
■ In 1998, the international planning community
was invited to take part in the first planning com-
petition, hosted by the Artificial Intelligence Plan-
ning Systems Conference, to provide a new impe-
tus for empirical evaluation and direct comparison
of automatic domain-independent planning sys-
tems. This article describes the systems that com-
peted in the event, examines the results, and con-
siders some of the implications for the future of
the field.

The International Artificial Intelligence
Planning Systems Conference (AIPS-98),
held at Carnegie Mellon University in

Pittsburgh in June 1998, played host to the first
world planning competition. Competitors
were invited to come and compete on a collec-
tion of domains and associated problems, sight
unseen, using whatever planning technology
they wanted. Tracks were offered for STRIPS, ADL,
and HTN planning, but in the event, only STRIPS

and ADL were entered. Indeed, ADL saw only two
competitors: IPP (Koehler et al. 1997) and SGP

(Anderson and Weld 1998). IPP gave a convinc-
ingly superior performance over SGP, the only
Lisp-based planner in the competition, in a
single round playoff. The STRIPS track originally
attracted some 9 or 10 declarations of intent to
take part. This article gives an account of the
competition as seen by the competitors who
actually arrived in Pittsburgh and took part in
the two tracks.

Competitions as a way to evaluate and pro-
mote progress in various fields have precedents,

such as the Message Understanding Competi-
tion (MUC) series, sponsored by the Defense
Advanced Research Projects Agency (DARPA);
the Text Retrieval Competition (TREC) series,
sponsored by National Institute of Standards
and Technology and DARPA; and the Turing
Competition. These competitions have stimu-
lated work, but they also represent a serious
investment in effort for the competition orga-
nizers and competitors. It is a formidable task
to create a collection of tasks that is realistically
within the reach of the existing technology
and that represents an adequate challenge and
points the way for the field to develop. Admin-
istrative problems represent a huge overhead to
this task: A common language must be devel-
oped that allows problems to be specified and
results evaluated, scoring mechanisms must be
determined, and the environment must be
selected and competitors forewarned. Tribute
should be paid to Drew McDermott for the role
he played in almost single-handedly executing
all these tasks, with support from the competi-
tion committee.

For the competitors, the competition repre-
sents a challenge to the robustness of their
software, and demands work in meeting the
specifications for both input and output for-
mats, while they continue to develop and
enhance the basic functions of their systems.
The development of PDDL (McDermott and
AIPS 1998) as the common language for the
competition problem specifications was an
important step in the progress of the competi-
tion. A challenge to the competitors was to

Articles

SUMMER 2000 13

The AIPS-98
Planning Competition

Edited by Derek Long,
with Henry Kautz and Bart Selman (BLACKBOX team);

Blai Bonet and Hector Geffner (HSP team);
Jana Koehler, Michael Brenner, Joerg Hoffmann,

and Frank Rittinger (IPP team);
Corin R. Anderson, Daniel S. Weld, and David E. Smith (SGP team);

and Maria Fox and Derek Long (STAN team)

Copyright © 2000, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 21 Number 2 (2000) (© AAAI)

domains that planners can realistically be
expected to handle. All the planners in the
competition were solving some instances of
problems in times measured in milliseconds,
including nontrivial instances. Second, the col-
lection of planners that are sufficiently robust
for release into the general research communi-
ty, requiring no additional special-purpose
domain encoding beyond STRIPS or ADL, and
that can tackle significant instances in reason-
able time is still small. The qualifications are
important, however, because there are clearly
many more planners being actively worked on
that are either still insufficiently robust to be
entered into a competition event or require too
much careful encoding of their domains to be
able to compete automatically across large
numbers of problems, sight unseen. It is hoped
that this situation changes as the competition
is repeated in future years, with a widening of
the field and a broadening of the range of tech-
nology being exposed. This latter point is par-
ticularly poignant because at AIPS-98, three of
the five planners involved were directly built
on GRAPHPLAN (Blum and Furst 1997) (IPP, SGP,
and STAN), one exploited GRAPHPLAN technology
(BLACKBOX), and only one was independent of
GRAPHPLAN in every way (HSP). The role of GRAPH-
PLAN in shaping the domain-independent–
planning research field at the time of the com-
petition is so significant that a short summary
of the features of the system is included in this
section.

Interestingly, all five planners used a full
instantiation of actions as a prelude to search,
explaining in part the difficulties all the plan-
ners experienced with problems that involved
huge numbers of ground-operator instances.
This point is discussed further in the next sec-
tion. It is unfortunate that no constraint-post-
ing planner, avoiding the initial grounding of
action schemas, took part to compare perfor-
mance. Some informal experiments with PRODI-
GY (Fink and Veloso 1996) during the competi-
tion suggested that it might have performed
significantly better than the other planners in
some domains, but it was completely outper-
formed in others. This pattern hints at one of
the most interesting issues that the competi-
tion raised (discussed in more detail in the next
section): Different planning technologies,
despite being domain independent, are actual-
ly highly sensitive to both domain and prob-
lem instance in determining actual perfor-
mance.

This section proceeds with a summary of
GRAPHPLAN before proceeding with an examina-
tion of each of the competing systems in turn.
The organization of this sequence reflects the

adapt to the many minor changes in this lan-
guage as it steadily stabilized. Another impor-
tant problem was anticipating the demands of
the competition domains. All the planners that
eventually competed are domain-independent
planners that require little or no manual guid-
ance in selecting run-time behavior; however,
the performance of all the planners can be
affected dramatically by the design of the
encoding of the domain and problem specifica-
tions. The criteria by which success was to be
judged were also volatile: Trade-offs between
the planning time and the optimality of the
plan produced were a controversial balancing
act. Optimality was measured purely by the
number of steps in the plan for the STRIPS track;
so, planners producing optimal parallel plans
might well find themselves significantly out-
performed by planners concentrating on
sequential plan optimality. Furthermore, the
selection of domains to be used in the compe-
tition was hard. All the competitors had some
collection of favored domains that showcased
the characteristics of their planners. In princi-
ple, all competitors had the opportunity to
propose domains for use, but the constraints
on the time available for the competition made
it impossible to use all of them.

These various challenges thinned the field so
that the competition eventually hosted four
STRIPS planners and two ADL planners (IPP took
part in both tracks). It was apparent that sever-
al others would liked to have participated but
were unable to meet the input and output cri-
teria within the time scales that were imposed
by the organization of the competition.

This article presents the competitors’ impres-
sions of the competition and a summary of the
planning technology with which they compet-
ed. The Competing Planners includes a series
of short subsections that highlight features of
the individual planners that took part and
briefly explores the issues that have led to the
differences in the systems that competed.
Review of Results examines the results of the
competition, analyzing the issues they raise
and pointing out some of the questions that
they leave unanswered. Finally, The Future
considers the future of the competition and the
role it might play in pushing forward planning
research.

The Competing Planners
The competition highlighted several facets of
the current state of the planning research field.
First, even within the last couple of years, the
technology has advanced dramatically in terms
of the size of problems in standard benchmark

…
the collection

of planners
that are

sufficiently
robust for

release into
the general

research
community,
requiring no

additional
special-
purpose
domain

encoding
beyond STRIPS

or ADL, and
that can

tackle
significant

instances in
reasonable

time is still
small.

Articles

14 AI MAGAZINE

relationship between each system and GRAPH-
PLAN. IPP, SGP, and STAN are essentially exten-
sions of GRAPHPLAN, each exploring different
directions. BLACKBOX exploits the core GRAPH-
PLAN data structure but carries out its search for
a plan in an entirely different way. Finally, HSP

is an entirely different approach to planning.

GRAPHPLAN

GRAPHPLAN is an exceptionally influential plan-
ning system devised by Blum and Furst (1997).
Since it was first developed, there have been
several insightful papers that seek to explore its
relationship with other planning approaches
and with constraint solving (Kambhampati
1999; Kambhampati, Lambrecht, and Parker
1997). There has also been considerable activi-
ty devoted to extending and improving the
underlying algorithms.

GRAPHPLAN constructs plans in three phases:
First, the action schemas are fully instantiated
to identify the complete set of ground actions
for the planning problem. Second, a funda-
mental data structure, called the plan graph, is
constructed. Third, the plan graph is searched
in an attempt to identify a plan structure with-
in it. If this process fails, the graph is extended,
and a new search is initiated. This process iter-
ates until a plan is found, or certain terminat-
ing conditions are encountered, proving that
there is no plan. The interleaved graph-con-
struction and -search processes amount to an
iterated depth-first search for a plan, ensuring
a systematic search guaranteed to find the
shortest plan structure.

The key to understanding GRAPHPLAN then is
to understand the plan-graph data structure.
This structure is built as a series of layers of
nodes. Nodes in alternate layers represent
ground facts and ground actions. Arcs are cre-
ated between nodes that represent important
relationships. Fact nodes are connected to
action nodes in the immediately succeeding
layer when they represent preconditions of the
actions. Actions are connected to the facts in
the immediately succeeding layer that they
achieve as positive effects. They are also con-
nected (by differently labeled edges) to their
negative effects (facts they delete). GRAPHPLAN

also inserts special actions, called noops, at each
action layer, which have the role of causing
facts at the preceding layer to persist into the
next layer. Using a noop to achieve a goal is
equivalent to achieving the goal early and
allowing it to persist while other actions occur.
Finally, and most significantly, pairs of actions
in the same layer, and pairs of facts in the same
layer, are connected if they are mutually incon-
sistent (or mutually exclusive—”mutex”). Two

actions are considered mutually exclusive if the
negative effects of one intersects with the pre-
conditions or positive effects of the other or if
they have mutually exclusive preconditions.
Facts are mutually exclusive if all pairs of
actions that achieve the two facts are them-
selves mutually exclusive. The graph is seeded
with an initial layer representing the facts true
in the initial state. The graph is constructed
until a layer of facts includes all the plan goals
as a collection of nonpairwise mutually exclu-
sive nodes in a layer.

Search is goal directed, starting with the last
layer of the graph. The goals are identified in
the final layer, and a collection of nonpairwise
mutually exclusive actions in the preceding
action layer is found that includes all the goals
as positive effects. The preconditions of these
actions are then used as the seed for a recursive
search from the immediately preceding layer of
facts. The process successfully identifies a plan
if the search reaches a collection of facts in the
initial layer. It should be noted that because
more than one action can be used in a given
layer of the graph, the plan can include parallel
actions. Therefore, GRAPHPLAN produces parallel-
optimal plans that are not always sequentially
optimal. If the search fails to produce a plan
(including the recursively initiated searches in
preceding layers), the collection of goals that
cannot be solved is recorded as unsolvable at
the corresponding layer. During subsequent
searches, goals are checked against previously
recorded unsolvable sets, and if they contain
such a set as a subset, then no search is initiat-
ed, but a failure is reported immediately. This
approach can save a huge amount of wasted
search.

If the search fails to find a plan for a top-level
goal set, then the graph is extended by another
action and fact layer, and the search recom-
mences. It has been proved (Blum and Furst
1997) that certain signals in the data structure
will infallibly demonstrate a problem to be
unsolvable, so that the algorithm is not only
sound and complete but also terminating.

GRAPHPLAN has had a dramatic impact on the
planning community, effectively displacing
the earlier nonlinear planning technology as
the foundation of fast and effective planners.
Nevertheless, it suffers from significant prob-
lems. The need to instantiate actions, the stor-
age of the plan graph itself, and the records of
unsolvable goal sets together represent a formi-
dable demand on memory. It is not uncom-
mon to require over 100 megabytes of random-
access memory (RAM) to solve significant
problems, and memory constraints represent
one of the barriers to solving much larger plan-

The key to
understanding
GRAPHPLAN

then is to
understand
the
plan-graph
data
structure.

Articles

SUMMER 2000 15

PDDL first-order formulas into the disjunctive
normal form required by IPP but, in contrast to
that approach, does not expand out condition-
al action effects. Instead, IPP uses a special
extension of the GRAPHPLAN machinery to han-
dle conditional effects directly. In addition, IPP

represented a first complete reimplementation
of GRAPHPLAN and incorporated many major
improvements in the underlying data struc-
tures. These efforts give IPP a dramatically better
time and space performance than the original
GRAPHPLAN implementation. A particular im-
provement is that IPP exploits a new data struc-
ture to support the recording of goal sets for
which search has failed (Hoffmann and
Koehler 1999). This data structure makes it pos-
sible for a full subset test to be used efficiently
when checking to see if a new goal set includes
a subset already recorded as unsolvable, allow-
ing IPP to make more effective use of these
records.

A further innovation introduced in the IPP

system is the use of a filter to remove facts and
actions from the plan graph that are consid-
ered irrelevant to the planning problem. This
process has the potential to improve the per-
formance of the planning system dramatically,
reducing both storage requirements and search
time. This system, RIFO (Nebel, Dimopoulos,
and Koehler 1997), is heuristic and can be con-
trolled to prune the graph more or less aggres-
sively. The competition version of IPP intro-
duces a control harness that uses various
parameters measured from the domain and
problem instance to determine how aggressive-
ly to apply the RIFO mechanism.

The RIFO Metastrategy The competition
version of IPP exploits a metastrategy,
“wrapped” around the planner (figure 1), that
is activated when two threshold parameters—
(1) the number of objects and (2) the number
of ground actions—are exceeded by a planning
problem. These parameters can be set by hand
or can be preset. The strategy configures the
RIFO subsystem within IPP.

RIFO was developed to cope with the problem
of irrelevant information in plan graphs. Usu-
ally, when building a plan graph, a GRAPHPLAN-
based planner will add a great many facts and
actions that are totally irrelevant to solving the
planning problem at hand. By building a tree
of possible actions backwards from the goal set,
ignoring negative effects of actions, RIFO can
identify what information is or might be rele-
vant to a problem. This identification allows
the system to exclude irrelevant information.
The pruning can be applied at various degrees
of strength but at the price of increasing danger
of incompleteness: Overaggressive pruning can

ning problems with this technology. Further,
the backward search through ground actions
forces the planner to make decisions about
parts of a plan long before the information is
available to determine how to make the deci-
sion intelligently. These issues, among others,
remain to be resolved if GRAPHPLAN is to have
longevity as a planning solution.

IPP
The IPP (1998) planning system extends the
GRAPHPLAN system in several significant ways. In
particular, IPP was developed to demonstrate
the extension of the GRAPHPLAN approach to
allow it to handle a larger subset of ADL (Ped-
nault 1989). These extensions include the use
of negative preconditions and conditional
effects, allowing IPP to enter the ADL track of the
competition. To help in handling the ADL

extensions in PDDL, IPP uses a preprocessing
phase based on the proposal first documented
by Gazen and Knoblock (1997) that translates

Articles

16 AI MAGAZINE

PDDL preprocessing
PDDL parser

RIFO meta strategy

IPP 3.3

PDDL output

plan

domain problem

Figure 1. IPP Architecture.

lead to too many actions being ruled out, mak-
ing the planning problem unsolvable. The
metastrategy runs RIFO on the problem input
using the strongest reduction heuristic, which
selects a minimal set of relevant initial facts
and objects and keeps only those ground
actions that were used in the tree of actions
built from the goals to the initial state. The
remainder of the initial state facts, objects (and
facts and actions including them), and other
actions are pruned from the graph to yield a
reduced problem to be exposed to search.

If IPP determines the reduced problem to be
unsolvable, which it usually does quickly,
because of the effective termination test inher-
ent to GRAPHPLAN, the search space is enlarged by
applying RIFO again using a weaker pruning
heuristic, restoring all the previously excluded
actions that use objects that are newly judged
to be potentially relevant. If IPP still cannot
solve the problem, the original search space is
fully restored to retain completeness of the
planner, in the worst case leading to some over-
head if both RIFO heuristics turn a solvable plan-
ning problem into an unsolvable one or if a
completely unsolvable problem is investigated.

Handling of Conditional Effects in IPP
Probably the most important ADL extension
handled by IPP is the use of conditional effects.
Gazen and Knoblock (1997) observe that all
the other commonly handled ADL extensions
can be converted into STRIPS in reasonable time
but that conditional effects lead to a potential-
ly crippling combinatorial cost if an attempt is
made to deal with them in this way.

IPP represents conditional effects directly in
planning graphs and also propagates mutual
exclusion relationships between facts occur-
ring in conditional effects and their effect con-
ditions. However, it does not extend the notion
of mutual exclusion between actions, as
defined in GRAPHPLAN. This fact contrasts with
the approach taken in SGP, discussed later,
where a propagation of mutual exclusion rela-
tions over actions is proposed.

Actions with conditional effects are still
treated as atomic units in IPP, but SGP creates
components similar to GRAPHPLAN’s STRIPS

actions that represent each conditional effect
in the graph. Thus, there is the possibility of
marking component nodes as exclusive as well
as, it is claimed, a performance benefit. A
detailed discussion of the relative merits of the
two approaches is beyond the scope of this arti-
cle but remains an interesting area of debate in
the GRAPHPLAN community.

Interestingly, the movie domain, which was
designed to explore the differences in the
approaches to conditional effects, failed to

achieve this objective because of an additional
feature of IPP: the exploitation of inertia, or
unchanging facts in the domain, to carry out
constant folding among the grounded actions
and reduce them to simpler forms. This process
represents an important element of the collec-
tion of techniques being developed to control
the size of the plan graph for GRAPHPLAN-based
approaches to planning.

SGP

SENSORY GRAPHPLAN (SGP) is a sound, complete
planner also built following GRAPHPLAN. SGP

includes support for conditional effects, uni-
versal and existential quantification, uncer-
tainty, and sensing actions. SGP only entered
the ADL track of the competition to demon-
strate these extensions to the underlying
GRAPHPLAN machinery. SGP was the only planner
written in Lisp to enter the competition and,
despite the performance limitations from the
language, competed well.

SGP has a number of features that set it apart
from the other GRAPHPLAN-based planners. These
unique features, described in the following sub-
sections, are factored expansion for handling
conditional effects and the ability to handle
uncertainty and sensing actions. SGP is written
in well-documented Lisp code and can be down-
loaded from the SGP home page (SGP 1998). SGP

continues to be supported by the University of
Washington, with new bug fixes and new releas-
es being produced as appropriate.

Factored Expansion of Conditional
Effects Many of the expressive features of ADL

are easy to implement in GRAPHPLAN, but han-
dling conditional effects is surprisingly tricky.
Conditional effects allow the description of a
single action with context-dependent effects.
The basic idea is simple: A special when clause
is introduced into the syntax of action effects.
When takes two arguments: (1) an antecedent
and (2) a consequent. Execution of the action
will have the consequent’s effect just in case
that the antecedent is true immediately before
execution (much like the preconditions of the
action determine if execution itself is legal),
which is exactly why handling actions with
conditional effects is tricky: The outcomes of
the actions depend on the state of the world
when the action is executed.

Factored expansion was first described in
Anderson and Weld (1998), where it was com-
pared to full expansion (Gazen and Knoblock
1997) and the conditional-effects handling
method of IPP. The idea behind factored expan-
sion is twofold: First, all actions that contain
conditional effects are factored into compo-
nents, with a single effect (conditional or

Articles

SUMMER 2000 17

edge of the world at plan time and assume that
the outcome of actions is certain. Although
this assumption simplifies the planning
process, it is an unrealistic one. SGP relaxes the
assumption that the agent knows the state of
the entire world a priori.

The first step in relaxing this assumption is
to allow the initial state to include propositions
whose truth values are uncertain (either true or
false). Internally, SGP represents this sort of
uncertainty by keeping track of each possible
world. For example, if both propositions P and
Q are uncertain, then there are four possible
worlds: (1) P and Q, (2) P and not Q, (3) not P
and Q, and (4) not P and not Q. For each possi-
ble world, SGP builds and maintains a separate
planning graph. This task is complicated by the
fact that because of conditional effects, the out-
come of an action might be different depend-
ing on the world it is executed in. It should be
noted here that SGP makes the assumption that
an uncertain proposition might be true or false
but does not make any assumptions about
probabilities (SGP simply records that a propo-
sition is uncertain and does not associate a
numeric weight with each possibility).

The second step in relaxing the complete
knowledge assumption is to limit the agent’s
observational powers to explicit sensing actions.
Sensing actions are actions in the domain whose
effects include a special sense statement. Sense
statements are used to let the agent query the
world for the truth value of a proposition. Based
on the sensed truth value, the agent can then
refine the subset of possible worlds it is in (for
example, if a proposition P is sensed to be true,
then the agent knows that it is in one of the pos-
sible worlds in which P is true).

Given the set of planning graphs (one for
each possible world) and the set of actions,
including sensing actions, SGP builds a plan that
will achieve the goals in all possible worlds. To
guarantee success in each possible world, the
plan can include actions that are to be executed
only in some of the possible worlds. Thus, the
plan might have branch points contingent on
the consequences of sensory actions. The plan
is a directed acyclic graph, with the possibility
of branches rejoining with each other. The con-
tingencies in the plan are based on which pos-
sible world the agent is in at plan-execution
time. To resolve which possible world the agent
is in, the results of the sensing actions are used.
An important feature of SGP is that the planner
determines exactly which sensing actions need
to be taken to resolve the uncertainty. There are
two important outcomes here: First, the plan-
ner does not assume that the agent has full
observational power. Instead, SGP allows only

unconditional) in each component. Each com-
ponent can then be treated, more or less, just
like a STRIPS action. Second, when the compo-
nents are being examined for graph expansion
and backtracking search, the interaction
between components from the same action is
considered. In particular, there is the new con-
cept of component induction: Component Cn
induces Ck at level i if it is impossible to execute
Cn without executing Ck.

Component induction leads to changes in
both the GRAPHPLAN mutual-exclusion rules and
in the backtracking search for a solution. The
change to the mutual-exclusion rules is the
addition of a new rule that can identify more
mutual-exclusion relations: Two components
Cn and Cm at level i are mutually exclusive if
there exists a third component Ck that is mutu-
ally exclusive with Cm, and Ck is induced by Cn
at level i. The change to the backtracking
search requires that when a component is
selected to establish a goal, all other compo-
nents from the same action instance must also
be considered.

An example of a domain where the factored
expansion approach shows its strength is the
movie domain. The goal of the movie domain
is to collect snacks and then watch a movie.
Before the movie can be “watched,” the movie
must be rewound, and the video cassette
recorder’s (VCR) counter must be set to zero.
Consider what the planning graph looks like
after one level has been built: The VCR’s
counter can be reset, the tape can be rewound,
and snacks can be fetched. The key thing, how-
ever, is that the actions to rewind the movie
and to reset the VCR’s counter are mutually
exclusive only if their conditional effects are
considered. The IPP method of handling condi-
tional effects does not find this mutual-exclu-
sion relationship, and thus, IPP must perform
an exhaustive search of the planning graph to
determine that no plan yet exists.

SGP, however, can identify the induced
mutual-exclusion relationship between the
two actions. Thus, SGP immediately knows that
no plan yet exists and can thus proceed to the
next planning graph level.

Uncertainty and Sensing Actions The
second novel feature in SGP is its ability to deal
with uncertainty and sensing actions (this
work is detailed in Smith and Weld [1998a] and
Weld, Anderson, and Smith [1998]). Although
this part of SGP was not used at the AIPS-98
planning contest, it is discussed here in some
detail because it was the main motivation for
work on SGP and is the characteristic that dis-
tinguishes SGP from the other planners.

Classical planners assume complete knowl-

Articles

18 AI MAGAZINE

the terms sensed by the sensing actions to be
used in resolving uncertainty. Second, the
agent does not have to resolve exactly which
possible world it is in but, rather, which of a set
of possible worlds it is in. This distinction is
important because with SGP, the agent need not
necessarily resolve all the uncertainty but sim-
ply “enough.”

STAN

STAN (state-analyzing planner) (1998) is a third
system based on GRAPHPLAN that extends its
planning technology in several ways: First, a
more sophisticated data structure is used to
store the graph and aid in its construction than
was used in earlier versions of GRAPHPLAN. Sec-
ond, more analysis is carried out on the graph
and the problem it encodes to reduce search
branches, including goal-ordering analysis,
symmetry analysis, and resource analysis.
Third, a wave front is exploited at the fix point
of the plan graph to avoid unnecessary addi-
tional work. Fourth, state-analysis techniques,
implemented as a module of STAN that can be
exploited as a planner-independent system,
TIM, are used to acquire information about a
domain and problem encoding that is exploited
in instantiation and filtering of the plan graph.

The implementation of the plan graph in
STAN is based on a careful reuse of much of the
central graph structure, to avoid repeatedly
copying layer-independent information, to-
gether with bit-level operations to support
graph construction and careful filtering of the
layer-dependent structures to reduce the retest-
ing carried out at subsequent layers. This
implementation, the most recent version of
which is described in full in Long and Fox
(1999), is efficient and relatively compact,
although the competition version of STAN (STAN

1.0) still allowed unnecessary wastage of space.
A similar approach, although introduced with
a slightly different purpose (to extend GRAPH-
PLAN to handle actions with duration), is dis-
cussed in Smith and Weld (1999, 1998b).

The plan graph is carefully analyzed during
construction to produce several auxiliary rela-
tionships between goals and between actions
at each layer. In particular, STAN identifies order-
ing relations between pairs of goals reflecting
the order in which they must be satisfied so
that both are true at a given level. Thus, a con-
siderable reduction in the search space is
allowed by automatically selecting noops for
goals that must be satisfied earlier than the cur-
rent layer during search. Furthermore, certain
chains of ordered goals can prevent an entire
goal set from being achieved at a given layer
without any search at all.

STAN also identifies some goal sets as
unachievable when they exceed certain
resource limitations imposed by the domain.
Resources include numbers of objects in certain
configurations, the rate at which certain objects
can be put into key configurations during the
plan execution, and other factors as well as the
physical resources available to the planning
agent (such as grippers, fuel, and containers).
Limits on the availability of abstract resources,
such as the rate at which objects can be config-
ured, arise from the limits imposed by the phys-
ical resources of the agent and are expressed, for
example, in terms of constraints on the number
of plan-graph levels that must have been built
before a certain goal configuration can be
achieved. The resource analysis performed by
STAN can dramatically reduce search, by identi-
fying the minimum number of graph layers
that must be built, in some domains including
the traveling salesman problem discussed later.

Finally, STAN exploits structural features of the
problem domain, such as symmetry, to reduce
search. The competition version of STAN per-
formed only a preliminary symmetry analysis in
which symmetric objects (those that are indis-
tinguishable and, hence, do not form interest-
ingly different action instantiations) were iden-
tified to reduce the number of action
instantiations produced. Although STAN was able
to detect certain forms of symmetry, the compe-
tition version was not able to exploit it fully. A
more advanced treatment has been developed
since the competition (Fox and Long 1999).

One of the most important features of STAN

that distinguishes it from other GRAPHPLAN-
based planners is its use of a highly efficient
implicit representation of the graph beyond
the fix point. STAN avoids both construction
and search of the plan graph beyond the fix
point, where the graph is static. Instead, search
is built on a collection of candidate goal sets
that are generated as failure sets at the fix point
and that are pushed one layer forward to be
retried. This process in which failed goal sets
are promoted forward forms a kind of rolling
collection of goal sets at the fix point, which is
called a wave front (Long and Fox 1999). The
efficiency gains this mechanism offers can be
dramatic in certain problems and can also sig-
nificantly reduce the memory demands during
the process of constructing a solution.

The exploitation of the results of state analy-
ses of various kinds is an important feature of
STAN. State analyses can be done in a prepro-
cessing stage, using techniques that are planner
independent, and the results fed into the plan-
ning process and used to reduce, and even
eliminate, some of the more resource-intensive

Articles

SUMMER 2000 19

Much work remains to be done in this area:
RIFO offers IPP a huge benefit in many problems
by filtering out many irrelevant objects,
actions, and facts but at the price of possible
incompleteness. As can be seen in Review of
Results, all the planners were confounded
when confronted with problem instances con-
taining large numbers of ground-operator
instances. The ability to reduce these numbers
by intelligent filtering would appear to be a
critical element to successful planning.

In contrast, some problems are hard not
because of the cost of construction of the graph
but because of the multiplicity of search paths
in the problem. This multiplicity is particularly
problematic in cases in which the problem
appears to be solvable long before it actually is
(the graph contains the nonpairwise, mutually
exclusive goals long before the solution layer).
An example of such a problem is the complete-
graph traveling salesman problem (TSP) in
which the graph is completely connected so
that the traveler is unconstrained in the order
of visits he makes. In this case, the problem is
that all the destinations could be visited within
a single step, and any pair could be visited after
two steps. Thus, the problem appears solvable
after two steps but is not actually solvable until
n steps have passed, where n is the number of
sites to be visited. However, as n grows, the
number of possible paths the traveler might
have taken explodes exponentially, so that the
search problem quickly becomes intractable.
STAN uses resource analysis to determine that
only one destination can be visited at each
step, so it does not search for a plan until n lay-
ers are constructed and can also ensure that
every layer is used for a visit to a hitherto
unvisited site.

Unfortunately, there are other problems of
similar character that are not yet adequately
tackled by STAN. The gripper problem used in the
competition is an example: STAN correctly deter-
mines that no more than two balls can be
deposited at each time step. However, it does
not allow for the fact that the two balls must
also be picked up and transported, requiring an
additional two steps (and a third to return to the
source for another load), so the resource analysis
does not help as much as one might hope.

GRAPHPLAN-style planners also suffer during
search from a problem of premature commit-
ment. This problem occurs because the use of
ground-action instances forces selection of
objects to play particular roles in a plan often
before constraints that would govern their
choice become apparent. Constraint-solving
planners can benefit with these problems by
making choices in the highly constrained parts

aspects of planning. Symmetry analysis, in
which symmetric objects and actions are iden-
tified to prune redundant search, is one such
form of state analysis. Another technique, cur-
rently being integrated with STAN 3, is the types
and state-invariant inference analysis per-
formed by the TIM module (Fox and Long
1998). The competition version of STAN was not
fully integrated with TIM and therefore could
not make use of the inferred state invariants. It
could exploit the type structure inferred by TIM,
but the competition domains had types sup-
plied, hence STAN did not have as large an
advantage over the other competitors as can be
achieved with some domain encodings. More
recently, TIM has been extended to allow the
automatic identification of certain generic
domain behaviors such as objects that traverse
a map of locations and objects that can be car-
ried around such a network, together with the
objects responsible for carrying them. This
analysis can be exploited in a variety of ways,
but an initial use is in filtering useless action
instances from the initial action-instantiation
phase common to GRAPHPLAN-based planners.

Development of STAN During the develop-
ment of the competition version of STAN, a pat-
tern was established of exploring the behavior
of the planner on a family of problems to
understand what made them hard followed by
constructing techniques to tackle the source of
the difficulty in a domain-independent way. An
important lesson learned from this process, and
from the competition itself, is that problems are
hard for a wide variety of reasons and that these
different sources of difficulty can lead to the
development of techniques that are powerful in
certain contexts but are simply useless over-
head in others. Of particular interest were prob-
lems that appeared hard for STAN yet were easy
for other planners or are intuitively easy.

One of the reasons problems can be hard,
affecting GRAPHPLAN-style planners in particular,
is that domains can contain huge collections of
instantiated actions that have no useful role in
the plan. Thus, you have both a large cost in
the construction phase and, often, a large cost
in the search phase when many branches must
be explored. These branches often express the
same fundamental planning decisions but,
because of the search in grounded actions, dif-
fer in details that are insignificant from the
planning point of view.

STAN attempts to deal with this problem in
several ways: Type inference leads to a poten-
tial reduction in the numbers of instantiated
actions; the use of static conditions in instanti-
ation; and some preliminary work on filtering
to remove some objects in some domains.

Articles

20 AI MAGAZINE

of the plan and propagating them into the less
constrained parts of the plan. Forward- and
backward-chaining planners do not direct their
planning strategies by exploiting the most
highly constrained parts of a plan structure,
which can lead to costly mistaken choices that
must be retracted.

Some problems are hard because they have an
inherent combinatorial cost, and others are, in
principle, easy yet prove hard with current plan-
ning technology or at least with some current
planning strategies. The gripper domain is a
good example of the latter—a domain in which
problems are trivial for human problem solvers,
yet an optimal plan for this domain eluded all
the planners in the competition for instances
larger than a dozen balls. More recent work on
STAN has explored the exploitation of symmetry
in problems such as the gripper that can reduce
the difficulty dramatically (Fox and Long 1999).
Nevertheless, clearly much work remains to be
done in recognizing and exploiting features of
problems that humans appear to identify with
ease. Furthermore, the representation of so-
lutions to problems such as these remains an
issue: No human would represent the solution
to problems in the gripper domain as an explicit
sequence of steps but would as a method for
generating these steps during execution (“Trans-
port the first two balls from room a to room b,
then return and repeat until all balls are trans-
ported.” The fact that the first two balls are not
identified by name is an indication of the role of
symmetry for human problem solvers).

BLACKBOX

It has often been observed that the classical AI
planning problem (that is, planning with com-
plete and certain information) is a form of log-
ical deduction. Because early attempts to use
general theorem provers to solve planning
problems proved impractical, research became
focused on specialized planning algorithms.
However, the belief that planning required
such specialized reasoning algorithms was
challenged by the work of Kautz and Selman
(1996, 1992) on planning as propositional sat-
isfiability testing. SATPLAN showed that a general
propositional theorem prover could be com-
petitive with some of the best specialized plan-
ning systems. The success of SATPLAN can be
attributed to two factors: (1) the use of a logical
representation that has good computational
properties and (2) the use of powerful new gen-
eral reasoning algorithms such as WALKSAT (Sel-
man, Kautz, and Cohen 1994). Both the fact
that SATPLAN uses propositional logic instead of
first-order logic and that we suggested the par-
ticular conventions for representing time and

actions are significant. Differently declarative
representations that are semantically equiva-
lent can have distinct computational profiles.
The use of general reasoning algorithms offers
an important benefit because many researchers
in different areas of computer science devise
new algorithms and implementations for SAT

testing each year and freely share ideas and
source code. SAT is the general problem of deter-
mining whether there is a way to set a collec-
tion of identified variables to each be either
true or false so that a given logical expression
involving these variables is made true. As a
result of this shared work and the size of the
interested community, at any point in time,
the best general SAT engines tend to be faster (in
terms of raw inferences a second) than the best
specialized planning engines.

Interestingly, the GRAPHPLAN approach to
planning shares a number of features with the
SATPLAN strategy. Comparisons with SATPLAN

show that neither algorithm is strictly superior.
For example, SATPLAN is faster with a complex
logistics domain; they are comparable on the
blocks world; and with several other domains,
GRAPHPLAN is faster.

GRAPHPLAN bears an important similarity to
SATPLAN: Both systems work in two phases, first
creating a propositional structure (in GRAPHPLAN,
a plan graph, in SATPLAN, a formula in conjunc-
tive normal form [CNF]) and, second, searching
this structure. The propositional structure cor-
responds to a fixed plan length, and the search
reveals whether a plan of this length exists. Fur-
thermore, in Kautz and Selman (1996), it is
shown that the plan graph has a direct transla-
tion to a CNF formula and that the form of the
resulting formula is close to the original con-
ventions for SATPLAN. It is hypothesized that the
differences in performance between the two
systems can be explained by the fact that GRAPH-
PLAN uses a better algorithm for instantiating
the propositional structure, and SATPLAN uses
more powerful search algorithms.

SATPLAN fully instantiates a problem instance
before passing it to a simplifier and a solver. By
contrast, GRAPHPLAN interleaves plan-graph
instantiation and simplification. Furthermore,
GRAPHPLAN uses a powerful planning-specific
simplification algorithm: the computation of
the mutual-exclusion relations between pairs
of actions and facts.

These observations have led to the creation
of a new system that combines the best features
of GRAPHPLAN and SATPLAN. This system, called
BLACKBOX, works in three phases. First, a plan-
ning problem (specified in a standard STRIPS

notation) is converted to a plan graph. Second,
the plan graph is converted into a CNF formu-

Articles

SUMMER 2000 21

ing as well as a technique for reducing the size
of the CNF encodings by suppressing the gener-
ation of clauses that are logically redundant.

BLACKBOX was designed to improve the plan-
extraction phase of GRAPHPLAN (that is, the search
within the plan graph for a solution). In the
majority of the problems solved in the compe-
tition, plan extraction was comparatively easy
once the plan graph was constructed. Systems
that reduce the plan-graph structure and there-
by reduce the cost of constructing it enjoyed a
relative advantage over BLACKBOX in this con-
text. Problems that have a relatively much
harder plan-extraction phase are included in
the BLACKBOX (1998) distribution.

HSP: Heuristic Search Planner
HSP is a planner based on the well-established
idea of heuristic search. Heuristic search algo-
rithms perform forward search from an initial
state to a goal state using a heuristic function
that provides an estimate of the distance to the
goal. The 8-puzzle is the standard example of
heuristic search and is treated in most AI text-
books (Pearl 1983; Nilsson 1980). The main dif-
ference between the 8-puzzle and the approach
to planning adopted in HSP is in the heuristic
function. Although in domain-specific tasks
such as the 8-puzzle, the heuristic function is
given (for example, as the sum of the Manhat-
tan distances), in domain-independent plan-
ning, it has to be derived from the high-level
representation of the actions and goals.

A common way to derive a heuristic function
h(s) for a problem P is by relaxing P into a sim-
pler problem P’ whose optimal solution can be
computed efficiently. Then, the optimal cost for
solving P’ can be used as a heuristic for solving
P (Pearl 1983). For example, if P is the 8-puzzle,
P’ can be obtained from P by allowing the tiles
to move into any neighboring position. The
optimal cost function of the relaxed problem is
precisely the Manhattan-distance heuristic.

In STRIPS planning, the heuristic values for a
planning problem P can be obtained by consid-
ering the relaxed planning problem P’ in which
all delete lists are ignored. In other words, P’ is
like P except that delete lists are assumed emp-
ty. As a result, actions can add new atoms but
not remove existing ones, and a sequence of
actions solves P’ when all goal atoms have been
generated. As with all the other competition
planners, action schemas are first grounded in
an initial instantiation phase, so variables do
not occur in actions.

It is not difficult to show that for any initial
state s, the optimal cost h’(s) to reach a goal in
P’ is a lower bound on the optimal cost h*(s) to
reach a goal in the original problem P. The

la. Third, the formula is solved by any of a vari-
ety of fast SAT engines.

The formula generated from the plan graph
can be considerably smaller than one generat-
ed by translating STRIPS operators to axioms in
the most direct way, as was done by the earlier
MEDIC system of Ernst, Millstein, and Weld
(1997). Furthermore, the mutual-exclusion
relations computed in the plan graph can be
translated directly into negative binary clauses,
which can make the formula easier to solve for
many kinds of SAT engines.

The competition version of BLACKBOX includ-
ed the local-search SAT solver WALKSAT and the
systematic SAT solver SATZ (Li and Anbulagan
1997) as well as the original GRAPHPLAN engine
(that searches the plan graph instead of the
CNF form). To have robust coverage over a vari-
ety of domains, the system can use a schedule
of different solvers. For example, it can run
GRAPHPLAN for 30 seconds; then WALKSAT for 2
minutes; and, if still no solution is found, SATZ

for 5 minutes.
The BLACKBOX system introduces new SAT

technology as well, namely, the use of random-
ized complete search methods. As shown in
Gomes, Selman, and Kautz (1998), systematic
solvers in combinatorial domains often exhibit
a “heavy tail” behavior, whereby they get
“stuck” on particular instances. Adding a small
amount of randomization to the search heuris-
tic and rapidly restarting the algorithm after a
fixed number of backtracks can dramatically
decrease the average solution time, often from
hours to seconds.

This randomization-restart technique was
applied to the version of SATZ used by BLACKBOX.
The variable-choice heuristic for SATZ chooses
to split on a variable that maximizes a particu-
lar function of the number of unit propaga-
tions that would be performed if that variable
were chosen (see Li and Anbulagan [1997] for
details). The BLACKBOX version, SATZ-RAND, ran-
domly selects among the set of variables whose
scores are within 40 percent of the best score.
The solver schedule used in the competition
was to run the GRAPHPLAN engine for 2 seconds,
then to convert the problem to CNF and run
SATZ-RAND for 10 restarts with a cutoff of 100
backtracks. If one of the solvers showed that no
solution existed, the plan graph was extended
by one layer and the schedule repeated. Note
that no one cutoff value is ideal for all
domains. One way to address the problem is to
specify a sequence of increasing cutoff values
in the solver schedule.

The newest version of BLACKBOX includes an
additional solver, RELSAT (Bayardo and Schrag
1997), based on dependency-directed backtrack-

Articles

22 AI MAGAZINE

heuristic function h(s) could therefore be set to
h’(s) and obtain an informative and admissible
(nonoverestimating) heuristic. The problem,
however, is that computing h’(s) is still NP hard
(first observed by Bernhard Nebel). Therefore,
an approximation is used: The heuristic values
h(s) are set to an estimate of the optimal values
h’(s) of the relaxed problem. These estimates
are computed as follows:

Starting with s0 = s and i = 0, si is expanded
into a (possibly) larger set of atoms si+1 by com-
bining the atoms in si with the atoms that can
be generated by the actions whose precondi-
tions hold in si. Every time an action that
asserts an atom p is applied, a measure gs(p) is
updated that is intended to estimate the diffi-
culty (number of steps) involved in achieving p
from s. For atoms p in s, this measure is initial-
ized to 0, but for all other atoms, gs(p) is initial-
ized to infinity. Then, when an action with pre-
conditions C = r1, r2, …, rn that asserts p is
applied, gs(p) is updated as

The expansions and updates continue until
these measures do not change. When all pre-
conditions involve a single atom, it is a Bell-
man-Ford procedure for computing costs in a
graph from a given set of sources. The nodes
are the atoms, the sources are the atoms p such
that gs(p) = 0, and edges p to q with cost 1 exist
when an action with precondition p asserts q.

The heuristic function h(s) used by HSP is
defined then as

where G stands for the set of goal atoms. This
definition assumes, like decompositional plan-
ners, that subgoals are independent. The added
value of the heuristic approach is that subgoals
are weighted by a difficulty measure that makes
it possible to regard certain decompositions as
better than others. A result of this assumption
is that the heuristic function h(s) is not admis-
sible. However, it is often quite informative
and can be computed reasonably fast.

The Search Algorithm The heuristic func-
tion defined previously allows us to deal with
any STRIPS planning problem as a problem of
heuristic search. Thus, planning could be car-
ried out using algorithms such as A*. A*, how-
ever, might take exponential memory and
approaches the goal too cautiously. In HSP,
where the heuristic is recomputed from scratch
at every node, it is necessary to use algorithms
that can get to the goal with as few evaluations
as possible. For this reason, HSP uses a form of

h s g p
def

s
p G

() ()=
∈
∑

g p g p g rs s s
i n

i(): min[(), ()]
,

= +
=
∑1

1

hill-climbing search. Surprisingly, hill climbing
works well in many problems and often pro-
duces good plans fast. Sometimes, however, it
gets stuck in local minima. To tackle this prob-
lem, search proceeds until a fixed number of
impasses have been encountered, restarting the
search if necessary, to some specified maxi-
mum number of times. The algorithm used in
the competition is a variation of this idea that
also uses memory to keep track of the states
that are visited. Current effort is directed
toward identifying ways to speed up the evalu-
ation of the heuristic so that more systematic
search algorithms could be used.

HSP is implemented in C. In contrast to all the
other competition systems, a preprocessor is
used to convert a STRIPS problem in PDDL into a
C program that is then compiled, linked,
assembled, and executed. This process usually
means a time overhead on the order of a sec-
ond or two in small planning problems but
pays off in larger ones.

Related Work HSP is based on the planner
reported in Bonet, Loerincs, and Geffner (1997).
This planner, called ASP, uses the same heuristic
function but a different search algorithm based
on Korf’s (1990) LRTA, which was designed for
real-time planning. An independent proposal
that also formulates planning as heuristic
search was developed by McDermott (1996).

The bottleneck in HSP is the computation of
the heuristic values that are obtained afresh in
every new state. Work carried out since the
competition has led to a solution to this prob-
lem, reported in Bonet and Geffner (1999). A
related proposal is owed to Refanidis and Vla-
havas (1999). The work reported in Bonet and
Geffner (1999) also suggests that there is a close
relation between heuristic search planning and
GRAPHPLAN planning that might be worth fur-
ther investigation.

Further details on HSP and code can be found
at the HSP (1998) web site.

Review of Results
One of the tasks the competition committee
faced was to determine a strategy for evaluating
planner performance. Before the competition,
a formula was proposed that combined weight-
ed values for plan length and planning time,
adjusted to reflect the relative performance of
different planners on the same problem (to
give due credit to planners that quickly solved
problems that defeated many of the others). In
the event, this formula was judged to give
counterintuitive results, and it was essentially
abandoned, leaving a void in the final evalua-
tion of performance; in the STRIPS track, it

Articles

SUMMER 2000 23

are similar in that they are all transportation
problems that involve moving objects around
a network of locations as efficiently as possible.
Interestingly, these domains all had a similar
performance limit for all the planners: No
planner could solve a logistics problem with
more than 10,000 ground-action instances,
and all the problems with fewer than 10,000
ground-action instances were solved by at least
1 of the planners. Where reported, the num-
bers of ground-action instances have been
computed using STAN, with all filtering mecha-
nisms turned off. STAN uses the TIM subsystem to
generate a type structure for each domain,
which can result in fewer ground-action
instances being generated than would be the
case with raw instantiation. The mystery prime
domain proved more tractable, with problems
including as many as 24,290 ground-action
instances being solved by some planners
(although the problem instance with 24,290
actions involved producing a plan with only 4
steps). However, problems with over 10,000
ground-action instances still proved hard in
general, with several planners failing on these
large problems and inconsistent performance
being demonstrated between the threshold of
10,000 ground-action instances and the largest
solvable problems. More than half the mystery
problems presented in the competition were
under 10,000 ground-action instances in size.
Of the 13 problems that exceeded this size, 5
were unsolvable, and 3 were solved in the com-
petition by at least 1 of the planners. The other
five problems were all solvable, at least with
STAN, although buffer sizes were set too small in
the competition configuration for it to solve
them. STAN uses an object-filtering mechanism
that worked successfully in both the mystery
and mystery prime domains to cut the num-
bers of ground-action instances so that in the
mystery domain, none of the problems pre-
sented actually produced more than 8,000
ground-action instances.

Interestingly, of the 30 mystery-domain
problems presented in the competition, 11
were proved unsolvable by at least 1 planner
rather than simply proposed unsolvable
because of a lack of resources. This distinction
was not used in the competition (presumably
because of the difficulty in distinguishing an
accurate claim that a problem is unsolvable
from a lucky guess when resources run out),
but the three GRAPHPLAN-based planners used in
the competition are capable of identifying
problems of this kind (at least in principle);
however, BLACKBOX can identify some unsolv-
able problems (those in which some of the
goals are unreachable or are pairwise unreach-

remains a difficult task to assess the relative
performances of the planners. A summary of
the results was presented at the event, but it
was crude in that it failed to differentiate
between good performance on simple prob-
lems and good performance on hard problems.
This masking is amplified by the fact that each
of the planners faced minor problems because
of program bugs that made what would have
otherwise been simple problems appear hard
for these planners. In addition, in the mystery
domain, several problems were unsolvable
(and proven such by some of the planners), but
these problems were ignored in the results
summary. Overall, the results of the individual
planners all showed strengths and weaknesses,
and it is not surprising that a simple direct
comparison proved unsatisfactory in the com-
petition. This challenge remains unsolved for
future competition events, and the community
must be wary of setting up targets (in whatever
form) that oversimplify the objectives of plan-
ners. The problem that evaluation represented
suggests that these objectives remain a com-
plex and clouded issue.

It is worth emphasizing that three of the
planners running in the STRIPS track (BLACKBOX,
IPP, and STAN) all produce parallel optimal plans
(although IPP does not guarantee to do so when
using its RIFO machinery), which, when lin-
earized, will not always lead to optimal sequen-
tial plans. This can explain the discrepancies in
plan lengths discovered by these planners. In
general, the length of the linearized plan is dif-
ficult to control when using a mechanism that
produces optimal parallel plans. HSP produces
linearized plans but does not support claims for
optimality. An interesting example to consider
is the seventh logistics problem in the first
round of the competition, where HSP produced
the only plan found by any of the planners.
This plan was 112 (sequential) steps long. STAN

has subsequently demonstrated that there is a
(sequential) 37-step plan!

The First Round: STRIPS Track
The competition involved the use of five
domains in the first round and three in the sec-
ond. The first round used the gripper, the
movie, the logistics, the mystery, and the mys-
tery prime domains. The last two are variations
on transportation domains with limited fuel. In
the last domain, the fuel can be piped between
nodes in the transportation network, but in the
mystery domain, the fuel is held at its starting
depots. In the first round, 30 problems were
presented of each type, except for gripper, in
which just 20 problems were presented.

The characteristics of the last three domains

It is worth
emphasizing
that three of
the planners

running in the
STRIPS track

(BLACKBOX, IPP,
and STAN) all

produce
parallel

optimal plans
(although IPP

does not
guarantee to
do so when

using its RIFO

machinery),
which, when

linearized,
will not

always lead to
optimal

sequential
plans.

Articles

24 AI MAGAZINE

able). STAN was fastest in demonstrating 10 of
the 11 problems to be unsolvable (on average,
it was 15 times faster than its nearest rival at
showing these problems unsolvable), and IPP

was fastest on the remaining problem.
The movie domain presented no difficulty to

any of the planners, and performance times
were so small that they cannot really be useful-
ly compared. This domain was included to
consider its effect in the ADL track, as was dis-
cussed in SGP. The gripper domain is peculiar in
that it is a domain that is intuitively easy to
solve—the problems present no difficulty for a
human planner—yet only HSP was able to solve
instances involving more than 12 balls. Perfor-
mance of all the other planners deteriorated
exponentially with the increasing problem
size. IPP used RIFO in this problem, allowing it to
solve more problems than would otherwise
have been possible, by excluding one gripper
from consideration. HSP produced similarly
suboptimal solutions by carrying only one ball
on each trip. This problem is so hard because
there are so many ways in which the actions
can almost solve the problem with a shorter
sequence than is actually required to complete-
ly solve it, and these garden-path sequences
increase exponentially with two grippers
despite the fact that even the hardest problem
instance presented in this domain contains
only 340 ground-action instances! One of the
reasons this problem appears to be so simple
for a human planner is that a human can see
the essential symmetry to the problem and can
exploit it to simplify the problem to the extent
that it becomes trivial. This problem is one that
highlights a critical weakness of the current
fast-planning technology.

In round one, of the 140 problems present-
ed, 98 problems were either solved or proved
unsolvable by at least 1 of the planners. At least
eight of the remaining problems have been
solved by one or more of the planners since the
competition. The problem domain that proved
difficult for all the planners was the logistics
domain, accounting for 25 of the unsolved
problems.

The Second Round: STRIPS Track
In the second round, a new domain was intro-
duced: the grid domain. IPP managed to solve
three of the five problems presented, using
strong RIFO pruning and producing suboptimal
plans. The other planners managed only one
problem in this domain. The problem sizes
ranged from 2,609 ground-action instances for
the simplest through 16,239 (unsolved by any
planner). IPP solved an instance with 11,150
ground-action instances.

The other domains used were logistics and
mystery prime. All but one of the problems pre-
sented in these domains were solved by at least
one planner. All the logistics problems were
under 5,000 ground-action instances (although
the 2 hardest of these involved few planes, and
in 1, many trucks made for a big search space).
All but one of the mystery prime problems
were under 6,000 ground-action instances, and
the exception contained 19,730 ground-action
instances. This instance defeated all the plan-
ners in the competition, although at least one
of the planners has since generated a 33-step
plan that solves it. With the exception of a sin-
gle instance (traced to a trivial program bug),
all the other problems were solved by all the
planners. Thus, of the 15 problems presented
in round 2, 12 were solved in the competition,
and at least 1 further problem has been solved
since. The grid domain proved the least
tractable, with only IPP making much headway
and even then only producing suboptimal
plans. A critical problem in this domain
appears to be that the plans are comparatively
long with no parallel steps. Thus, graph con-
struction is an expensive process if there is no
pruning. Failure to complete the graph-con-
struction phase to achieve a single search was
the reason for failing to solve these problems in
all the GRAPHPLAN-related planners.

In light of the observations already made
about the sizes of the problems measured in
terms of the numbers of ground-action
instances, it is interesting to consider the
behavior of IPP using the RIFO subsystem, which
filters some objects and action instances from
domains prior to planning. RIFO was not used
by IPP in the first round of the competition,
except in the gripper domain in which it was
turned on by hand. In this domain, RIFO iden-
tifies one gripper hand as irrelevant, so that
only one ball is carried at a time, and plans
become much longer.

In the second round, IPP was run using the
RIFO metastrategy, discussed earlier, which sig-
nificantly reduced the search space for the
planner. As table 1 shows, only eight problems
can be solved without RIFO, but with the metas-
trategy, three more solutions are found. The
metastrategy combines only a small subset of
possible RIFO pruning heuristics. Discovering
which combinations of heuristics work for
which domains and problems is still a matter of
experimentation. In the competition, no such
experimentation was possible; therefore, the
selection of the heuristics was done long before
the competition, following the intuition that
one should try the strongest-possible heuristic
first because it leads to the smallest search

The problem
domain that
proved
difficult for
all the
planners was
the logistics
domain,
accounting
for 25 of
the unsolved
problems.

Articles

SUMMER 2000 25

failed. In the movie domain, however, the
metastrategy using the weaker heuristic suc-
ceeds in determining that only a handful
(between five and nine) of the initial facts in
each problem are relevant.

Commentary
Throughout the competition, no planner suc-
cessfully solved any problem instance that
involved more than 60,000 ground actions. In
fact, without filtering techniques to reduce the
number of ground actions, no planner solved
problems with more than 25,000 ground
actions, and reliable performance was restricted
to problems with fewer than 10,000, or so,
ground-action instances. In domains with hard-
er search-space growth problems, even fewer
action instances could be handled. Although
the number of ground-action instances is not
an infallible guide to the difficulty of problems,
it is clearly an important indicator and strongly
suggests that at least for planners that work
with ground actions during plan construction,
there is much work to be done on the filtering
process that could remove unnecessary actions
from the problem space. It is interesting to
observe that problem 15 of the first round in

space and then relax it by allowing more
actions if no solution is found. The threshold
parameters that decide whether RIFO is activat-
ed at all were set to 3500 actions and 35 objects
after a few trials on some of the competition
problems.

The ADL Track
In the ADL track, the same collection of
domains and problems was used as in the first
round of the STRIPS track. Of course, the domain
encodings were reconstructed to exploit the
ADL features. Only SGP and IPP competed in this
track.

IPP solved all problems from the movie
domain, the first 5 problems from the gripper
domain containing 20 test problems, 13 of 30
problems in the mystery and mystery prime
domains, and 3 of 30 problems in the logistics
domain. In total, it solved 69 problems in
approximately 20 minutes, including all the 38
problems SGP solved. RIFO would not have
improved the performance of IPP in this round
because on most of the problems, it makes the
planner incomplete; so, the planner would
have had to find the solution in the original
search space after all reduction attempts had

Articles

26 AI MAGAZINE

Problem Original RIFO Strong RIFO Weak
log1 571/25 (13 — —
log2 502/21 (20) — —
log3 958/26 (27) — —
log4 3561/42 (—) 189/30 (—) —
log5 4985/53 (—) 119/26 (31) —
mprime1 7809/36 (5) 7/9 (�) 11/9 (�)
mprime2 3281/32 (8) — —
mprime3 97259/68 (—) — —
mprime4 8485/42 (5) 7/10 (4) —
mprime5 6773/22 (6) — —
grid1 2610/38 (14) — 80/11 (20)
grid2 4501/50 (—) 69/19 (�) 260/19 (31)
grid3 7256/64 (—) 315/21 (�) 557/21 (—)
grid4 11151/80 (—) 135/24 (47) —
grid5 16240/98 (—) 1481/49(—) —

Table 1. This Table Shows the Number of Ground Actions and Objects in the
Original Problem Descriptions and, in Brackets, the Length of the Plan

(If IPP Could Find One Given a 10-Minute Central Processing Unit [CPU]
Time Limit and a 120-Megabyte Memory Limit on a SPARC 1.170).

It also shows the number of selected ground actions and objects after the stronger and weaker RIFO pruning
processes. � shows the planning problem became unsolvable, — means RIFO was inactive, and (—) means no
plan was found because the planner either exceeded the CPU time or memory limit.

the logistics domain lies beyond the scope of
the competition planners even with a manual
filtering of the domain objects, removing irrel-
evant packages and trucks, leaving as few as
3,006 ground actions. The difficulty of this
problem is not easy to understand because
there appears to be no pressure on the aircraft
resources (with six aircraft available in just three
cities), although the fact that the cities each
have six locations could well be significant.

Although the number of ground actions rep-
resents an important element in determining
planner performance, the number of domain
states is also a factor. Indeed, for planning sys-
tems that do not instantiate operators before
planning, the number of states might be a more
important feature of the problems. It is not easy
to compute the numbers of states for some
problems (particularly mystery and mystery
prime domains) because reachable states are
nontrivial to determine. However, for the logis-
tics and gripper domains, it is straightforward.
In the logistics problems that were solved in
round 1, the state spaces contained between
1010 states (problem 5) and 8 x 1025 states (prob-
lem 11). These are clearly large state spaces. By
contrast, gripper problems define state spaces
containing a mere 256 states (problem 1) to
68,608 states (problem 4) to more than 4 x 1015

states in the largest (problem 20), solved only
by HSP. The 376,832-state problem (problem 5)
was beyond all the planners but HSP, and none
solved it optimally. This analysis gives an indi-
cation of the dramatic contrast between the
problems in which the planning technology is
performing well and the problems where it
demonstrates fundamental weaknesses.

As a final summary of the results from the
STRIPS track, figures 2, 3, 4, and 5 attempt to give
a broad indication of the relative performances
of the planners. Figure 2 shows the cumulative
numbers of problems solved with increasing
time (in milliseconds). It should be noted that
HSP solved more problems than any other plan-
ner (91 problems solved), but the graph has
been drawn with a 15-second cutoff to allow a
clearer view of the important data: Twenty-
three of the problems solved by HSP took it
between 15 seconds and 14 minutes. Similarly,
IPP required more than 15 seconds on 8 addi-
tional problems, and STAN required more than
15 seconds on an additional 3 problems. The
graph demonstrates that the planners had
remarkably similar performances, solving the
bulk of problems in less than 10 seconds. The
first 30 problems, or so, are from the movie
domain, where it can be seen that the compi-
lation overhead paid by HSP gives it compara-
tively poorer performance. Figure 3 shows a

similar plot, indicating cumulative numbers of
problems solved in increasing numbers of plan
steps. In this case, no cutoff has been applied,
and HSP is alone in solving the last 17 problems.
Once again, the graph emphasizes the similar-
ities in performance, although BLACKBOX

appears to generate slightly better–quality
plans. The significant step at seven steps is the
result of the movie domain, where all plans are
seven steps long. Figure 4 shows plan lengths
plotted against times taken to produce them,
revealing that plan length has surprisingly lim-
ited impact on the time taken to solve a prob-
lem, with comparatively short plans often
proving as challenging to produce as longer
plans. The trail of points curving above the
main cluster is the sequence of results for HSP in
the gripper domain.

Although there is no strong correlation
between plan length and planner performance,
there is a more suggestive correlation (valued at
0.69 across all the planners) between problem
size and planner performance, as can be seen in
figure 5. Of course, the specific domain has a
significant impact on the difficulty of a prob-
lem (as shown by the gripper problems partic-
ularly), but the size of a problem file measured
purely by byte count is a good indicator of dif-
ficulty. For example, the logistics problems that
were solved were under 4,500 bytes in size,
with the hardest logistics problem that was
solved the only one over 4,000 bytes (round 1,
problem 7, solved only by HSP). Similarly, mys-
tery prime problems under 5,000 bytes were all
solved, but problems between 5,000 and 6,000
bytes proved hard, and those above 6,000 bytes
were unsolvable for these planners. Because
problem size measured in this way is a good
indicator of the number of objects in a problem
and, therefore, of the number of ground-action
instances, these data add further evidence to
support the view that the number of ground
actions is a key factor in determining the per-
formance of these planners.

Other Challenges
Although the size of domains, particularly
measured by numbers of instantiated ground
actions, represents a critical challenge to plan-
ning technology, the domains in the competi-
tion and others explored independently by the
competitors have revealed other important
problems that must be addressed.

For example, the gripper domain highlights
the combinatorial costs of exploring a large
(and largely redundant) search space. The
search must be reduced when possible, and in
the gripper domain in particular, there is a
huge potential for reduction in search costs. HSP

Articles

SUMMER 2000 27

from airports, which sandwich the problem of
flying packages between cities, are relatively
easy but often generate large collections of
redundant search paths. A planner that can
tackle the core problem, the flying of packages
between cities, and propagate necessary con-
straints outward to the simpler ends of the plan
will have the advantage. This phenomenon
represents a single instance of a more general
issue: Many planning problems are not uni-
formly hard. A planner that can identify the
hardest parts of a planning problem and con-
centrate on solving those parts first, propagat-
ing constraints toward the easier, initially less
constrained, parts of the problem, will perform
far better than a planner that always tackles the
problems from the same place.

The mystery domain is a fascinating varia-
tion on the transportation theme, introducing
resource limits on carrier capacity and fuel as
well as an underlying route-planning problem.
This domain (and the mystery prime variation)
has the potential to produce problems that are

demonstrated that heuristic search in this
space can offer dramatic benefits. HSP solved all
the gripper problems, where other planners
managed at most four or five. This domain
alone accounts for three-quarters of HSP’s
significant lead over the other competitors in
the number of problems solved. HSP’s heuristic
effectively ignored the possibility of transport-
ing the balls in pairs and solved the problems
by transporting one ball at a time between the
rooms. IPP, which succeeded in solving five of
these problems, used its RIFO machinery, which
caused it to ignore one of the grippers, also
leading to solutions in which only one ball was
transported at a time. None of the planners
could exploit the incredible degree of symme-
try in the problem to cut the search space from
its exponential size to reflect the trivial under-
lying problem.

The logistics domain has the interesting
property that the hardest part of the problem
instances usually lies in the middle of the plan.
The problems of transporting packages to and

Articles

28 AI MAGAZINE

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000 12000 14000 16000

Pr

ob
le

m
s

Millisecs

IPP
STAN

Blackbox
HSP

Figure 2. Cumulative Numbers of Problems Solved against Time (Data Cut Off at 15 Seconds).

hard for a wide variety of reasons. The lack of
resources can make the route-planning prob-
lem dramatically more complex because it
interacts with the transportation of multiple
packages. Similarly, the capacity limits can
interact with fuel shortages to make it necessary
to carefully coordinate the actions of carriers to
cooperate in the transportation of objects. By
varying the size of fuel dumps, the problems
can range from simple route planning (with
abundant fuel) to complex scheduling of inter-
acting carrier actions (with limited fuel).

The grid domain, used in the second round
of the competition, represents a further trans-
portation domain on a grid-shaped network
but with constraints on the access to certain
locations based on keys of appropriate shapes
for the corresponding locks. This domain rep-
resents a difficult search domain, primarily
because the domain forces the planner to use
only one useful action at each layer. Tackling
this problem requires an effective filter to
remove ground actions, partly to reduce the

cost of manipulating the domain itself but
mainly to reduce the number of redundant
search paths, corresponding to multiple actual
paths through the grid itself.

The Future
The first planning competition proved an
extremely stimulating event for the planning
community. It has brought into sharp focus the
state of the art in domain-independent plan-
ning and has offered the opportunity to iden-
tify several essential issues for the planning
community to address. The first of these issues
is the development of a common planning
domain– description language, currently tak-
ing the form of PDDL. Although PDDL must be
considered still under development, the effort
already invested in its development is an
important step toward allowing planners to be
usefully compared and in constructing a gener-
ally useful repository of planning-domain
problems. Perhaps the closest the community

Articles

SUMMER 2000 29

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180

Pr

ob
le

m
s

Plan length

IPP
STAN

Blackbox
HSP

Figure 3. Cumulative Numbers of Problems Solved against Plan Length.

advances, attempt to coalesce different but
compatible approaches, and avoid repeated
redevelopment of the same basic planning soft-
ware tools at dozens of different sites. A com-
mon domain description language is only one
step in addressing this issue. It also requires
that components of planning systems be made
available to the community, particularly in sta-
ble and adaptable forms. PDDL parsers are
already being made available, and some of the
code used in the competition is available as
source to be modified, extended, or adapted.
These steps are essential in supporting the
efforts of the community to advance beyond
the current state of the art.

A third issue arises from the hope to push
the boundaries of the current state of the art
in planning: The benchmark domains that are
used to establish the current levels of perfor-
mance and set targets for the next generation
of planners must be chosen with care. Many
of the standard benchmark domains were
designed with specific agendas. Often, they

has come to having such a resource in the past
is the collections of problems included with
particular planner releases, where those plan-
ners were widely used (UCPOP being an obvious
example [Penberthy and Weld 1992]).

PDDL has not yet been put to the test in its
provision of HTN expressiveness, and ques-
tions remain about the ADL components of the
language. In particular, it has been proposed
that nested conditional effects are an unneces-
sary element of the language. Provision for the
expression of resource-constrained planning
problems also remains untested.

These observations highlight a second issue
for the community to confront: It remains dif-
ficult to compare planners on an equal footing.
Planners can differ widely in terms of the
expressiveness of the domain description lan-
guage they handle, the expressiveness of the
plans they produce, the speed of planning, and
the range of domains they can successfully
tackle. To make coherent progress in the field,
it is necessary to be able to compare potential

Articles

30 AI MAGAZINE

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Pl
an

 s
iz

e

Millisecs

IPP
STAN

Blackbox
HSP

Figure 4. Plan Length against Planning Time (Movie Domain Ignored and Data Cut Off at 100 Seconds).

were designed to showcase specific expressive
features of particular languages and are unin-
teresting when expressed in STRIPS (the movie
domain is one example and Pednault’s [1989]
BRIEFCASE WORLD another). Others are designed
to showcase particular planning strategies (the
rocket domain used for GRAPHPLAN, for exam-
ple [Blum and Furst 1997]) or demonstrate
flaws in certain planning strategies (for exam-
ple, the gripper domain). Although these
domains retain some interest for these rea-
sons, it is important for the planning commu-
nity to look beyond these “simple” problems
and identify more significant benchmarks
that represent tasks that demonstrate plan-
ning’s coming of age to the wider research and
applications community. The greatest chal-
lenge for the community, then, is to take the
lessons learned from the competition and
from the research that is current and show
how planning can move on from these prob-
lem domains.

References
Anderson, C., and Weld D. 1998. Conditional Effects
in GRAPHPLAN. In Proceedings of Artificial Intelligence
Planning Systems, 44–53. Menlo Park, Calif.: AAAI
Press.

Bayardo, R. J., Jr., and Schrag, R. C. 1997. Using CSP

Look-Back Techniques to Solve Real-World SAT

Instances. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, 203–208. Men-
lo Park, Calif.: American Association for Artificial
Intelligence.

BLACKBOX. 1998. BLACKBOX Web Site. AT&T Research
Laboratories, Florham Park, New Jersey. Available at
www.research.att.com/~kautz/blackbox.

Blum A., and Furst, M. 1997. Fast Planning through
Planning Graph Analysis. Artificial Intelligence
90(1–2): 279–298.

Bonet B., and Geffner, H. 2000. Planning as Heuristic
Search: New Results. In Proceedings of the Fifth Euro-
pean Conference on Planning (ECP’99). New York:
Springer-Verlag. Forthcoming.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A
Robust and Fast Action Selection Mechanism for

Articles

SUMMER 2000 31

0

1000

2000

3000

4000

5000

6000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Pr
ob

le
m

 s
iz

e

Millisecs

IPP
STAN

Blackbox
HSP

Figure 5. Problem File Size against Time (Plot Only Shows Problems Solved by All the Planners).

Worlds Based on Greedy Regression Tables.
In Proceedings of the Fifth European Con-
ference on Planning (ECP’99). Berlin:
Springer-Verlag. Forthcoming.

Selman, B.; Kautz, H.; and Cohen, B. 1994.
Noise Strategies for Local Search. In Pro-
ceedings of the Twelfth National Confer-
ence on Artificial Intelligence, 337–343.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

SGP. 1998. SGP Web Site. University of Wash-
ington, Seattle, Washington. Available at
www.cs.washington.edu/research/pro-
jects/ai/www/sgp.html.

Smith, D., and Weld, D. 1999. Temporal
GRAPHPLAN with Mutual Exclusion Reason-
ing. In Proceedings of the Sixteenth Inter-
national Joint Conference on Artificial
Intelligence, 326–337. Menlo Park, Calif.:
International Joint Conferences on Artifi-
cial Intelligence.

Smith, D. E., and Weld, D. S. 1998a. Con-
formant GRAPHPLAN. In Proceedings of the
Fifteenth National Conference on Artificial
Intelligence, 889–896. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Smith, D. E., and Weld, D. S. 1998b. Incre-
mental GRAPHPLAN. Technical Report, TR 98-
09-06, University of Washington.

STAN. 1998. STAN Web Site. University of
Durham, Durham, United Kingdom. Avail-
able at www.dur.ac.uk/CompSci/research/
stanstuff/planpage.html.

Weld, D. S.; Anderson, C. R.; and Smith, D.
E. 1998. Extending GRAPHPLAN to Handle
Uncertainty and Sensing Actions. In Pro-
ceedings of the Fifteenth National Confer-
ence on Artificial Intelligence, 897–904.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

Derek Long is a lecturer
in computer science at
Durham University. He
joined the department in
1995 after lecturing at
University College Lon-
don for six years. He
obtained his doctorate at
the Programming Re-

search Group, Oxford University, in 1989,
with work exploring reasoning by analogy.
Since then, he has pursued interests in rea-
soning techniques in general and planning
in particular. He has worked in close collab-
oration with Maria Fox for the last 10 years.
He is currently exploring automatic
domain analysis techniques and the auto-
matic extraction of planning domain fea-
tures. His e-mail address is
D.P.Long@dur.ac.uk.

Henry Kautz is an associate professor with

the Envelope: Planning, Propositional Log-
ic, and Stochastic Search. Paper presented
at the Fourteenth National Conference on
Artificial Intelligence, 27–31 July, Provi-
dence, Rhode Island.

Kautz, H., and Selman, B. 1992. Planning as
Satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence
(ECAI-92), 359–363. Vienna: Wiley.

Koehler, J.; Nebel, B.; Hoffmann, J.; and
Dimopoulos, Y. 1997. Extending Planning
Graphs to an ADL Subset. In Proceedings of
the Fourth European Conference on Planning
(ECP-97), 273–285. Berlin: Springer-Verlag.

Korf, R. 1990. Real-Time Heuristic Search.
Artificial Intelligence 42(2–3): 189–211.

Li, C. M., and Anbulagan. 1997. Heuristics
Based on Unit Propagation for Satisfiability
Problems. In Proceedings of the Fifteenth
International Joint Conference on Artificial
Intelligence, 366–371. Menlo Park, Calif.:
International Joint Conferences on Artifi-
cial Intelligence.

Long, D., and Fox, M. 1999. The Efficient
Implementation of the Plan Graph in STAN.
Journal of Artificial Intelligence Research
10:87–115.

McDermott, D. 1996. A Heuristic Estimator
for Means-Ends Analysis in Planning. In
Proceedings of the Third International Confer-
ence on AI Planning Systems (AIPS-96),
142–149. Menlo Park, Calif.: AAAI Press.

McDermott, D., and the AIPS Planning
Competition Committee. 1998. PDDL—The
Planning Domain Definition Language.
Available at ftp.cs.yale.edu/pub/mcder-
mott/software/pddl.bar.gz.

Nebel, B.; Dimopoulos, Y.; and Koehler, J.
1997. Ignoring Irrelevant Facts and Opera-
tors in Plan Generation. In Proceedings of
the Fourth European Conference on Planning
(ECP-97), 338–350. Berlin: Springer-Verlag.

Nilsson N. 1980. Principles of Artificial Intel-
ligence. San Francisco, Calif.: Morgan Kauf-
mann.

Pearl, J. 1983. Heuristics. San Francisco,
Calif.: Morgan Kaufmann.

Pednault, E. 1989. ADL: Exploring the Mid-
dle Ground between STRIPS and the Situa-
tion Calculus. In Proceedings of the First
International Conference on Principles of
Knowledge Representation and Reasoning,
324–332. San Francisco, Calif.: Morgan
Kaufmann.

Penberthy, J., and Weld, D. S. 1992. UCPOP:
A Sound and Complete Partial-Order Plan-
ner for ADL. Paper presented at the Third
International Conference on Principle of
Knowledge Representation and Reasoning
(KR-92), October, Cambridge, Massachu-
setts.

Refanidis, I., and Vlahavas, I. 2000. GRT: A
Domain-Independent Heuristic for STRIPS

Planning. In Proceedings of the Fourteenth
National Conference on Artificial Intelli-
gence, 714–719. Menlo Park, Calif.: Ameri-
can Association for Artificial Intelligence.

Ernst, M. D.; Millstein, T. D.; and Weld, D.
S. 1997. Automatic SAT Compilation of
Planning Problems. In Proceedings of the
Fifteenth International Joint Conference
on Artificial Intelligence, 1169–1177. Men-
lo Park, Calif.: International Joint Confer-
ences on Artificial Intelligence.

Fink, E., and Veloso, M. 1996. Formalizing
the PRODIGY Planning Algorithm. In New
Directions in Artificial Intelligence Planning,
eds. M. Ghallab and A. Milani, 261–272.
Amsterdam, The Netherlands: IOS.

Fox, M., and Long, D. 1999. The Detection
and Exploitation of Symmetry in Planning
Domains. In Proceedings of the Sixteenth
International Joint Conference on Artificial
Intelligence, 956–961. Menlo Park, Calif.:
International Joint Conferences on Artifi-
cial Intelligence.

Fox, M., and Long, D. 1998. The Automatic
Inference of State Invariants in TIM. Journal
of Artificial Intelligence Research 9:367–422.

Gazen, B., and Knoblock, C. 1997. Combin-
ing the Expressivity of UCPOP with the Effi-
ciency of GRAPHPLAN. In Proceedings of the
Fourth European Conference on Planning
(ECP-97), 221–233. Berlin: Springer-Verlag.

Gomes, C. P.; Selman, B.; and Kautz, H.
1998. Boosting Combinatorial Search
through Randomization. Paper presented
at the Fifteenth National Conference on
Artificial Intelligence, 26–30 July, Madison,
Wisconsin.

Hoffmann, J., and Koehler, J. 1999. A New
Method to Index and Query Sets. In Pro-
ceedings of the Sixteenth International
Joint Conference on Artificial Intelligence,
462–467. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

HSP. 1998. HSP Web Site. Universidad Simon
Bolivar, Caracas, Venezuela. Available at
www.ldc.usb.ve/~hector.

IPP. 1998. IPP Web Site. University of
Freiburg, Freiburg, Germany. Available at
www. in format ik .un i - f r e iburg .de /~
koehler/ipp.html.

Kambhampati, S. 1999. Improving
GRAPHPLAN’s search with EBL and DDB Tech-
niques. In Proceedings of the Sixteenth
International Joint Conference on Artificial
Intelligence, 982–987. Menlo Park, Calif.:
International Joint Conferences on Artifi-
cial Intelligence.

Kambhampati, S.; Lambrecht, E.; and Park-
er, E. 1997. Understanding and Extending
GRAPHPLAN. In Proceedings of the Fourth Euro-
pean Conference on Planning (ECP-97),
260–272. Berlin: Springer-Verlag.

Kautz, H., and Selman, B. 1996. Pushing

Articles

32 AI MAGAZINE

the Department of Computer Science and
Engineering at the University of Washing-
ton. He was previously department head of
the AI Principles Research Group at AT&T
Bell Labs. He is a fellow of the American
Association for Artificial Intelligence
(AAAI) and a member of the AAAI Execu-
tive Council and has received the Interna-
tional Joint Conferences on Artificial Intel-
ligence Computers and Thought Award. He
is known for his work on planning and
plan recognition, efficient deduction and
search, and the logical foundations of AI.

Bart Selman is an associate professor of
computer science at Cornell University. He
previously was a principal scientist at AT&T
Bell Laboratories. He holds a Ph.D. and an
M.Sc. in computer science from the Univer-
sity of Toronto and an M.Sc. in physics
from Delft University of Technology. His
research has covered many areas in AI and
computer science, including tractable infer-
ence, knowledge representation, natural
language understanding, stochastic search
methods, theory approximation, knowl-
edge compilation, planning, default rea-
soning, and the connections between com-
puter science and physics (phase-transition
phenomena). He has received four best
paper awards at the American and Canadi-
an national AI conferences and at the Inter-
national Conference on Knowledge Repre-
sentation. He holds a National Science
Foundation Career Award and is an Alfred
P. Sloan research fellow.

Blai Bonet received an engineering and
master degree in computer science from
Universidad Simon Bolivar in Venezuela.
Among his interests are planning and
scheduling with complete and incomplete
information. He is currently studying for
his Ph.D. at the University of California at
Los Angeles. His e-mail address is
bonet@cs.ucla.edu.

Hector Geffner received his Ph.D. from the
University of California at Los Angeles with
a dissertation that was co-winner of the
1990 Association of Computing Machinery
Dissertation Award. He then worked as staff
research member at the IBM T. J. Watson
Research Center in New York for two years
before returning to the Universidad Simon
Bolivar in Caracas, Venezuela, where he
currently teaches. He is interested in mod-
els of reasoning, action, planning, and
learning.

Jana Koehler is a project manager at the
Schindler Lifts Ltd. Technology Manage-
ment Center in Switzerland. She is current-
ly developing elevator control software

based on AI planning techniques. Before
joining Schindler, she worked at the Ger-
man Research Center for AI and held an
assistant professorship at the University of
Freiburg, Germany, where she developed
the IPP planning system. Currently, her
interests are centered on real-time planning
and scheduling and software verification.

Michael Brenner worked on IPP from
spring 1997 until fall 1998 when he went
to Paris, France, where he received a Mas-
ter’s in cognitive science. He is now back at
the University of Freiburg as a member of
the Graduate School on Human and
Machine Intelligence, working on multia-
gent planning and plan execution in
dynamic environments.

Joerg Hoffmann was part of the IPP team
during the entire project period, from Feb-
ruary 1997 until August 1999. He received
a Master’s in computer science in March
1999. Currently, he is a member of the
Graduate School on Human and Machine
Intelligence at the University of Freiburg,
where he is developing a new planning sys-
tem based on heuristic forward search.

Frank Rittinger was a student member of
the IPP team for the entire project period.
Currently, he is working on his Master’s
thesis at the chair for software engineering
at the University of Freiburg, where he is
investigating the security aspects of CORBA

with formal methods.

Corin Anderson is a fourth-year Ph.D. can-
didate in the Computer Science and Engi-
neering Department at the University of
Washington. He earned Bachelors of Sci-
ence in computer science and mathematics
from the University of Washington in
1996, and he received a Master’s in com-
puter science from the same university in
1998. Anderson’s primary interests include
web site management, planning and sched-
uling algorithms, and intelligent systems.

Daniel S. Weld received Bachelor’s in com-
puter science and biochemistry at Yale Uni-
versity in 1982. He received a Ph.D. from
the Massachusetts Institute of Technology
Artificial Intelligence Lab in 1988 and
immediately joined the Department of
Computer Science and Engineering at the
University of Washington, where he is now
professor. Weld received a Presidential
Young Investigator’s Award in 1989 and an
Office of Naval Research Young Investiga-
tor’s Award in 1990 and is a fellow of the
American Association for Artificial Intelli-
gence. Weld is on the advisory board of the

Journal of AI Research, has been guest editor
for Computational Intelligence and Artificial
Intelligence, and was program chair of the
1996 National Conference on Artificial
Intelligence. Weld founded Netbot, Inc.,
which developed the JANGO comparison
shopping agent (now part of the Excite
Shopping Channel); AdRelevance, Inc., an
online competitive monitoring service for
internet advertisements; and Nimble.com,
which develops XML query-processing tech-
nology. Weld has published about 100
technical papers on AI, planning, data inte-
gration, and software agents.

David E. Smith is a head of the planning
and scheduling group in the Computation-
al Sciences Division at NASA Ames Research
Center, where he is involved in contin-
gency planning for rover operations and
research on temporal planning techniques.
Prior to joining NASA, he was a senior sci-
entist at the Rockwell Science Center,
where his work led to a commercially field-
ed system for newspaper imposition plan-
ning and to the DESIGN SHEET conceptual
design system in use throughout Rockwell
and Boeing. He received his Ph.D. from
Stanford University in 1985. Current
research interests include temporal plan-
ning, planning under uncertainty, con-
straint-satisfaction approaches to planning,
and preprocessing techniques for planning.

Maria Fox is a reader in computer science
at Durham University. She joined the uni-
versity in 1995 after 6 years at University
College London. She obtained her doctor-
ate in 1989 and has worked in aspects of
planning, both theoretical and algorithmic,
since that time. Currently, her primary
interests lie in the development of auto-
matic domain analysis techniques and
their exploitation in efficient planning sys-
tems.

Articles

SUMMER 2000 33

Complete Your AI Planning Library
with these Volumes from AAAI Press

Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems

Edited by Steve Chien, Subbarao Kambhampati, and Craig A. Knoblock

The International Conference on AI Planning and Scheduling has evolved into the premier forum for researchers and practitioners in planning and scheduling. In

recent years, artificial intelligence planning and scheduling have emerged as technologies critical to production management, space systems, the Internet, and mili-

tary applications. These proceedings contain the papers presented at the conference. While a majority deal with algorithms for planning and scheduling in a variety

of environments—be they static or dynamic, deterministic or stochastic, or completely or partially observable—there are also papers on planner implementation and

applications of planning and scheduling research.

ISBN 1-57735-111-8, 412 pp., index, $50.00 softcover

Advanced Planning Technology: Technological Achievements of the
ARPA/ Rome Laboratory Planning Initiative

Edited by Austin Tate

This volume presents the range of technological results that have been achieved with the ARPA/Rome Laboratory Planning Initiative. Five lead articles introduce the

program and its structure and explain how the more mature results of individual projects are transferred through technology integration experiments to fielded appli-

cations. The main body of this volume comprises one paper from each group or project within ARPI. Each of these papers seek to introduce the technological contri-

bution of the group’s work and provide a pointer to other work of that group.

ISBN 0-929280-98-9, 233 pp., index, $55.00 softcover

Proceedings of the Fourth International Conference on Artificial Intelligence Planning Systems

Edited by Reid Simmons, Manuela Veloso, and Stephen Smith

The 1998 proceedings includes the work of AI researchers in all aspects of problems in planning, scheduling, planning and learning, and plan execution, for dealing

with complex problems. Papers in this proceedings range from new theoretical frameworks and algorithms for planning to practical implemented applications in a variety

of domains.

ISBN 1-57735-052-9, 244 pp., index, $50.00 softcover

Proceedings of the Third International Conference on Artificial Intelligence Planning Systems

Edited by Brian Drabble

The 1996 organizers have tried to bring together a diverse group of researchers representing the various aspects and threads of the planning community. As with all

previous AIPS conferences, the papers have been selected on technical merit. They include practical algorithms for achieving efficiency in planning, formal results on

the completeness and complexity of planning domains, classical planning, formal specification of planning knowledge and domains, constraint satisfaction techniques

and their application, reactive planning, and repair and consistency checking in schedules.

ISBN 0-929280-97-0, 292 pp., index, $55.00 softcover

Proceedings of the Second International Conference on Artificial Intelligence Planning Systems

Edited by Kristian Hammond

The papers in this work present current state-of-the-art research in AI planning systems. Reviewed papers present research on how to generate plans to succeed in uncer-

tain environments, improving robot plans during their execution, managing dynamic temporal constraint networks, and solving time-critical decision-making problems.

ISBN 0-929280-56-3, 360 pp., index, $45.00 softcover

To order, call 650-328-3123 or send e-mail to orders@aaai.org, or visit our website at www.aaai.org/Press/
AAAI MEMBERS: DEDUCT 20%!

The AAAI Press ■ 445 Burgess Drive ■ Menlo Park, California 94025

34 AI MAGAZINE

