1999) (© AAAI)



it. Thus, when the commander asked the team
to proceed because it believed all the positions
were successfully communicated, there was a
conflict with M1.

The enemy-position case: Two scout he-
licopter agents can have conflicting beliefs
about the closest enemy unit seen. For exam-
ple, one scout might report completion, but
the second scout might see an even closer en-
emy unit than the one reported.

The ball-position case: In our player team
in RoboCup soccer simulation, defenders
inform each other if the ball is close by and,
hence, a threat. However, the players’ belief of
the ball’s threat can differ, leading them to
have conflicting beliefs about whether the ball
is a threat.

These examples illustrate some of the key
issues we are investigating in team nego-
tiations. First, conflicts can arise between two
team members’ local actions, as in the firing
position case, where an agent’s local reaction
has led to conflicts with another agent’s local
actions. In contrast, in the remaining three
cases, conflicts in agents’ beliefs affect the
team’s joint action: to proceed, report enemy
location, or defend against the opponent
team. Second, conflicts can or cannot be relat-
ed to past teamwork. Thus, although in the
proceed case, conflicts are related to team
members’ past actions in teamwork, it is not
true of the enemy-position and ball-position
cases. Third, negotiations might need to be
performed under real-time pressure, as in the
ball-position case, where negotiation delays
are highly detrimental to team performance.
These and other issues in negotiations are
highlighted in further detail in the following
sections. In addressing these issues, we aim to
avoid any specialized solutions and focus
instead on a general approach that would be
applicable to a wide variety of conflicts.

Teamwork Model: 
A Brief Overview

Before we discuss CONSA, it is useful to briefly
overview teamwork models, particularly the
STEAM (Tambe 1997) model, because it is the
basis of our team implementations. STEAM con-
sists of two components, both currently real-
ized in the SOAR (Newell 1990) architecture.
The first is an enhanced agent architecture with
explicit representation of the team’s joint
intentions, mutual beliefs, and team goals. Fig-
ure 1 shows an operator hierarchy (that is, a
reactive plan hierarchy) for a synthetic heli-
copter pilot developed using STEAM. Team oper-
ators (reactive team plans), which explicitly

in a novel way, that is, not only as a guide to
agent behavior during conflict resolution but
as a source for reusable argumentation knowl-
edge. Finally, CONSA is being built within exist-
ing agent teams in complex environments and
has focused on practical issues, such as mini-
mizing the resources consumed in negotia-
tions.

Domains and Motivations
The motivation for current research on negoti-
ation is based on our previous work in com-
plex, multiagent domains such as real-world
battlefield simulations (Tambe 1997). We have
built different teams of synthetic pilot agents
that participate in combat simulations in these
environments. These pilot-agent teams in-
clude companies of attack helicopter pilots
and divisions of transport and escort heli-
copter pilots. A second domain for our work is
RoboCup (Kitano et al. 1997), where we have
twice successfully participated in the RoboCup
tournaments. These agent teams have been
developed based on a teamwork model called
STEAM (Tambe 1997). STEAM is based on the joint
intentions (Cohen and Levesque 1991) and
SHAREDPLANS (Grosz 1996) theories of teamwork
but with practical extensions for monitoring
and replanning as well as decision-theoretic
communication selectivity. STEAM has provided
significant teamwork flexibility in all these
applications. However, STEAM does not address
the problem of conflicts in agents’ beliefs and
relevant negotiations to resolve such conflicts,
limiting teamwork flexibility in key instances.
We describe here just a few key examples that
outline some of the basic issues for collab-
orative negotiations:

The firing-position case: Individual pilots
in a helicopter team typically attack the enemy
from firing positions. These positions are
planned by a commander agent, who ensures
that they do not conflict; that is, the positions
are planned to be at least 1 kilometer (km)
apart from each other. However, despite care-
ful planning, individual pilots can auton-
omously react to unexpected enemy vehicles
and end up in conflicting positions (for exam-
ple, much less than 1 km apart).

The proceed case: In planning the positions
described previously, the commander pilot
plans one position (for example, position to
hide behind a small hill) for each team mem-
ber and communicates it to the relevant team
member by radio. In one run, a message was
lost because of radio interference; that is, the
commander thought the position was commu-
nicated, but a team member M1 never received

Articles

86 AI MAGAZINE



express a team’s joint activities, are shown in
[], such as [Engage]. At any time, one path
through this hierarchy is active. This active
hierarchy of operators is the team’s joint inten-
tions (team operators) and individual inten-
tions (individual operators).

The second component of STEAM is the
domain-independent teamwork knowledge that
enables individual agents’ flexible teamwork.
Of particular importance here are two of the
classes of domain-independent actions. The
first is coherence-preserving actions, derived from
the joint-intention theory (Cohen and Leves-
que 1991). These actions require agents to
jointly activate and terminate team operators
by establishing mutual beliefs in their initia-
tion and termination; individual operators are
executed without such mutual beliefs. The sec-
ond class of domain-independent actions is
maintenance and repair actions for replanning
and team reorganization. These actions require
an explicit specification of the dependency
relationship of the joint intention on individ-
ual team members’ activities, based on the
notion of a role. A role constrains a team mem-
ber Mi to some suboperator opMi of the team
operator. Three primitive role relationships
(and their combinations) can currently be
specified in STEAM. An And combination implies
that the achievement of a team operator
requires achievement of each one of the roles.
An Or combination requires success in at least
one role for the team operator to be achieved.
The role-dependency relationship states that
an opMi depends on opMj.

Argument Representation 
and Evaluation

This section describes CONSA’s underlying rep-
resentation and algorithms to evaluate argu-
ments, which are embedded in a larger CONSA

process, discussed in the next section. CONSA’s
representation of arguments is based on Toul-
min’s (1958) argumentation pattern (hence-
forth TAP), chosen for its generality. In a TAP,
an argument consists of the following el-
ements: (1) claim, a conclusion whose merit an
agent seeks to establish; (2) data, the facts that
are a foundation for the claim; (3) warrants, the
authority (for example, a rule) for taking the
step from the data to the claim; and (4) quali-
fications, the degree of force that conferred on
the claim based on the data and warrant.

In CONSA, claims are agents’ individual or
mutual beliefs. During argumentation, these
claims form the proposals, with the supporting
TAP as the argument for the proposal. For
example, in RoboCup soccer, a claim (propos-
al) can be that “the ball is a threat,” supported
by data that “the ball is 30 meters from own
goal,” and a warrant that “if the soccer ball is
within 35 meters of own goal, then it is very
likely a threat.” In CONSA, the data can itself be
another claim (belief), with its own supporting
TAP, so that a recursive tree of TAP structure
can emerge in support of a claim. Finally, in
CONSA, the qualifications on claims determine
the strengths of arguments. Currently, claims
have qualitative strengths: high, medium, and
low. Thus, a strong warrant and strong data
lead to a high strength for the claim.

Articles

WINTER 1999   87

High
Level

Low
Level

Contour NOE

Mask

Select-
Mask

Unmask

Dip

[Engage]

Employ
weapons

[Fly-flight-plan]

[Execute-Mission}

............[Traveling]

Fly-control
Route

[
[ ]

Initialize
Hover

Maintain
Position

Go to-New
Mask-location

Prepare-to
Return-to-base

............

]

Return-to
Control-point

............

Figure 1. Portion of Pilot-Operator Hierarchy.



To determine the strengths of the claims in
the compare-strengths procedure in figure 2,
CONSA relies on the supporting TAP structure.
Given that the TAP structure can itself be
recursive, claim strengths are evaluated recur-
sively. For leaf-level claims, evidential rules are
used. Here, CONSA exploits the benefits of
argumentation in a team setting by relying on
the following rules of evidence: Assertions
from a team member regarding its own role
and capability are judged to provide high-
strength claims.

CONSA Approach
Figure 3 presents the overall CONSA negotiation
process. Step 1 is a proposal generated by a
team member. Steps 2, 3, and 4 are the open-
ing, argumentation, and termination stages of
CONSA’s negotiation. In the opening stage,
agents agree to jointly resolve the current con-
flict. In the argumentation stage, they cycle
through proposals and counterproposals,
terminating arguments in the termination
phase.

Opening and Closing Stages
In CONSA’s opening stage, the conflict-detection
step (2a) requires it to address two different
types of conflict. In particular, based on the
description of the teamwork model (see Team-
work Model: A Brief Overview), conflicts can
be of two types: (1) Team members can have
conflicting beliefs about jointly initiating or
terminating a team operator; for example, one
agent believes the team operator must be ter-
minated, but the other believes it cannot be

When an agent sends a proposal to its team,
team members must determine if their own
beliefs conflict with the proposal. Figure 2 pre-
sents a simplified version of CONSA’s algorithm
to make this determination. The input is a pro-
posed TAP tree �, which forms the proposal
(claim), with supporting arguments. The out-
put is a set � of tuples ({reject(claimi) or
accept(claimi)}, justification). Here, a reject
tuple implies an agent’s conflict with the claim
i � �, but an accept tuple implies an improved
justification in support of the claim. The justi-
fications consist of TAPs. If � is empty, then no
conflicts or improvements are found.

In the algorithm, step 1a checks the input
TAP tree � for conflicts with the agent’s own
claims. If a conflict is found, strengths of the
conflicting claims are compared, and the other
agent’s claim is rejected if its own claim is
found stronger. Step 1b now compares the
input claims from � for coincidence or agree-
ment. If coincidence is found, then the sup-
ports of coincident claims are compared to
determine the stronger support. If one is
found, it is added to �. For expository purpos-
es, two complicating factors addressed in CON-
SA are not shown here: First, CONSA can address
the presence of multiple conflicts and coinci-
dences. Second, when no coincidence or con-
flict is found in � itself, CONSA will not imme-
diately accept �. Because leaf nodes in � can
hold undesirable implications, CONSA derives
implications from �. Although in general
checking undesirable implications is difficult,
CONSA currently executes one iteration of such
derivations, checking for conflict or coinci-
dence and adding the result to �.

Articles

88 AI MAGAZINE

Evaluate-proposal(Input: TAP-tree Θ; Output: Ω)

1. In parallel, for all claims α i in TAP-tree Θ do:
(a) {  Check α i for conflict with own claims;

   If αi conflicts with own claim βj, Compare-strengths(αi, βj,);
   If βj, is stronger, add (reject(αi), βj

(b) {  Check α i for coincidence with own beliefs; If coincidence with own claim βi
{ Compare-strengths(support(αi), support(βi));

If support(βi) is stronger, add (accept(αi), support(

2. Output Ω; if Ω is empty, no conflicts or coincidence found.

)to Ω ;}

βi)) to Ω; } }

Figure 2. A Simplified Version of CONSA’s Algorithm for Evaluating a Proposal.



terminated. (2) Agents executing individual
operators can unintentionally conflict with
each other’s role performance. Thus, in the
examples from the section entitled Domains
and Motivations, the firing-position case is a
type-2 conflict, but the rest are type-1 conflicts.
To detect a type-1 conflict, an agent must eval-
uate proposals sent by their teammates to
jointly initiate or terminate team activities,
detected by the evaluate-proposal algorithm in
figure 2. In contrast, to detect type-2 conflicts,
CONSA uses role constraints that explicitly spec-
ify the maintenance goals for the successful
performance of the role. For example, in the
firing-position case, the lateral range (distance)
between Mj (the agent performing this role)
and any other teammate must be at least 1 km.

Having detected a conflict in step 2a, we
temporarily skip over step 2b to focus on step
2c. Here, a team member Mj, which has detect-
ed a conflict, initiates establishment of a team
operator to resolve the current conflict. If the
conflict is of type 1, Mj initiates the establish-
ment of resolve-joint-conflict as a team opera-
tor, involving the entire team from the original
joint activity. If the conflict is of type 2, Mj ini-
tiates the establishment of resolve-role-conflict
as a team operator, but the involved team here
is only Mj and the agent that caused a conflict
for Mj’s role. For example, in the firing-posi-

tion case, resolve-role-conflict is established as
a team operator between Mj and Mk (the agent
that caused the role conflict).

By casting conflict resolution itself as a team
operator, all STEAM’s flexible teamwork capabil-
ities are brought to bear to guide agents’
behavior during conflict resolution. For exam-
ple, agents jointly establish the conflict-resolu-
tion team operators, using protocols that
ensure synchronization and agreement among
team members. In particular, teammates can
disagree about the existence of the conflict, or
they can be unable to negotiate if they are per-
forming another higher-priority task. Howev-
er, by using a team operator for conflict resolu-
tion, an agent Mj begins negotiations only
after ensuring its teammates agree to, and are
able to, engage in negotiations. Furthermore,
STEAM’s reasoning about commitments leads
team members to behave responsibly toward
each other. If a dynamic event causes a team
member to privately discover that the conflict
is resolved or unresolvable or irrelevant, it will
be committed to make it mutually believed in
the team. A team member cannot just on its
own drop out from participation in the con-
flict resolution. The utility of such flexibility
can be seen in the firing-position case. If a
team member sees enemy vehicles approach-
ing, it will terminate the current ongoing ne-

Articles

WINTER 1999   89

1. A team member Mi generates a proposal α.

2. Opening stage:
(a) A team member Mj detects a conflict with α.
(b) If Mj believes joint action not beneficial to resolving conflict, terminate, return;
(c) Else Mj communicates with team members to establish team operator to resolve current conflict.

3. Argumentation stage
(a) Any member Mk in the current team operator may generate proposal to resolve conflict;
(b) Other team members evaluate-proposal (see figure 2)
(c) If no conflict/coincidence found, accept the proposal and go to step 4;
(d) Else if proposal found to conflict/coincide; continue argument if cost-benefit-wise useful, 
      else accept the proposal and goto step 4;

4. Closing stage
(a) If suggested proposal accepted, then terminate conflict-resolution team operator;
(b) Else if the conflict resolution found unachievable or irrelevant, 
      terminate conflict-resolution team operator;

Figure 3. Three Stages of Argumentation in CONSA.



tionships, are used in CONSA. Here, warrant �1
states that if a team operator � is an And com-
bination, and all its roles are not achieved,
then the team operator is not achieved. �2 is
a variation of an Or combination, and �3 is
that for an And combination.

�1: Team-Operator(�) 
� AND-combination(�) 
� ¬ All-roles-fulfilled(�) → ¬ achieved(�)

�2: Team-Operator(�) 
� OR-combination(�) 
� ¬ All-roles-unachievable(�) →
¬ unachievable(�)

�3: Team-Operator(�) 
� AND-combination(�) 
� ¬ All-roles-fulfilled(�) → ¬ achieved(�)

Real-Time, Efficient Argumentation
Three techniques are used in CONSA to reduce
resources used in argumentation and enhance
its real-time performance (shown in steps 2b
and 3d of figure 3). One technique is decision-
theoretic reasoning of the cost-benefit analysis of
argumentation. For example, in the ball-posi-
tion case, the cost of arguing might outweigh
the benefits (for example, the ball might be
shot into the goal by the time the defenders
complete their negotiations). Therefore, an
agent will not negotiate with teammates even
though it detects a conflict in the teammates’
proposal. The second technique is ordering of
arguments. If multiple arguments are ap-
plicable, CONSA will communicate the strongest
first to speed the argumentation process. CONSA

also uses pruning (see discussion later) to avoid
communication of commonly held warrants.

Detailed Example of CONSA application
For a detailed example of CONSA’s application,
we take the simple proceed case we discussed
earlier. Figure 4 shows the initial warrants and
claims that are mutually known by the pilot
agent team (of five agents). � is the current
team operator, an And combination. The ini-

gotiations but do so responsibly while it in-
forms teammates of the situation.

Argumentation Stage
The argumentation stage involves an agent
(sender) making a proposal to the agent-team
(receiver) with an attached justification (argu-
ment). The receivers evaluate the proposal tak-
ing the justification into account and either
accept or refute it. If refuting the proposal, a
receiver can send back a counterproposal to
the team, which can continue this cycle of pro-
posals and counterproposals. Refutation can
be done by rebutting or undercutting (Parsons
and Jennings 1996). Briefly, rebutting refutes
the teammate’s claim (proposal) directly, with
some justifications. In contrast, undercutting
attacks the justification provided with the pro-
posal rather than the proposal itself. In this ar-
gumentation stage, the teamwork setting pro-
vides two key novel ideas: First, it enables and
requires a third strategy in addition to rebut-
ting and undercutting, which we call improve
support. In particular, an agent receiving a pro-
posal from its team member can accept the
proposal but might have a better justification
for the proposal than the one offered by the
sender. For example, in the enemy-position
case, the second scout detected a closer enemy
unit. The second scout agrees with the top-lev-
el claim that the scouting is completed, but it
offers a higher-quality solution about the clos-
er enemy unit, which allows the helicopter
team’s performance to improve. It is to enable
this improve-support strategy that the evalu-
ate-proposal algorithm (figure 2) checks for
claim coincidence.

Second, teamwork models provide reusable
argumentation knowledge. In particular, team
conflicts are sometimes rooted in past team-
work, for example, in the proceed case. To
argue effectively about teamwork, agents must
be knowledgeable about teamwork. Here,
STEAM provides general, reusable warrants for
constructing TAPs. For example, the warrants
shown here, extracted from STEAM’s role rela-

Articles

90 AI MAGAZINE

⇒ Mutually believed warrants: ω1, ω2, ω3, and ω4: ¬ Role-fulfilled(self)→ ¬ All-roles-fulfilled(τ)  

⇒ Commander pilot agent’s initial claims: claim α2: All-roles-fulfilled(τ), claim γ1: AND-combination(τ)

⇒ Pilot agent M1’s initial claims: claim β4: ¬ Role-fulfilled (self), claim γ1: AND-combination(τ)

Figure 4. Initial State: Commander Believes All-Roles-Fulfilled, M1 Believes Own Role Not Fulfilled.



tial proposal is generated by the commander
agent (step 1 of figure 3) to suggest termina-
tion of the team operator �. This proposal is �3
⇐ �2, where �3 is the claim “achieved(�),” and
⇐ stands for a justification.

M1 evaluates the proposal from the com-
mander agent to detect conflicts (step 2a of fig-
ure 3). During this evaluation, using the eval-
uate-proposal algorithm from figure 2, no
direct conflict or coincidence is found. Howev-
er, deriving implication of �2 leads to “Role-
fulfilled(self),” which conflicts with �4, M1’s
own belief. However, �4 is evaluated to be
stronger because M1 is an expert in its own
role. M1 next uses �4 and �1 to construct an
argument: ¬�3 ⇐ ¬ �2 ⇐ �4. (Warrants �1
and �4 are pruned.) Essentially, M1 informs
the commander agent that it disagrees that the
team operator is achieved because its own role
is not fulfilled. Because this conflict is of type
1, the argument from M1 is communicated to
the entire team of pilot agents, which causes
all members (including M1) to establish a team
operator (resolve-joint-conflict); the team has
thus entered the argumentation stage of CONSA.
In this case, because �4 is in the area of exper-
tise of M1, the commander (and other team
members) evaluate �4 to have a high strength
and accept it. They subsequently also accept
¬ �3 and ¬ �2 based on the support offered by
�4. Thus, the proceed case is resolved by the
commander accepting M1’s assertion, and it
communicates this acceptance to teammates.

Applying CONSA

CONSA is currently realized in the SOAR ar-
chitecture in 109 rules. In the following discus-
sion, we attempt a preliminary qualitative
evaluation of CONSA. Our implementation has
enabled agents to negotiate to resolve conflicts
in the cases defined in Domains and Motiva-
tions in the following manner:

Firing-position case: An agent detects a
conflict in its firing position because of its role-
constraint violation (1-km lateral range). It
then establishes a team operator (with the
teammate that violates the role constraint) to
resolve role conflict. It generates a proposal to
suggest an equidistant move by each agent
(500 meters) to meet the lateral range role con-
straint. This proposal is accepted by the second
agent. (However, if the second agent cannot
move, it rejects this proposal, causing the first
agent to move 1 km on its own.)

Proceed case: As discussed previously, M1
persuades teammates that the current team
activity is not achieved.

Enemy-position case: The second scout

finds an improve-support argument to inform the
team that it has better support (that is, a high-
er-quality solution), in the form of closer-range
enemy that it spotted.

Ball-position case: As the cost of negoti-
ation exceeds the likely benefits, agents avoid
negotiations and act based on their own
(divergent) beliefs.

We also attempted a preliminary test of CON-
SA’s flexibility by creating some surprise varia-
tions of these cases.

proceed-1: The role relationship for the
team operator � was changed from an And
combination to an Or combination. Here,
despite team member M1’s role not being ful-
filled, M1 did not detect a conflict, and no
arguments were generated. No conflict detec-
tion is correct because an Or combination does
not require all roles to be fulfilled.

proceed-2: We gave one pilot agent (M1)
two arguments to attack the commander’s pro-
posal—one based on its own role and one
based on another teammate M3’s role. Here,
M1 correctly selected the stronger argument
based on its own role to communicate first to
the team.

firing-position-1: When the pilots estab-
lished the resolve-role-conflict team operator
to resolve firing-position conflicts, enemy
vehicles were suddenly placed close by them.
The pilot that noticed these vehicles first ter-
minated the conflict-resolution team operator
because it was irrelevant and informed its
teammate.

firing-position-2: In a situation similar to
the previous, we had one helicopter destroyed.
The second terminated the negotiation
because this team operator had become
unachievable.

Related Work
Previous work in argumentation-based ne-
gotiation has often assumed noncooperative
agents. For example, Kraus, Sycara, and
Evenchik (1998) used several argument types
borrowed from human argumentation in non-
cooperative situations, for example, threat,
promise of a future reward, and appeal to self-
interest. An example from Kraus, Sycara, and
Evenchik (1998) is negotiation between two
robots on Mars. Here, to persuade a robot R2, a
robot R1 threatens it (R2) that R1 will break
R2’s camera lens or antenna if R2 does not
comply. Such arguments appear inappropriate
in team settings; for example, if R1 and R2 are
a team and if R1 carries out its threat, then it
will have a teammate (R2) without a lens or
antenna. Other explicitly noncollaborative

Articles

WINTER 1999   91



ton, D.C.: IEEE Computer Society.

Tambe, M. 1997. Toward Flexible Team-
work. Journal of Artificial Intelligence
Research (JAIR) 7: 83–124.

Toulmin, S. 1958. The Uses of Argument.
London: Cambridge University Press.

Milind Tambe is a pro-
ject leader for the Infor-
mation Sciences Insti-
tute at the University of
Southern California
(USC) and a research
assistant professor with
the Computer Science
Department at USC. He

received his Ph.D. in 1991 from the School
of Computer Science at Carnegie Mellon
University. His interests are in the area of
multiagent systems, specifically multiagent
teamwork, learning, negotiation, agent
modeling, and real-time performance, and
he has published extensively in these areas.
He is currently on the editorial board of the
Journal of Artificial Intelligence Research and
Autonomous Agents and Multiagent Systems.
He is the program cochair for the  Interna-
tional Conference on Multiagent Systems
2000 and has served as finance and local
arrangements chair for the International
Conference on Autonomous Agents and
the senior program committee member for
the American Association for Artificial
Intelligence conference. His e-mail address
is tambe@isi.edu.

Hyuckchul Jung re-
ceived his Master’s degree
in computer science from
Seoul University in
Korea. He is currently a
graduate research assis-
tant at the Information
Sciences Institute at the
University of Southern

California. His interest is in multiagent
negotiation. His e-mail address is
jungh@isi.edu.

tation knowledge. Third, CONSA focus-
es on collaborative argumentation
strategies such as improve-support.
Fourth, as an implemented system in a
dynamic environment, CONSA uses a
decision-theoretic approach, argu-
ment ordering, and pruning to reduce
the cost of negotiation. Areas of future
work include understanding CONSA’s
implications for argumentation in self-
interested agents.

Acknowledgments
This research was sponsored in part by
Air Force Office of Scientific Research
contract F49620-97-1-0501 and in part
by a subcontract from the Boeing
Corp. We thank Zhun Qiu who im-
plemented portions of the CONSA sys-
tem described in this article.

References
Chu-Carroll, J., and Carberry, S. 1995.
Generating Information-Sharing Subdia-
logues in Expert-User Consultation. In Pro-
ceedings of the Fourteenth International
Joint Conference on Artificial Intelligence,
1243–1250. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial
Intelligence.

Cohen, P. R., and Levesque, H. J. 1991.
Teamwork. Nous 25(4): 487–512.

Freeman, K., and Farley, A. 1993. Toward
Formalizing Dialectical Argumentation. In
Proceedings of the Fifteenth Annual Con-
ference of the Cognitive Science Society,
440–445. Saline, Mich.: Cognitive Science
Society.

Grosz, B. 1996. Collaborating Systems. AI
Magazine 17(2): 67–85.

Jennings, N. 1995. Controlling Cooperative
Problem Solving in Industrial Multiagent
Systems Using Joint Intentions. Artificial
Intelligence 75(2): 195–240.

Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda,
I.; and Osawa, E. 1997. RoboCup: The
Robot World Cup Initiative. In Proceedings
of the First International Conference on
Autonomous Agents, 340–347. New York:
Association for Computing Machinery.

Kraus, S.; Sycara, K.; and Evenchik, A. 1998.
Reaching Agreements through Argumenta-
tion: A Logical Model and Implementation.
Artificial Intelligence 104(1–2):1–69.

Newell, A. 1990. Unified Theories of Cogni-
tion. Cambridge, Mass.: Harvard University
Press.

Parsons, Simon, and Jennings, Nicholas  R.
1996. Negotiation through Argumenta-
tion—A Preliminary Report. In Proceed-
ings of the International Conference on
Multiagent Systems, 267–274. Washing-

argumentation work appears in the
legal domain, for example, DART (Free-
man and Farley 1993), which is also
based on Toulmin’s representation
schema. In contrast, Parsons and Jen-
nings (1996) did not explicitly assume
collaborativeness or noncollabora-
tiveness in agents.

CONSA differs from this work in its
explicit exploitation of the team set-
ting in argumentation. As seen earlier,
it exploits teamwork models to (1)
guide flexible agent behavior in nego-
tiation and (2) act as a source of
reusable argumentation knowledge. It
also adds argumentation strategies so
agents can collaboratively improve
each other’s arguments. Also, CONSA

includes techniques to avoid high
overheads of negotiations. Chu-Car-
roll and Carberry’s (1995) work in
argumentation does assume col-
laborativeness on the part of the par-
ticipating agents. Although they used
SHAREDPLANS (Grosz 1996) in negotia-
tions, they appeared to treat SHARED-
PLANS as a data structure rather than a
teamwork model. Thus, unlike CONSA,
they do not use SHAREDPLANS either as a
prescription for agents’ behaviors in
negotiations or as a source of reusable
argumentation knowledge.

Summary and Future
Work

Multiagent teamwork in diverse
applications ranging from planning,
design, education, and training faces
the problems of conflicts in agents’
beliefs, plans, and actions. Collabora-
tive negotiation is, thus, a fundamen-
tal component of teamwork. We have
begun to address this problem using
an implemented system called CONSA

for collaborative negotiation by argu-
mentation. Although CONSA continues
to build on previous work in argumen-
tation, it exploits the benefits of a
team setting with the following key
ideas: First, CONSA casts conflict resolu-
tion as a team problem, bringing to
bear some of the recent advances in
flexible teamwork to improve the
flexibility of agent behavior in conflict
resolution. Second, because team con-
flicts are often about past teamwork,
CONSA exploits teamwork models to
provide agents with reusable argumen-

Articles

92 AI MAGAZINE




