
■ The Fourth Robotic Soccer World Championships
(RoboCup-2000) was held from 27 August to 3 Sep-
tember 2000 at the Melbourne Exhibition Center
in Melbourne, Australia. In total, 83 teams, con-
sisting of about 500 people, participated in
RoboCup-2000, and about 5000 spectators
watched the events. RoboCup-2000 showed dra-
matic improvement over past years in each of the
existing robotic soccer leagues (legged, small size,
mid size, and simulation) and introduced
RoboCup Jr. competitions and RoboCup Rescue
and Humanoid demonstration events. The
RoboCup Workshop, held in conjunction with the
championships, provided a forum for the
exchange of ideas and experiences among the dif-
ferent leagues. This article summarizes the
advances seen at RoboCup-2000, including reports
from the championship teams and overviews of all
the RoboCup events.

RoboCup is an international research ini-
tiative that encourages research in the
fields of robotics and AI, with a particular

focus on developing cooperation between
autonomous agents in dynamic multiagent
environments. A long-term grand challenge
posed by RoboCup is the creation of a team of
humanoid robots that can beat the best human

soccer team by the year 2050. By concentrating
on a small number of related, well-defined
problems, many research groups both cooper-
ate and compete with each other in pursuing
the grand challenge.

The Fourth Robotic Soccer World Champi-
onships (RoboCup-2000) was held from 27
August to 3 September 2000 at the Melbourne
Exhibition Center in Melbourne, Australia. In
total, 83 teams, consisting of about 500 peo-
ple, participated in RoboCup-2000. Over 5000
spectators watched the events. RoboCup has
been advancing steadily, both in terms of size
and technological level since the first interna-
tional event in 1997 that included 35 teams
(Asada et al. 2000; Coradeschi et al. 2000;
Noda, Suzuki et al. 1998). Specifically,
RoboCup-2000 showed dramatic improve-
ment in each of the existing robotic soccer
leagues (legged, small size, mid size, and sim-
ulation) and introduced RoboCup Jr. competi-
tions and RoboCup Rescue and Humanoid
demonstration events.

In addition to the simulation-based and
robotic events, the RoboCup-2000 Workshop
provided a forum for the exchange of ideas
and experiences among the different leagues.
Twenty oral presentations and twenty posters
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The Sony Legged Robot League 
Since RoboCup-99, all participants in the Sony
legged robot league have been using the
quadruped robot platform (Yamamoto and
Fujita 2000), which is similar to the commer-
cial entertainment robot AIBO ERS-110 (figure 1).
The setup and the rules of the RoboCup-2000
legged competition were based on those of
RoboCup-98 (Fujita et al. 2000). Each team has
3 robots, and the size of the field is 1.8 meters
x 2.8 meters. Objects such as the ball and goals
are painted different colors. In addition, there
are 6 poles with different colors at known loca-
tions for self-localization. As is the case in
human soccer, there are penalties and regula-
tions that govern the play. We introduced two
changes from the previous year’s rules to keep
the game flowing and encourage development
of team-play strategies. First, we introduced an
obstruction rule, which states that a robot that
does not see the ball but is blocking other
robots is removed from play. Second, we mod-
ified the penalty area and applied the two-
defender rule: If there are two or more defenders
in the penalty area, all but one is removed. As

were presented, from which four papers were
nominated for the RoboCup scientific and
engineering challenge awards. These distinc-
tions are given annually for the RoboCup-
related research that shows the most potential
to advance their respective fields.

This article summarizes the advances seen
at RoboCup-2000. The following four sections
describe the four soccer-based competition
leagues, including reports from the respective
champions, UNSW (legged), Cornell BIG RED

(small size), CS FREIBURG (mid size), and FC
PORTUGAL (simulation). The next section intro-
duces RoboCup Rescue, a disaster-rescue–
based research effort designed to transfer
RoboCup-related research to humanitarian
goals. RoboCup Jr., the RoboCup education
effort aimed at school children, is discussed in
the following section. Scheduled to debut as a
full league in 2002, the RoboCup humanoid
effort held a demonstration in Melbourne,
which is described in the third section. The
article concludes with overviews of the
RoboCup workshop and the two challenge
award winners.

Articles

12 AI MAGAZINE

Touch Sensor

Stereo Microphone

Acceleration Meter Memory Stick

64 Bit RISC Processor
16 MB Memory
Sony Original OS-Aperios

Battery
Li-Ion (7.2 V)
2900mAh18 Degrees of 

Freedom

Speaker

CCD Camera
(1/5 Inch, 
180 K Pixels)

Figure 1. The Legged Robot Platform.
Weight: 1.59 kg. Size: 2.75 x 156 x 266 mm (without tail).



a result, the ball became stuck in the corner
much less frequently. Moreover, the champion
team, UNSW, implemented teammate recogni-
tion to avoid obstructing a teammate that was
controlling the ball.

Twelve teams from nine countries were
selected to participate in the RoboCup-2000
Sony Legged Robot League: (1) Laboratoire de
Robotique de Paris (LRP) (France), (2) Universi-
ty of New South Wales (UNSW) (Australia), (3)
Carnegie Mellon University (CMU), (4) Osaka
University (Japan), (5) Humboldt University
(Germany), (6) University of Tokyo (Japan), (7)
University of Pennsylvania, (8) McGill Univer-
sity (Canada), (9) SWEDEN UNITED TEAM (Sweden),
(10) MELBOURNE UNITED TEAM (Australia), (11)
University of Rome (Italy), and (12) University
of Essex (United Kingdom). The first nine
teams participated in the previous year’s com-
petition; the last three teams were new partici-
pants.

Championship Competition 
For the competition, we divided the 12 teams
into 4 groups of 3 teams each. After a round
robin within each group, the top two teams in
each group proceeded to the final tournament.
The 2000 champion was UNSW, followed by
LRP in second place and CMU in third place.

One significant improvement this year over
past years was ball-controlling technique. In
RoboCup-99, the University of Tokyo team
introduced the technique of propelling the ball
with the robot’s head, which can make the ball
move a longer distance than an ordinary kick-
ing motion can. In 2000, almost all the teams
implemented their own heading motion.
Another impressive achievement for control-
ling the ball was introduced by UNSW. Its
robots put the ball between their front legs,
turned to change their heading while they con-
trolled the ball and then kicked (pushed) the
ball with both legs. This technique is very effi-
cient for shooting the ball a long distance in a
target direction.

RoboCup Challenge 
In addition to the championship competition,
every year we continue to hold the RoboCup
Challenge as a technical routine competition.
The challenge competition focuses on a partic-
ular technology more than the championship
competition. In 2000, we had 3 different tech-
nical routine challenges: (1) striker, (2) collab-
oration, and (3) obstacle avoidance.

The striker challenge was the simplest. The
ball and one robot were placed in randomly
selected positions (and orientation) on the
field. The robot had to put the ball in the goal

as quickly as possible. If it was unable to do so
within three minutes, then the distance from
the ball to the goal at the end of that period
was measured. Note that the initial positions
and orientation were selected after all the
teams submitted their memory sticks with
their developed software.

The collaboration challenge was defined to
encourage the development of a passing behav-
ior. There were two robots, one of which was
put in the defensive half of the field (passer);
the other was put in the offensive half (shoot-
er). The passer and the shooter had to stay on
their respective halves of the field, and the
shooter had to kick the ball into the goal.

The obstacle-avoidance challenge was also
defined to encourage the development of team
strategy as well as the ability to avoid a robot
from the opposite team. One robot and the ball
were placed on the field as in the striker chal-
lenge. In addition, two obstacles—(1) a team-
mate robot with a red uniform and (2) an
opponent robot with a blue uniform—were
placed at selected positions. The player had to
score a goal without touching the obstacles. In
both the collaboration and obstacle-avoidance
challenges, the time to score was recorded.

To complete the technical routine chal-
lenges, teams had to develop recognition algo-
rithms for other robots, the half line, the ball,
and the goals. Localization was also an impor-
tant technology for the challenges. 

In the striker challenge, 6 teams scored goals
in an average time of 90 seconds. In the collab-
oration challenge, 6 goals were scored in an
average of 100 seconds. In the obstacle-avoid-
ance challenge, 4 teams scored in an average of
112 seconds. All in all, about half of the partic-
ipating teams were able to achieve the objec-
tives of the three RoboCup Challenge tasks.
UNSW won the challenge competition, Osaka
University finished second, and CMU finished
in third place.

UNSW: Legged League Champion 
UNSW won the RoboCup-2000 Sony Legged
Robot League as well as the legged robot chal-
lenge event. This section gives an overview of
the technical innovations behind its success.

Main Algorithm 
UNSW divides the team into two field players
and one goalie. The field player robots try to
get behind the ball and run at it. The field is
divided into regions, and robots behave slight-
ly differently across regions. There are three
main skills: (1) dribbling, (2) head butting, and
(3) kicking. The skill to be executed depends on
the heading of the robot, the heading of the
ball relative to the robot, and the region the

Another
impressive
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for controlling
the ball was
introduced by
UNSW. Its
robots put the
ball between
their front
legs, turned to
change their
heading while
they
controlled the
ball, and then
kicked
(pushed) the
ball with both
legs. 

Articles

SPRING 2001   13



ball. If the robot is not facing its own goal, it
runs at the ball in an attempt to take the ball
away from the opponent.

UNSW has four main components to its soft-
ware architecture (figure 2).

First is a vision system that uses color tables
to recognize blobs, converting them to objects
such as beacons, goals, or the ball. Metrics such
as direction and distance are generated at the
same time.

Second is a localization routine that updates
the position and direction of the robot each
time field objects are recognized and each time
the robot moves.

Third is a parameterized walking routine
that drives the legs and head effectors based on
directions from the strategy module. 

Fourth is a strategy module that combines
various skills or behaviors that have been cod-
ed using a hierarchical rule-based format.

Vision System 
The images captured by the robot’s camera are
initially represented as a YUV image. The Y
(intensity of a pixel) plane (0–255) is divided
into 14 different planes. For each plane, UNSW

tries to draw a polygon to fit the training data
for each color; so for each plane, there is one

robot is in. Near the edge of the field, a slower
and more stable walk is adopted so the legs do
not get stuck on the edge.

The strategy of the goalie is to stay close to
the center of the goal, facing the opposition
goal, while it looks for the ball. It localizes itself
by looking at the field markers. When it sees
the ball, the goalie moves forward to a fixed
radial distance from the goal center facing the
ball. If the ball comes close enough, the goalie
will move forward and attempt to head butt or
kick the ball away from its own goal as if it
were a field player.

To avoid its own goal, the goalie turns clock-
wise if it is on the right side of the goal area and
counterclockwise if it is on the left side. This
skill not only can allow the robot to find the
ball but also has the effect of spinning the ball
out toward the center of the field.

Regarding team play, UNSW players can recog-
nize robots when they are close using vision
and infrared sensors. When a robot sees a
teammate, and the ball is not too close, it backs
up or walks sideways, depending on the head-
ing of the teammate. When a robot sees an
opponent, it takes a more aggressive role: It
does not spend much time getting behind the
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bit-map file for ultraviolet (UV) values (color
components of a pixel) based on the polygons.

The YUV image is converted into a C-plane.
UNSW uses a fast algorithm to form color blobs
in the C-plane. Note that they set the color bit-
map files in such a way that each pixel gets
classified as one color only; that is, polygons do
not overlap. Using the recognized blobs, UNSW

calculates sizes and centroids to form objects.
There are also some sanity checks to throw
away spurious data or unwanted objects.

Regarding the color calibration, a color class
is defined for each of the beacon, robot marker,
goal, and ball colors. Each of the 25 sample
images has its 88 x 60 pixels manually classi-
fied by color. This somewhat time-consuming
exercise, which needs to be repeated every time
lighting conditions change, provides the train-
ing data (y value, u value, v value, color class)
necessary to learn a more general color classifi-
cation hypothesis.

First, a scatter diagram is drawn for each col-
or from the training data showing the u-v val-
ues for different ranges of y values. Instead of
restricting the color-class hypothesis space to
u-v rectangles used by some others, nonover-
lapping polygons are fitted using an iterative
procedure that expands a smaller polygon to
include most of the training data for each color
and each range of y values. A polygon is a
much better fit to the typically wedge-shaped
color clusters evident in the scatter diagram. If
the polygons for the various y ranges are
stacked on top of each other, a three-dimen-
sional (3D) solid emerges representing each
color class in YUV space.

The learned 3D YUV array for the color class-
es is stored in a table on the memory stick
allowing the robot to quickly classify pixels
from new images by looking up which color
class the pixel belongs to from its YUV value.

Localization 
UNSW’s localization maintains three variables:
(1, 2) x,y coordinates and (3) heading of the
robots. Beacons and goals are fixed. When a
robot sees a beacon, it knows the heading of
the beacon, and based on the size, it estimates
the distance. If it sees two beacons, then it uses
a triangular formula to calculate its position. If
it sees only one beacon, it adjusts its position
based on the heading and distance of the bea-
con and where it thinks it is on the field.

Locomotion 
The locomotion uses a trot gait (diagonally
opposite legs lifting simultaneously). The paws
are driven in a rectangular locus calculated to
give the robot a constant velocity over the
ground. The orientation and size of the locus of
the various legs determines whether the robot

moves forward or backward, moves left or
right, or turns on the spot. Head movements
are driven at the same time but independently
from the legs.

Strategies 
When the robot is far away from the oppo-
nent’s goal, the robot does not have to line up
the ball and the goal to go for the ball. All it
needs to do is knock the ball to the other half.
However, when it’s near the goal, it takes a dif-
ferent approach. It always tries to line up the
goal and the ball and uses the dribbling skill.

The Small-Size Robot League 
Small-size robot teams consist of as many as 5
robots that can each fit into an area of 180 cen-
timeters (hence the alternative name Formula
180 or F180). The robots play on a green-car-
peted table-tennis–sized field with sloping
walls. The rules permit a camera to be perched
above the field to be used with an off-field com-
puter for a global vision system. This system is
used to track the players, opponents, and the
ball. During a game, the robots use wireless
communication to receive tracking informa-
tion from the off-field computer as well as com-
mands or strategic information. No human
intervention is allowed except for interpreta-
tion of the human referee’s whistle.

The F180 games are exciting to watch
because these robots can move quickly. The
orange golf ball used as the soccer ball is pro-
pelled at speeds over three meters a second by
ingenious kicking mechanisms. With the pre-
cise visual information from the global vision
system, the robots themselves can move at
speeds over 1 meter a second with smooth con-
trol. Nevertheless, robots moving at these
speeds can and do have spectacular collisions.
Intentional fouls can lead to robots being sent
from the field under the shadow of a red card.

The need for speed and control has given the
small-size league a reputation as the engineer-
ing league. Engineering disciplines including
electromechanical design, applied control the-
ory, power electronics, digital electronics, and
wireless communications have been the domi-
nating factors in success in this league over
recent years. Successful teams have typically
demonstrated robot speed and powerful kick-
ing rather than elegant ball control and sophis-
ticated team strategies.

The Competition
Sixteen teams from 9 different nations compet-
ed for the small-size champion’s trophy. The ear-
ly rounds of the contest demonstrated the depth
of the league, with some quality teams being

The F180
games are
exciting to
watch because
these robots
can move
quickly. The
orange golf
ball used as
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is propelled at
speeds over
three meters a
second by
ingenious
kicking
mechanisms.
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(National Television Systems Committee)
video rate of 60 hertz. It does so without ever
buffering the video in random-access memory
(RAM), so that the position information is
delayed by only 1/60th of a second. With such
a small delay in vision processing combined
with highly responsive robots, TEAM CRIMSON

was capable of extremely fast and controlled
motion. However, because of communications
problems (and some last-minute code
changes!), the team was knocked out in the
quarter finals.

The French team from the Universite Pierre
et Marie Curie was the only team to score
against the eventual champions, BIG RED from
Cornell University. The French curved-path
planning system allowed it to scoop the ball
from in front of the opposition and make high-
ly effective attacks on goal. The team was
unlucky to be knocked out by Cornell in the
quarter final.

The first semifinal match between FU-FIGHT-
ERS from the Freie Universitat of Berlin, Ger-
many, and the ROBOROOS from the University
of Queensland, Australia, showed a contrast of
styles. The ROBOROOS, competing for the third
consecutive year, relied on smooth control and

eliminated during the round-robin section. In
particular, the MUCOWS from Melbourne Uni-
versity, Australia, achieved remarkable perfor-
mance in its first year in the contest but was
unlucky to lose in a high-class group. As well as
solid all-around performance, the team from
Melbourne showed its engineering skill with a
high-bandwidth, low-power communications
system that was seemingly immune to the prob-
lems experienced by most competitors.

Three small-size teams chose not to use the
global vision system; instead, these teams
relied on on-board vision capture and process-
ing to sense the environment. These teams
demonstrated that it is possible to build vision
hardware suitable for real-time processing
within the severe size constraints of the F180
league. The VIPERROOS from the University of
Queensland, Australia, had the distinction of
becoming the first local vision team to beat a
global vision team; the score was 2–0. However,
none of the local vision teams was able to
reach the finals.

The eight finalists all had excellent technical
merit. TEAM CRIMSON from Korea has a custom
video-processing board that extracts the posi-
tion of the players and the ball at the full NTSC
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Figure 3. The Small-Size–League Final Game. 



an adaptive team strategy to reach the finals,
whereas the FU-FIGHTERS used fast, aggressive tra-
jectories with an extremely powerful kicker.
The FU-FIGHTERS showed clear dominance win-
ning the match 3–0.

The second semifinal match between BIG RED

and LUCKY STAR from Ngee Ann Polytechnic in
Singapore was the closest match of the small-
size tournament. The match was 0–0 at full
time, playing through a period of sudden death
extra time to come down to a penalty shoot-
out that was decided at 4–3. LUCKY STAR com-
bined novel electromechanical design with
excellent control to achieve its result. Its robots
had an extremely effective kicking mechanism
that was integrated into a narrow body design.
The narrow body enabled the robots to slip
between defenders to get to the ball, despite
the crowding of the field. Its vision and control
were sufficiently good that the players would
reliably kick the ball despite the small kicking
face of the robot. LUCKY STAR won third place in
the contest.

BIG RED went on to win the final against FU-
FIGHTERS convincingly. Figure 3 is a shot from
the final game. This is the second consecutive
year that BIG RED has won the small-size cham-
pionship and the second year that FU-FIGHTERS

has come in second. Although it might seem
natural to attribute their achievements to nov-
el electromechanical design such as FU-FIGHTER’s
powerful kicker or BIG RED’s dribbling device
(described later), it is also apparent that these
robots are superbly controlled. As these control
issues, along with the other fundamental engi-
neering issues, are addressed on an even scale
across the competition, other factors, such as
effective team strategies, will come more into
play.

Cornell BIG RED: Small-Size Champion 
BIG RED repeated as champion of the small-size
league at RoboCup-2000. The RoboCup com-
petition is an excellent vehicle for research in
the control of complex dynamic systems. From
an educational perspective, it is also a great
means for exposing students to the systems
engineering approach for designing, building,
managing, and maintaining complex systems.

In an effort to shift the current emphasis of
the competition away from simple strategies to
more complicated team-based strategies, the
main emphasis of this year’s winning team was
to play a controlled game. In other words, in a
game without ball control, effective strategies
essentially consist of overloading the defensive
area during a defensive play (the so-called cate-
naccio in human soccer, a strategy that is very
effective, even if dull and frustrating for the

spectators) and shooting the ball toward open
space or the goal area in the opponent’s half
during offensive plays. This was, in fact, the
simple role-based strategy adopted by our
championship team in 1999, which was shown
to be extremely effective (D’Andrea et al. 2000).

To bring control to the RoboCup competi-
tion, the Cornell team developed two electro-
mechanical innovations and the associated
control strategies to render them effective: (1)
omnidirectional drive and (2) dribbling. Be-
cause of space limitations, we restrict our
description to these two features, followed by
the underlying feedback control strategy that
allowed the Cornell team to make full use of
them.

Omnidirectional Drive and Dribbling 
The Cornell team implemented an effective
means of position control this year. This con-
trol was achieved by placing three pairs of
wheels at locations that are at the vertexes of
an imaginary triangle (figure 4). Each pair of
wheels has an active degree of freedom and a
passive one, the active one being in the direc-
tion of the rotation of the motor and the pas-
sive one being the one perpendicular to it.
Loosely speaking, because the drive directions
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capability that is rendered possible by this
combination is the effective receiving of pass-
es, which must be central to any sophisticated
team-based strategy.

Trajectory Generation and Control 
The overall trajectory generation and control
scheme for one robot is depicted in figure 6.
Starting from the vision block, the calculated
position and orientation of the robot is fed to
a prediction block, which calculates the best
estimate of the position and orientation of the
robot in the robot temporal frame based on the
vision data and the history of the commanded
velocities. The trajectory generation block
solves a relaxation of an optimal control prob-
lem to calculate the future robot velocity pro-
file required to reach the prescribed final posi-
tion and final velocity in either the shortest
possible time or in a prescribed amount of time
using the least amount of control effort; a sim-
ilar step occurs for the robot orientation. The
dynamics of the motors and the robots are tak-
en into account to ensure that the generated

are pairwise linearly independent, and the
number of degrees of freedom on a two-dimen-
sional surface is three (two translational and
one rotational), one can independently control
the translation and the rotation of the robot by
a judicious choice of drive velocities.

The dribbling mechanism is a rotating bar
with a latex cover placed just above the kicking
mechanism (figure 5). On contact with the
ball, the rotation of the bar imparts a backward
spin on the ball; the bar is strategically placed
such that the net component of the force on
the ball is always toward the robot, which is
achieved without violating the 20-percent con-
vexity rule. (The convexity rule states that no
more than 20 percent of the ball along any
dimension can be within the convex hull of
the robot.)

The omnidirectional drive, coupled with the
dribbling mechanism, greatly increases the
potential capabilities of the robots (we stress
the word potential because it is not obvious
that a real-time control strategy can be devel-
oped to fully use these features). The main
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velocity profiles are feasible. After converting
these data to wheel velocities, this information
is fed to the robots by wireless communication.
A local control loop on the robot regulates the
actual wheel velocities about the desired wheel
velocities.

Obstacle Avoidance 
The Cornell team displayed advanced obstacle
avoidance, in large part because of the hierar-
chical decomposition of overall robot control
into trajectory generation and the higher-level
algorithms used to determine where to send
the robots. In the simplest case, the algorithm
is based on determining if a collision will take
place, followed by drawing tangents to the first
obstacle known to be in the path to the desti-
nation. Once the tangent points are known,
trajectories are generated for the destinations
with the tangent points as via points, and the
feasible path with either the shortest time or
the least amount of control effort is followed.
A refinement of the previous algorithm is used
when there are multiple obstacles and when
obstacles are sufficiently close to each other.

Observations 
The proposed increase in the field size (at all
RoboCup competitions so far, the field has
been the size of a table-tennis table—the field
might be widened for RoboCup-2001) will
greatly reward teams that implement effective
team play. We strongly feel that the dribbling
mechanism will greatly improve the quality of
the game and allow teams to effectively use
sophisticated team-based strategies. The main
benefit of the omnidirectional drive mecha-
nism is a simplification of the resulting control
problem, which greatly reduces the computa-
tion required for generating nearly optimal tra-
jectories and, thus, frees up computational
resources for higher-level control decisions; we
do not feel, however, that it will be a necessary
feature of future competitive teams. It is clear,
however, that successful future teams must
seriously address dynamics and control issues,
such as estimation, coping with system latency,
robustness, and optimal control; only by doing
so can the full benefits of team play and coop-
eration be achieved.
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ing a world model. In addition, the vast major-
ity of F2000 robots are completely auton-
omous, carrying all sensors and computational
equipment on board, which makes them much
larger and heavier. Fast movements are much
more difficult to control. These are two of the
main reasons why F2000 robots play at much
slower speeds than F180 robots.

The difficulties described here exert a strong
force on new teams to think about robot
design, and repeatedly, new teams with new
hardware designs have displayed stunning
first-time appearances at RoboCup tourna-
ments. This year, we had another two exam-
ples: CMU HAMMERHEADS from the United States
and GOLEM from Italy, each of which intro-
duced a new mobile base into the middle-size
league. The HAMMERHEADS use a modified ver-
sion of the commercially available CYE robot, a
differential-drive base with a trailer attached to
it. The GOLEM robots feature a triangular omni-
directional drive design based on mechanum
wheels, which provided for the best combina-
tion of maneuverability and speed that the
F2000 league has seen so far. The drive design
of the GOLEM robots was complemented by the
use of only a single sensor: an omnidirectional
camera with a custom-made mirror design,
which provided the robot with a complete
view of the field from virtually every position.
The clever combination of these two key
design decisions allowed the GOLEM team to
apply much simpler techniques for localization
and world modeling as well as action selection,
which significantly reduced development time.

RoboCup-2000 Tournament 
Fifteen teams participated in the RoboCup-
2000 middle-size–league tournament. The rules
for the middle-size robot league were only mar-
ginally changed from last year, which gave
teams the opportunity to focus on software
improvements rather than the design of new
hardware. The play schedule was designed to
give all teams ample opportunity to gain prac-
tical playing experience, with a total of 57
games. Each team was assigned to one of two
groups, with seven and eight teams, respective-
ly, for the qualification rounds. Each group
played a single round-robin schedule, such
that each team played at least six or seven
games. The four top teams in each group went
to the playoff quarterfinals.

In this year’s tournament, we had more
exciting matches than ever, with quite a num-
ber of surprising performances. Most teams
had previous tournament experience and
showed significant progress over previous play
levels. In addition, the two remarkable new-

The Middle-Size Robot League 
The RoboCup F2000 League, commonly
known also as the middle-size robot league,
poses a unique combination of research prob-
lems, which has drawn the attention of well
over 30 research groups worldwide. 

Environment and Robots 
The playing environment is designed such that
the perceptual and locomotion problems to be
solved are reasonably simple but still challeng-
ing enough to ignite interesting research. The
field size is currently 9 meters x 5 meters. The
goals have colored walls in the back (yellow)
and on the sides (blue). The field is surrounded
by white walls (50 centimeters high) that carry
a few extra markings (squared black markers of
10-centimeter size plus black-and-white logos
of sponsors in large letters). A special corner
design is used and marked with two green
lines. The goal lines, goal area, center line, and
center circle are all marked with white lines.
The ball is dark orange. Illumination of the
field is constrained to 500 to 1500 luxes.
Matches are played with teams of four robots,
including the goalie.

The robots must have a black body and carry
color tags for team identification (light blue
and magenta). Quite elaborate constraints exist
for robot size, weight, and shape. Roughly, a
robot body can be as large as about 50 centime-
ters in diameter and be as high as 80 centime-
ters; must weigh less than 80 kilograms; and
must have no concavities large enough to take
up more than one-third of the ball’s diameter.
The robots must carry all sensors and actuators
on board; no global sensing system is allowed.
Wireless communication is permitted both
between robots and between robots and out-
side computers.

Research Challenges 
The most notable difference from the F180
league is that global vision is not permitted. In
a global camera view, all the robots and the ball
move, and the goals, the walls, and the mark-
ings of the field remain fixed. If the moving
objects can be tracked sufficiently fast in the
video stream, all the positions and orientations
are known, and a global world model is avail-
able. The situation is completely different in
the F2000 league, where the cameras on top of
the robots are moving through the environ-
ment. All the usual directional cameras, and
most omnidirectional cameras, can perceive
only a small part of the environment, which
greatly complicates tasks such as finding the
ball, self-localizing on the field, locating team-
mates and opponents, and creating and updat-
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comers this year, the HAMMERHEADS and GOLEM,
both made it to the quarterfinals, a remarkable
success, especially for new teams. The other
teams reaching the quarterfinals were last
year’s champion SHARIF CE from Iran; RMIT UNIT-
ED from Melbourne, Australia; the Osaka Uni-
versity TRACKIES from Japan; and the three Ger-
man teams, GMD ROBOTS from Bonn, AGILO

ROBOCUPPERS from Munich, and CS FREIBURG.
GOLEM, SHARIF CE, TRACKIES, and CS FREIBURG qual-
ified for the semifinals. The semifinals and
finals matches were the most exciting games in
middle-size–league history, watched by a
crowd of more than 1000 enthusiastic specta-
tors. Both the third-place game and the final
game took penalty shootouts to determine the
winners. Last year’s champion, SHARIF CE, fin-
ished third after tying the TRACKIES 1–1 at full
time and winning the penalty kicks 3–2. The
final game between CS FREIBURG and GOLEM was
tied 3–3 at full time. During the penalty
shootout, CS FREIBURG first scored three of five
penalty kicks. Then, it was GOLEM’s turn, and it
scored the first penalty kick. Excitement was at
its peak when it missed the next two. CS

FREIBURG defended the next one as well and
became the RoboCup-2000 Middle-Size League
champion.

Lessons Learned and 
Future Developments 
When newcomer SHARIF CE won last year, many
observers attributed its superior performance
largely to the new hardware design, which gave
it more speed and more maneuverability than
most other teams. With the GOLEM team from
Italy, we had yet another team with a new
mobile platform making it to the finals. Many
AI people were concerned that the focus in
F2000 would shift mainly to new mechanical
designs and hardware work. However, this year,
CS FREIBURG won the championship because of
its superior software capabilities; except for
slightly redesigned kickers, the hardware
design has remained almost the same since the
team started out in 1998. Many teams have
much faster, more maneuverable robots than
CS FREIBURG.

After a year of keeping the rules virtually
unchanged, it is now time to think about mod-
ifications that promote research, particularly in
two directions:

Making robots more robust and reliable—Com-
paratively small changes in the environment
often disturb the robots’ performances signifi-
cantly. Reducing the dependency on environ-
mental color coding and developing fast and
robust algorithms for perceptual tasks such as
object detection, object localization, and

object tracking are essential goals for future
research. 

Enhancing playing skills—Most robots push or
kick the ball with a simple device; only few
robots could demonstrate dribbling capabili-
ties, such as taking the ball around an oppo-
nent in a controlled manner. Playing skills can
be improved through the application of learn-
ing techniques. In addition, we need to relax
some of our constraints on the robot’s form
and shape to promote the design of innovative
ball-manipulation devices. 

Rule changes to foster research in these
directions can be expected for future tourna-
ments. 

CS FREIBURG: Middle-Size Champions 
After winning RoboCup in 1998 and coming in
third in 1999, CS FREIBURG again won the cham-
pionship at RoboCup-2000. One of the reasons
for this success is most probably the accurate
and reliable self-localization method based on
laser range finders (LRFs) (Gutmann, Weigel,
and Nebel 1999). However, although this
method was basically enough to win the com-
petition in 1998, it was necessary for it to work
on a number of different problem areas to stay
competitive. Since 1998, the CS FREIBURG team
has worked on improving the basic ball-han-
dling skills, improving the action-selection
mechanism, improving team play, and improv-
ing sensor data gathering and interpretation.
These points are described in much more detail
in Weigel et al. (2001). In particular, the first
point implied some redesign of the hardware
and software. Figure 7 shows one of the
redesigned CS FREIBURG robots with the new
kicking device and movable fingers. However, a
new kicker and a new way of steering the ball
is not enough. It is also necessary to develop
basic behaviors that exploit the new hardware
and develop a mechanism for selecting the
appropriate behavior in a given situation. 

New Tactical Skills: Dribbling and Rebound
Shots 
For the 2000 competition, the CS FREIBURG team
put a lot of effort into developing a new set of
basic skills to respond to a large number of dif-
ferent game situations. Some of the most
important skills are described in the following
paragraphs.

To get hold of the ball, a player moves to a
position behind the ball following a collision-
free trajectory generated by a path-planning
system that constantly (re)plans paths based
on the player’s perception of the world (GoTo-
Ball). The system is based on potential fields
and uses A* search for finding its way out of
local minima. If close to the ball, a player
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Players fulfilling strategic tasks position
themselves following collision-free paths
(GoToPos) to dynamically determined posi-
tions. From these positions, the players either
search the ball if not visible (SearchBall) by
rotating constantly or observe it by turning
until facing it (ObserveBall).

In RoboCup-2000, the CS FREIBURG team
seemed to be one of the few teams capable of
effectively dribbling the ball and the only one
that deliberately exploited the possibility of
rebound shots using the walls. Therefore, these
two skills will be described in more detail.

Figure 8a shows a screen shot of a player’s
local view while it is dribbling. In every cycle,
potential continuations of the current play are
considered. Such continuations are lines to
points closer to the opponent’s goal within a
certain angle range around the robot’s heading.
All the possible lines are evaluated, and the
direction of the best line sample is taken as the
new desired heading of the robot.

A line is evaluated by assigning it a value that
is higher the further it is away from objects, the
less turning is necessary for the player, and the

approaches the ball in a reactive manner to get
it precisely between the fingers while it is still
avoiding obstacles (ApproachBall). Once in ball
possession, a player turns and moves the ball
carefully until facing in a direction that allows
for an attack (TurnBall). If the player is right in
front of the opponent’s goal, it kicks the ball in
a direction where no obstacles block the direct
way to the goal (ShootGoal). Otherwise, it first
heads toward a clear area in the goal and turns
sharply just before kicking in case the oppo-
nent goalkeeper moved in its way (MoveShoot-
Feint). However, if obstacles are in the way to
the goal, the player tries to dribble around
them (DribbleBall) unless there is not enough
room. In this case, the ball is kicked to a posi-
tion close to the opponent’s goal by also con-
sidering rebound shots using the walls. In the
event of being too close to an opponent or to
the field border, the ball is propelled away by
turning quickly in an appropriate direction
(TurnAwayBall). If a player gets stuck close to
an obstacle, it tries to free itself by first moving
away slowly and (if this doesn’t help) then try-
ing random moves (FreeFromStall).
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Figure 7. CS FREIBURG Player Mounting SICK LRF, Color Camera, Libretto Laptop, WAVELAN Wireless 
Ethernet, and Custom-Made New Kicking Device.



closer its heading is to the opponent’s goal cen-
ter. Determining the robot’s heading this way
and adjusting the wheel velocities appropriate-
ly in every cycle lets the robot smoothly and
safely dribble around obstacles without losing
the ball. The CS FREIBURG team scored some beau-
tiful goals in this year’s tournament after a play-
er had dribbled the ball over the field around
opponents along an S-like trajectory. Of course,
all this sophisticated motion only works
because the ball-steering mechanism allows for
tight control of the ball.

Figure 8b shows a screen shot of a player dur-
ing ball passing. For this skill, the lines are
reflected at the walls and are evaluated only
once to find the best direction in which to kick
the ball. A line’s value is higher the further it is
from obstacles, the closer its end point is to the
opponent’s goal, and the less turning it
requires for the player to face in the same direc-
tion. Using the passing skill, the players on the
CS FREIBURG team were able to play the ball effec-
tively to favorable positions and even score
goals directly

Action Selection: Extended Behavior Networks 
One of the critical components in a robotic
soccer agent is the action-selection mecha-

nism. As the outline of actions for playing the
ball shows, a lot of different basic skills have to
be taken into account, and for each situation,
an appropriate action has to be chosen. During
the development of the CS FREIBURG team, a
number of different methods have been tried,
none of them completely satisfactory. In 1999,
extended behavior networks (Dorer 1999) were
adapted to the needs of the CS FREIBURG team.
This formalism, which had been used by
RoboCup-99’s runner-up in the simulation
league, was developed based on Maes’s (1990)
proposal. It modifies Maes’s proposal in partic-
ular by changing the activation mechanism in
a way that makes the action selection appear to
be closer to decision-theoretic planning.

This formalism allows for modular and flex-
ible specification of behaviors and their inter-
actions. In addition, it is possible to adjust tac-
tics to opponents by supporting more
defensive or offensive play. 

Strategy: Roles and Placement 
The CS FREIBURG players organize themselves in
roles, namely, active, support, and strategic.
Although the active player always tries to get
and play the ball, the supporting player
attempts to assist by positioning itself appro-
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Figure 8. A CS FREIBURG Player’s View of the World.
A. Dribbling. B. Ball passing. Circles denote other robots, and the small circle in front of the player corresponds to the ball. Lines almost
parallel to the field borders are perceived by the laser range finder. The other lines leading away from the player are evaluated by the skills.
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The Simulation League 
The RoboCup-2000 competition was the most
exciting and most interesting simulation com-
petition to date. As in past years, the competi-
tion was run using the publicly available SOC-
CER SERVER system (Noda et al. 1998).
Thirty-four teams from 14 countries met in a
round-robin competition followed by a dou-
ble-elimination final series. Although most of
the teams had competed in previous competi-
tions, there were several notable new entries,
including the eventual champion, FC PORTUGAL,
which had an exciting 1–0 final with the Karl-
sruhe BRAINSTORMERS. The high standard of the
competition made for many exciting matches
throughout the competition; nearly 25 of the
final-round games went into overtime, 1 even-
tually having to be decided by a coin toss after
scoreless overtime lasted the length of 2 nor-
mal matches.

The RoboCup SOCCER SERVER

The RoboCup SOCCER SERVER provides a standard
platform for research into multiagent systems.
The SOCCER SERVER simulates the players and
field for a two-dimensional (2D) soccer match.
Twenty-two clients (11 for each team) connect
to the server, each client controlling a single
player. Every 100 microseconds, the SOCCER

SERVER accepts commands, by socket communi-
cation, from each client. The client sends low-
level commands (dash, turn, or kick) to be exe-
cuted (imperfectly) by the simulated player it is
controlling. Clients can only communicate
with each other using an unreliable, low-band-
width communication channel built into the
SOCCER SERVER. The soccer server simulates the
(imperfect) sensing of the players, sending an
abstracted (objects, for example, players and
ball, with direction, distance, and relative
velocity) interpretation to the clients every 150
microseconds. The field of view of the clients is
limited to only a part of the whole field. The
SOCCER SERVER enforces most of the basic rules of
(human) soccer, including offsides, corner
kicks, and goal kicks, and simulates some basic
limitations on players such as maximum run-
ning speed, kicking power, and stamina limita-
tions.

An extra client on each team can connect as
a coach, who can see the whole field and send
strategic information to clients when the play
is stopped, for example, for a free kick.

The soccer monitor connects to the SOCCER

SERVER as another client and provides a 2D
visualization of the game for a human audience
(figure 9). Other clients can connect in the same
way to do things such as 3D visualization, auto-
mated commentary, and statistical analysis.

priately. The strategic player always occupies a
good defensive position.

Each player constantly calculates its utility
to pursue a certain role and communicates the
result to its teammates. Based on its own and
the received utilities, a player decides which
role it wants to take. This approach is similar to
the one taken by the ART team (Castelpietra et
al. 2001); however, the CS FREIBURG players addi-
tionally communicate to their teammates
which role they are currently pursuing and
which role they want to take. A role can only
be taken from another player if its utility for
this role is the best of all players, and the robot
currently pursuing the role also wants to
change its role. Following this strategy makes it
less likely that two or more players are pursu-
ing the same role at the same time than assign-
ing rules based on utility values only. 

The target positions of the players are deter-
mined like the SPAR method of the CMUNITED

team in the small-size league (Stone, Veloso,
and Riley 1999). From the current situation
observed by the robots, a potential field is con-
structed that includes repulsive forces arising
from opponent players and attracting ones
from desirable positions, for example, posi-
tions from where the ball is visible. Positions
are then selected based on the robot’s current
role; for example, the position of the active
player is set close to the ball, the supporting
player is placed to the side and behind the
active one, and the strategic player takes a
defensive position that is about half way
between its own goal and the ball but behind
all opponent players.

Observations 
The success of the CS FREIBURG team this year
can clearly be attributed to the effective team
play and the rich set of basic ball-handling
skills. Always being present at strategically
important positions compensated for the com-
paratively slow robots of the CS FREIBURG team.
The basic skills enable the robots to move
quickly to the ball and offer a variety of differ-
ent ball-handling actions exploiting the new
powerful kicking and ball-steering mechanism.
As demonstrated, for example, in the game
against CS SHARIF, the CS FREIBURG players did
extremely well in getting to the ball and block-
ing the opponent before it could actually
become dangerous. 

One of the experiences was that tuning the
parameters of the basic skills by hand was very
time consuming. Therefore, some future work
will concentrate on learning methods for para-
meter adjustment of some of the basic skills.
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Research Themes 
Many of the research challenges addressed by
teams in 2000 came out of problems observed
by teams from previous competitions. Two
research themes were especially prominent: (1)
learning and (2) multiagent coordination. Oth-
er research areas included improving situation-
al awareness given incomplete and uncertain
sensing and high-level team specification by
human designers.

The first research theme, learning, was espe-
cially common among the successful teams.
Teams adapted techniques such as simulated
annealing, genetic programming, or neural
nets to the problem of creating optimized low-
level skills such as dribbling (Riedmiller et al.
2001). Experience has shown that although
advanced skills were an essential component of

a successful team, building such skills by hand
is difficult and time consuming. The skills
developed with learning techniques were in
some cases superior to the hand-developed
skills of previous years. Hence, RoboCup has
provided a useful, objective example where
learning produced a better outcome than
labor-intensive programming.

Not all learning research was focused on low-
level skills; several teams addressed the prob-
lem of how to learn high-level strategies.
RoboCup provides an interesting domain to
investigate such issues because although there
is a clearly defined objective function, that is,
win the game, the huge state space, unpre-
dictable opponent, uncertainty, and so on,
make the problem challenging. Most ap-
proaches learning at a high level layered the
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Figure 9. A Screen Shot of the SOCCER SERVER Monitor Augmented with FC PORTUGAL’s Debugging Tools. 



petition to assess the advances made during
the year. In 2000, CMUNITED-99 finished
fourth. In 1999, CMUNITED-99’s aggregate goals
for and against tally was 110–0, but in 2000,
the tally was far more competitive, 25–7
(including a 13–0 win). Also interesting was
that four of six of CMUNITED-99’s elimination-
round games went into overtime (resulting in
three wins and one loss). CMUNITED-99’s record
in 2000 shows two things: First, although they
finished fourth, several teams were nearly as
good and, perhaps, unlucky to lose to them,
and second, the competition was extremely
tight. It also indicates just how good CM-
UNITED-99 was in 1999.

As well as the main competition, there were
extensive evaluation sessions designed to com-
pare the ability of teams to handle increased
sensor and effector uncertainty. The sensor test
was a repeat of the test from last year and
involved changing the average magnitude of
the error in the simulated visual information
players received. The effector test was a surprise
to the teams and involved changing the aver-
age magnitude of the difference between what
command was sent by a player and what was
actually executed. The evaluation session pro-
vides a unique opportunity to test a wide vari-
ety of agent implementations under identical
conditions. Extensive evaluation log files, pro-
viding a large amount of high-quality data, are
available for analysis.

Despite the advances made in 2000, the
RoboCup simulator is far from a solved prob-
lem. Although high-level learning has pro-
gressed significantly, learned high-level strate-
gies were generally inferior to hand-coded ones;
a challenge for 2001 is to have learned strategies
outperform hand-coded ones. Using RoboCup
simulation as a platform for research into high-
level multiagent issues is only just starting to
emerge, for example, with the use of the online
coach. Additionally, as the standard of play gets
higher, there is both increased interest and use
for opponent-modeling techniques that can
counter complex, previously unseen team
strategies. The rapidly increasing complexity of
RoboCup software challenges us to continue
improving our methods for handling complex-
ity. The advances made and the research areas
opened up in 2000 bode well for yet another
interesting, exciting competition in 2001.

FC PORTUGAL: Simulator 
League Champion 
FC PORTUGAL is the result of a cooperative pro-
ject that started in February 2000 between the
University of Aveiro and the University of Por-
to in Portugal. FC PORTUGAL won both the

learning in some way (a successful approach in
the 1999 competition), although the specifics
of the learning algorithms varied greatly, from
neural networks to evolutionary algorithms.

The second major research theme was multia-
gent coordination. Although in previous compe-
titions, a highly skilled team might do reason-
ably well with kiddie soccer tactics, for example,
dribbling directly to goal, so many teams this
year had high-quality skills that more sophisti-
cated team strategies were required to win
games. Conversely, the high-quality skills trig-
gered more interest in team strategies because
players had the ability to carry them out with
some consistency. As well as the learning
approach to developing high-level strategies, a
variety of human engineered approaches were
used (for example, Murray, Obst, and Stolzen-
burg [2001]). A key to many of the approaches
was the online coach. The coach was commonly
used to analyze the opposition and determine
appropriate changes to the team strategy (Esaki
et al. 2001). Other teams developed tools or tech-
niques aimed at empowering human designers
to easily specify strategies, yet other teams relied
on carefully engineered emergent team behavior
(for example, Prokopenko, Butler, and Howard
[2001]) or dynamic team planning to achieve
the desired team behavior.

The Competition
RoboCup simulation teams are increasingly
complex pieces of software usually consisting
of tens of thousands of lines of code with spe-
cialized components working together in real
time. Handling the complexity is forcing
researchers to look critically at agent paradigms
not only in terms of the resultant agent behav-
ior but also at the ease with which very com-
plex teams can be developed within the para-
digm (and how it should be done).

However, the rapidly increasing complexity
of RoboCup simulation agents should not
deter new researchers from starting to work
with RoboCup. An online team repository cur-
rently contains source code or binaries for 29 of
the teams that competed in the 1999 World
Cup plus many more from previous years. The
repository allows new RoboCup participants to
quickly get a team going. In fact, a number of
the top teams in 2000 were developed on top
of the freely available code of the 1999 cham-
pions, CMUNITED-99 (Stone, Riley, and Veloso
1999). The growing code base provides code for
interaction with the SOCCER SERVER, skills, strate-
gies, debugging tools, and so on, in a variety of
programming languages and paradigms.

The reigning champion team, CMUNITED-99,
was reentered—unchanged—in the 2000 com-
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RoboCup 2000 Simulation League European
and World championships, scoring a total of
180 goals and conceding none.

CMUNITED-99 source code (Stone, Riley, and
Veloso 1999) was used as a starting point,
allowing the development effort to focus on
more interesting research issues. We pursued a
variety of research threads covering all aspects
of RoboCup team development, with the over-
riding themes being multiagent cooperation
and coordination. At the team level, FC PORTU-
GAL introduces the concept of tactic and incor-
porates novel algorithms for using flexible,
dynamic team formations, including the abili-
ty for players to dynamically change position-
ings and roles. Intelligent communication pro-
vides all players with an accurate picture of the
world despite the uncertainty and limited field
of view enforced by the simulation. At the indi-
vidual level, interesting aspects of FC PORTUGAL

include intelligent perception, qualitative rea-
soning about action selection through integra-
tion of real soccer knowledge, and the use of
online optimization techniques for low-level
skills. Several important development tools
were used, including a visual debugger (figure
9), advanced replay facilities for human devel-
opers, and a world-state error analyzer. Because
of space constraints, it is not possible to fully
explain all the FC PORTUGAL advances in detail.
We describe selected features here and refer the
interested reader to Reis and Lau (2001) for
more details.

Team Strategy Definition and Situation-Based
Strategic Positioning
CMUNITED brought the concepts of formation
and positioning to robot soccer (Stone 1998;
Stone, Riley, and Veloso 1999) and used
dynamic switching of formations as well. FC

PORTUGAL extends this concept and introduces
the concepts of tactics and player types. FC POR-
TUGAL’s team strategy is based on a set of tactics
to be used in different game situations and a set
of player types. Tactics include several forma-
tions used for different game-specific situations
(defense, attack, goalie free kick, scoring oppor-
tunity, and so on). Formations are composed of
11 positionings that assign each player a given
player type and a base strategic position on the
field.

One of the most significant features is the
clear distinction between strategic situations
(when the agent believes that it is not going to
use an active behavior soon) and active situa-
tions (ball recovery and ball possession). In
strategic situations, players use a situation-
based strategic positioning (SBSP) mechanism
that adjusts its base strategic position accord-
ing to the ball-position and -velocity and play-

er-type strategic information. The result is the
best strategic position in the field for each play-
er in each situation. Because at each time, only
a few players are usually using active behaviors,
SBSP enables the team to move like a real soc-
cer team, keeping the ball well covered while it
remains strategically distributed around the
field. For active situations—ball possession, ball
recovery, and stopped game—decision mecha-
nisms based on the integration of real soccer
knowledge are used.

Intelligent Perception and Communication 
In a complex domain such as soccer, the mul-
tiple sensors of an agent must be coordinated
and used in an intelligent way to give the agent
the most accurate understanding of the current
state of the world possible. Players receive
world information by their vision system,
close-range touch sensors, and shouted infor-
mation from teammates. The SOCCER SERVER lim-
its the agent’s viewing distance and viewing
angle. Hence, at any time, there are large parts
of the field that the player cannot see. Howev-
er, the player has a neck that can be turned
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Burning Extinguished Fire Brigade Agents

Figure 10. Two-Dimensional Viewer Image of 
RoboCup Rescue Prototype Simulator. 



useful events (for example, position swap).
Players evaluate the utility of talking based on
the comparison of assumed teammate knowl-
edge (from received messages) with their own
knowledge. It should be noted that hearing a
teammate message prevents hearing other mes-
sages that might be more useful. FC PORTUGAL

agents talk only when they believe that the
utility of their communication is higher than
that of their teammates.

Kick Optimization 
The ability of RoboCup players to kick the ball
powerfully and accurately is a valuable asset.
However, producing such kicks is not an easy
task. To kick, the player issues a command indi-
cating the direction and force with which the
ball should be kicked. The resulting ball veloc-
ity depends on the position of the ball relative
to the player, its previous velocity, and the
direction of the kick. Acceleration of the ball to
a high speed can take several kicks, for exam-
ple, to first position the ball appropriately, then
multiple kicks to accelerate it.

FC PORTUGAL used optimization techniques to
create a good kicking ability based on a succes-
sion of basic kicks. The optimization process
has two steps that are performed online during
the game each time players want to kick the
ball powerfully. First, random search and sim-
ple heuristics are used to generate kick
sequences for the given situation (that is, ini-
tial ball position-velocity and desired kick
angle-velocity). Kick sequences are evaluated
based on final speed, number of basic kicks,
and possible opponent interference. Second,
hill-climbing search tries to improve the best
kick sequence found by random search. This
method resulted in flexible, fast kicking skills
that provided FC PORTUGAL players a solid basis
for executing higher-level strategies.

RoboCup Rescue 
The RoboCup Rescue Project was newly
launched by the RoboCup Federation in 1999.
Its objective is as follows: (1) development and
application of advanced technologies of intel-
ligent robotics and AI for emergency response
and disaster mitigation for the safer social sys-
tem; (2) the introduction of new practical prob-
lems with social importance as a challenge of
robotics and AI, indicating a valuable direction
of research; (3) proposal of future infrastructure
systems based on advanced robotics and AI;
and (4) acceleration of rescue research and
development by the RoboCup competition
mechanism. A simulation project is running at
present, and a robotics and infrastructure proj-
ect will soon start.

independently of it’s body (within some lim-
its), so it need not be looking in the direction
it is moving. In different situations, different
aspects of the world are more or less important
to the player. The server also limits communi-
cation between teammates; namely, messages
are broadcast over a limited range around the
talking player, and players can only hear one
message from their teammates each two simu-
lation cycles.

FC PORTUGAL’s strategic looking mechanism
(SLM) intelligently determines the direction
the player should turn its neck based on its cur-
rent information availability and require-
ments. SLM decides on a direction to look by
calculating the utility of each possible direc-
tion the agent could look and selecting the
direction with the highest utility. The utility is
calculated by assessing the areas of the ground
where important information is likely to be
sensed and for which the agent does not
already have the appropriate information. For
example, in an attacking situation, high utility
might be ascribed to looking in the direction of
the goal because this information could help
determine whether a shot on goal was a good
option. FC PORTUGAL agents use communication
to maintain agents’ world states that are updat-
ed by sharing individual knowledge and
increase team coordination by communicating
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Figure 11. Urban–Search-and-Rescue Contest Field. 



In Melbourne, a simulator prototype target-
ing earthquake disaster was open to the public
to start international cooperative research. A
real rescue robot competition was proposed to
start a new league in 2001.

Simulation Project 
Distributed simulation technology combines
the following heterogeneous systems to make a
virtual disaster field: (1) disaster simulators
model the collapse of buildings, blockage of
streets, spread of fire, traffic flow, and their
mutual effects; (2) autonomous agents repre-
sent fire brigades, policemen, and rescue par-
ties, all of which act autonomously in the vir-
tual disaster; (3) the simulation kernel manages
state values and networking of and between
the systems; (4) the geographic information
system gives spatial information to the whole
system; and (5) simulation viewers show 2D
and 3D images of simulation results in real
time, as shown in figure 10.

The RoboCup Rescue simulation competi-
tion will start in 2001. The details are described
in Kaneda et al. (2001), Kuwata and Shinjoh
(2001), Ohta (2001), Takahashi et al. (2001),
Tadokoro and Kitano (2000), and Tadokoro et
al. (2000). The simulator prototype can be
downloaded from robomec.cs.kobe-u.ac.jp/
robocup-rescue/.

AAAI-RoboCup Rescue 
Robot Competition 
A rescue robot competition will start in 2001 in
cooperation with the American Association for
Artificial Intelligence (AAAI). The target is search
and rescue of confined people from collapsed
buildings, such as in earthquake and explosion
disasters. In Melbourne, Robin Murphy (Univer-
sity of South Florida) demonstrated two robots
that have been developed for real operations.

The large-scale arena of the AAAI
Urban–Search-and-Rescue (USAR) Contest (fig-
ure 11) will be used. It consists of three build-
ings simulating various situations. The easiest
building has a flat floor with minimal debris,
but the most difficult building includes a 3D
maze structure consisting of stairs, debris, and
so on, with narrow spaces. The details are
described on the AAAI USAR web page
(www.aic.nrl.navy.mil/~schultz/aaai2000/).

More than other RoboCup competitions, the
rules of the 2001 rescue competition will focus
on direct technology transfer, specifically to
real disaster problems on the basis of the 2000
AAAI USAR contest. For example, practical
semiautonomy with human assistance and
information collection for realistic operation
are potential competition components.

RoboCup Junior 
RoboCup Jr. is the educational branch of
RoboCup, and it puts emphasis on teaching
young people about research and technology by
giving them hands-on experience. RoboCup Jr.
development was initiated in 1997, and the first
public show was at RoboCup-98 in Paris with a
demonstration of LEGO MINDSTORMS robots play-
ing soccer in a big LEGO stadium with rolling
commercials; LEGO spectators making the
wave, stadium lights, and so on (Lund et al.
1999); and children playing with other LEGO
robot models. In 1999, during RoboCup-99 in
Stockholm, children were allowed to program
their own LEGO MINDSTORMS robots in the morn-
ing, and then play tournaments in the after-
noon (Lund and Pagliarini 2000). The fast devel-
opment of complex robot behaviors was
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Figure 12. Images of the RoboCup Jr. Events.



fact; so, RoboCup Jr. 2000 allowed children to
both build and program the robots. This
endeavor was facilitated by the use of LEGO
MINDSTORMS robots, partly because this tool
allows for easy assembly of robots and partly
because most children are familiar with LEGO.
The tasks were designed so that the simple sen-
sors and actuators are sufficient, but a few chil-
dren from the more advanced technical classes
made their own sensors and integrated them
with the LEGO MINDSTORMS control unit.

There were three different events during
RoboCup Jr. 2000: (1) the Dance-Performance
Event for students to 12 years (primary school),
(2) the Converging Robot Race (Sumo) for stu-
dents to 14 years (grades 7 and 8), and (3)
RoboCup Jr. 2000 Soccer for students 14 to 18
(grades 7–12). We put special emphasis on
broadening RoboCup Jr. from being a purely
competitive event to include the cooperative
event of a robot dance-parade. In previous
years, and during RoboCup Jr. 2000, we found
the competitive robot soccer event to result in

achieved with the interactive LEGO football set-
up based on a user-guided approach to behav-
ior-based robotics. This activity was refined for
RoboCup-Euro-2000 in Amsterdam (Kröse,
Bogaard, and Hietbrink 2000), where 10 Dutch
and 2 German school groups participated in a
one-day tournament.

The RoboCup Jr. 2000 activity in Melbourne,
in which a total of 40 groups of children partic-
ipated, differed from the previous activities in
several aspects: (1) children were both building
and programming their robots; (2) the develop-
ment took place during the six to eight weeks
prior to the competition; (3) in most cases, the
work was done as part of a teaching project in
schools; and (4) there was a robot sumo compe-
tition and a robot dance performance in addi-
tion to the soccer competition.

During previous events, children had no
opportunity to build the robots. However, edu-
cational approaches such as construction
(Lund 1999) suggest that the construction of
an artifact is important to understand the arti-
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Figure 13. Four Humanoids Demonstrated at RoboCup-2000 (left to right): MARK-IV, PINO, ADAM, and JACK DANIEL.



a gender bias toward boys. This bias is not sur-
prising because the robot soccer event pro-
motes soccer, technology, vehicles, and compe-
tition, and we often find that boys are more
enthusiastic about these subjects than girls. We
did not perform any rigorous scientific gender
studies, but our experience from many events
gave a clear picture of a gender bias. We there-
fore introduced the dance-parade to address
other issues, such as cooperation, context con-
struction, and performance. Indeed, more than
50 of the participants who signed up for the
robot dance-performance event were girls.

Each participating team had three minutes
for the robot dance-performance. The teams
designed the robots, designed the environment
in which the robots danced, programmed the
robots to perform, and made a music cassette
with the appropriate music for the perfor-
mance. Many of the teams also designed their
own clothes to match the robots and the envi-
ronment, and many teams designed clothes for
the robots. There was no limitation to the
hardware (any robot could be used), but during
RoboCup Jr. 2000, all participating teams chose
to use LEGO MINDSTORMS. The performing
robots included a Madonna look-alike, a disco-
vampire, a dragon on the beach, and four
feather-dressed dancers. Ten teams participated
in the dance-performance event, and prizes
were given for best dressed robot, best pro-
gramming, best choreography, most entertain-
ing (best smile value), best team T-shirt design,
best oral presentation by participants to judges,
and creativity of entry.

The RoboCup Jr. soccer game had 20 partici-
pating teams. Each team built one or two
robots (in all cases from LEGO MINDSTORMS) to
play on a field of approximately 150 centime-
ters x 90 centimeters. The floor of the field is a
gradient from black to white, which allows the
robots to detect position along one of the axes
by measuring reflection from the floor with a
simple light sensor. The ball used in the finals
was an electronic ball produced by EK Japan
(Lund and Pagliarini 2000). The ball emits
infrared light that can be detected with simple,
off-the-shelf LEGO sensors. Bellarine Sec-
ondary College won the final event by drawing
3–3 and winning on golden goal after being
down 3–0 at half time.

The success of the RoboCup Jr. 2000 event
was to a large degree because of the involve-
ment of enthusiastic local teachers and toy-
hardware providers, who promoted and
designed the event in collaboration with the
researchers. The local teachers were able to
incorporate the RoboCup Jr. project into their
curricula. Involvement of local teachers seems

crucial for the success of such events. In the
future, RoboCup Jr. will make an effort to pro-
mote national and local competitions, apart
from the big events at the yearly RoboCup. Fig-
ure 12 shows images from this year’s event.

Humanoid Robot 
Demonstration 

The RoboCup humanoid league will start in
2002 toward the final goal of RoboCup, which
is to beat the human World Cup soccer cham-
pion team with a team of 11 humanoid robots
by 2050. This league will be much more chal-
lenging than the existing ones because the
dynamic stability of robots walking and run-
ning will need to be handled.

The main steps of such development will
be (1) building an autonomous biped able to
walk alone on the field; (2) locomotion of this
biped, including straight-line movement,
curved movement, and in-place turns; (3)
identification of the ball, the teammates, and
the opponents; (4) kicking, passing, shooting,
intercepting, and throwing the ball; (5) acqui-
sition of cooperative behavior (coordination
of basic behaviors such as passing and shoot-
ing); and (6) acquisition of team strategy.

Although items 3 to 6 are already addressed in
the existing leagues, the humanoid league has
its own challenges related to handling the ball
with feet and hands.

At RoboCup-2000, the humanoid demon-
stration was held with four characteristic
humanoids. Figure 13 shows these four
humanoids, pictured from left to right. MARK-V
is from K. Tomiyama’s group at Aoyama
Gakuin University. MARK-V showed its ability to
walk and kick a ball into a goal. PINO is from the
Kitano Symbio Project, Japan. It demonstrated
walking and waving its hand to say good-bye!
ADAM, from LRP, France, walked 100 centime-
ters in a straight line autonomously and was
also controlled by an off-board computer. JACK

DANIEL, from Western Australia University,
demonstrated a walking motion while it was
suspended in the air.

These humanoids are still under develop-
ment. At RoboCup-2001 we expect to see more
humanoids with improved walking and run-
ning and also some new capabilities.

RoboCup Workshop and 
Challenge Awards 

There is no doubt that RoboCup is an exciting
event: The matches are thrilling to watch and
the robots and programs are fun to design and

RoboCup is
fundamen-
tally a
scientific
event. It
provides a
motivating
and an easy-
to-understand
domain for
serious
multiagent
research.
Accordingly,
the RoboCup
Workshop,
which is held
each year in
conjunction
with the
Robot Soccer
World Cup,
solicits the
best work
from
participating
researchers for
presentation.
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Scientific Challenge Award 
The RoboCup-2000 Scientific Challenge Award
went to Michael Wünstel, Daniel Polani,
Thomas Uthmann, and Jürgen Perl (2001) for
their method for using self-organizing maps
(SOMs) to classify and structure spatiotemporal
data. The goal of the work was to develop a
method to detect characteristic features of tra-
jectories. It was used to analyze the behaviors
exhibited by RoboCup players during tourna-
ment games. The games took place in simula-
tion using the SOCCER SERVER, so the complete
game data were available as log files. The
actions of RoboCup players were then analyzed
on a purely behavioral level; that is, no knowl-
edge about implementation or inner states of
the agents was used. Here, an outline of the
method is given. For details of the method, the
reader is referred to the original paper.

The model is based on Teuvo Kohonen’s
(1989) SOM. The SOM is a data-analysis
method inspired by the structure of certain cor-
tex types in the mammal brain. It is able to
identify clusters in high-dimensional data and
project (map) these data onto a 2D grid respect-
ing their topology, that is, their neighborhood
structure that allows an intuitive visualization.
The mapping and the visualization capability
are an advantage of the SOM over standard sta-
tistical methods; in particular, the SOM is not
just useful for separating different clusters, but
it also resolves the inner structure of the clus-
ters. Mathematically, it is related to the princi-
pal surface models for data distributions
known from statistics (Ritter, Martinetz, and
Schulten 1992), although unlike the SOM,
these surface models are not designed to han-
dle data sets decomposing into different clus-
ters.

In the SOM model, two spaces exist: (1) the
(typically) high-dimensional data space and (2)
the space of SOM units, having a function sim-
ilar to the code-book vectors of vector quanti-
zation. Unlike in vector quantization, however,
the SOM units are typically organized in a two-
dimensional grid, representing a topological,
that is, neighborhood, relation between the
units.

For a trained SOM, each data point from the
high-dimensional space is projected onto an
element of the two-dimensional SOM grid.
Every SOM unit represents a vector in the high-
dimensional data space, such that the SOM can
be viewed as an embedding of the two-dimen-
sional SOM grid into the high-dimensional
data space. Neighboring units typically repre-
sent neighboring regions in the original data
space. In turn, a data point from the high-
dimensional space can be projected onto that

build. Even so, RoboCup is fundamentally a
scientific event. It provides a motivating and
an easy-to-understand domain for serious mul-
tiagent research. Accordingly, the RoboCup
Workshop, which is held each year in conjunc-
tion with the Robot Soccer World Cup, solicits
the best work from participating researchers for
presentation.

The RoboCup-2000 Workshop was held in
Melbourne, adjacent to the exhibition hall
where the competitions were staged. Twenty
papers were selected for full presentation, and
an additional 20 were selected for poster pre-
sentation from over 60 submissions. Paper top-
ics ranged from automated intelligent sports-
caster agents to motion planners and vision
systems. The workshop was attended by more
than 200 international participants.

The number of high-quality submissions to
the RoboCup Workshop continues to grow
steadily. To highlight the importance of the sci-
entific aspects of RoboCup, and to recognize
the very best papers, the workshop organizers
nominated four papers as challenge award
finalists. The challenge awards are distinctions
that are given annually to the RoboCup-related
research that shows the most potential to
advance their respective fields. The finalists
were a localization method for a soccer robot
using a vision-based omnidirectional sensor by
Carlos Marques and Pedro Lima (2001); behav-
ior classification with self-organizing maps by
Michael Wünstel, Daniel Polani, Thomas Uth-
mann, and Jürgen Perl (2001); communication
and coordination among heterogeneous mid-
size players, ART99, by Claudio Castelpietra,
Luca Iocchi, Daniele Nardi, Maurizio Piaggio,
Alessandro Scalso, and Antonio Sgorbissa
(2001); and adaptive path planner for highly
dynamic environments by Jacky Baltes and
Nicholas Hildreth (2001).

These presentations were evaluated by a
panel of judges who attended the presenta-
tions based on the papers themselves as well as
the oral and poster presentations at the work-
shop. This year two awards were given: The Sci-
entific Challenge Award was given to Wünstel
et al. for their work on applying self-organizing
maps to the task of classifying spatial agent
behavior patterns, and the Engineering Chal-
lenge Award was given to Marques and Lima
for their contribution to sensing and localiza-
tion.

We expect that the workshop will continue
to grow. In future years, we might move to par-
allel tracks so that more presentations will be
possible.

The RoboCup-
2000

Scientific
Challenge

Award went
to Michael

Wünstel,
Daniel Polani,

Thomas
Uthmann,
and Jürgen
Perl (2001)

for their
method for
using self-
organizing

maps (SOMs)
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and structure
spatio-

temporal
data.
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unit in the low-dimensional grid whose code vector is
closest to the original point.

One of the questions addressed in the paper is the
representation of trajectories of individual players and
of players interacting with the ball. There are different
approaches to represent trajectories adequately to be
able to analyze them with SOMs. One method is to pro-
ject every state of the original trajectory to the corre-
sponding SOM unit and examine the resulting trajecto-
ry on the SOM grid in a fashion similar to the trace of
an elementary particle in a cloud chamber (James and
Miikkulainen 1995). One can then, for example, com-
pare the order of activated units with some reference
order. This method has also been used successfully for
example in Carpinterio (1999) to recognize instances of
a theme in a piece of music by J. S. Bach. It has also
been used in speech recognition to trace the order of
phonemes (Kangas 1994; Mehler 1994). These are static
SOM models of trajectories in the sense that the SOM
units only represent certain states, and the data-space
trajectories are transformed into a trajectory on the
SOM grid. A different representation was used by Chap-
pell and Taylor (1993) who used leaky integrator units.
These units can store the units’ activations for a while
and therefore are able to represent temporal informa-
tion. The method presented by Wünstel et al. (2001),
however, adopts a dynamic view of the trajectory rep-
resentation. It does not attribute just a single state to an
SOM unit; instead, each unit stores a trajectory slice
containing several successive states. Therefore, in this
model, the mapping performed by the SOM training
does not just project the static state space but the space
of trajectory slices onto the SOM grid and, thus, pro-
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Figure 14. Combined Player-Ball Behavior.
A, B. A classification of different types of combined player-ball behavior,
as found by the self-organizing map. C. A typical representative of such
combined behavior from region VI of the left and middle plots (ball is
dribbled alongside the player).

A B
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(micro-)interaction between player
and ball that is able, for example, to
display significant differences in ball-
handling behavior by players from dif-
ferent teams. 

As an example, figure 14a and figure
14b show the classification for differ-
ent types of combined player-ball
behavior, as found by the SOM, the
dots representing behavior patterns
found. For example, region VI (the
large central region) represents drib-
bling behavior where the ball is carried
alongside the player. A typical repre-
sentative of such behavior is shown in
figure 14c, where the ball (lower path)
is led by a player (upper path) to the
right toward the opponent goal.

Applied to concrete players, the
results for a CMUNITED-99 player are
shown in figure 14b and for a MAINZ

ROLLING BRAINS 1999 player in figure
14c. The different handling behaviors
are clearly reflected in the significantly
distinct dot patterns. The alongside
dribbling (region VI) is mostly carried
out by the CMUNITED-99 players, but a
different type of dribbling, carrying
the ball in front of the player (region
VII), is predominantly performed by
the MAINZ ROLLING BRAINS players. This
example clearly shows one way that
the SOM is able to resolve different
playing styles. For further details and
results of the behavior-classification
method, the interested reader is
referred to Wünstel et al. (2001).

slices denoting similar agent microbe-
haviors are typically grouped together
on the SOM grid. This grouping yields
coarse clusters indicating distinct fun-
damental trajectory patterns (which
belong to different behavior types);
however, the inner structure of these
pattern clusters is also mapped to the
SOM grid respecting the neighbor-
hood structure as far as possible. It is
then possible to study the trajectory
projections onto the SOM grid that are
generated by given players. Doing so
for players from different RoboCup
teams allows us to reveal significant
differences in the microbehaviors of
the respective players.

The paper extends the method to
handle interactions between a player
and the ball (a special case of a more
general two-agent or two-object inter-
action). The SFR vectors have to be
extended to the so-called enhanced
spatially focused representation (ESFR)
vectors, which combine two simulta-
neous trajectories (one player and the
ball) and, thus, examine the player-
ball interactions. The data representa-
tion is similar to SFR. In addition to
the differences between the agent
positions at successive time steps in
SFR, ESFR includes the difference vec-
tors between player and ball at the dif-
ferent time steps in the vector repre-
sentation. The ESFR vectors are used to
train the SOM. The resulting SOMs
then create a map of the short-term
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Figure 15. Self-Localization Results.
Left: The actual image. Right: The determined position in the field geometric model. 

vides a mapping of the dynamic struc-
ture of the original trajectories.

In the paper discussed here, we
used a method labeled spatially
focused representation (SFR). We con-
sider a trajectory as a simple sequence
of spatial data: The time intervals are
fixed and discrete, and the spatial data
are continuous. An agent trajectory in
a RoboCup simulation consists of a
sequence of agent positions on the
two-dimensional soccer field, one for
each discrete simulation time step.
The trajectory is split into windows of
short length (six time steps in the cur-
rent case). The difference vectors of
the agent positions in two successive
time steps are calculated (giving five
difference vectors in the current
example). This sequence of difference
vectors is now concatenated, resulting
in a combined vector (10-dimensional
in the example). A complete player
trajectory is thus transformed into a
set of trajectory slices represented as a
sequence of position difference vec-
tors, which, in turn, is combined into
a single larger vector (the SFR vector)
for every slice. The SOMs are then
trained in the standard fashion using
the SFR vectors as training data.

After the SOM is trained, each SOM
unit represents a trajectory slice (sim-
ilar to a code-book vector of vector
quantization); because of the topolo-
gy preservation property of the SOMs,
units representing similar trajectory



Engineering Challenge Award 
The navigation system is perhaps the
most important subsystem of a mobile
robot. In many applications, especially
those concerning indoor well-struc-
tured environments, one important
feature of the navigation system con-
cerns the ability of the robot to self-
localize, that is, autonomously deter-
mine its position and orientation
(posture). Once a robot knows its pos-
ture, it is capable of following a pre-
planned virtual path or stabilizing its
posture smoothly (de Wit, Siciliano,
and Bastin 1996). If the robot is part of
a cooperative multirobot team, it can
also exchange the posture information
with its teammates so that appropriate
relational and organizational behav-
iors are established (Lima et al. 2000).
In robotic soccer, these issues are cru-
cial. If a robot knows its posture, it can
move toward a desired posture (for
example, facing the goal with the ball
in between). It can also know its team-
mates’ postures and prepare a pass or
evaluate the game state from the team
locations.

An increasing number of teams par-
ticipating in RoboCup’s middle-size
league are approaching the self-local-
ization problem. The proposed solu-
tions are mainly distinguished by the
types of sensor used: LRFs, vision-
based omnidirectional sensors, or a
single frontal camera. LRFs require
walls surrounding the soccer field to
acquire the field border lines and cor-
relate them with the field rectangular
shape to determine the team postures.
Should the walls be removed, the
method becomes inapplicable.

The winner of the Engineering
Challenge Award (Marques and Lima
2001) describes an algorithm that
determines the posture of a middle-
size–league robot, with respect to a
given coordinate system, from the
observation of natural landmarks of
the soccer field, such as the field lines
and goals, as well as from a priori
knowledge of the field geometry. Even
though the intersection between the
field and the walls is also currently
used, the wall replacement by the cor-
responding field lines would not
change the algorithm. The algorithm
is a particular implementation of a
general method applicable to other

well-structured environments, also
introduced in Marques and Lima
(2001).

The landmarks are processed from
an image taken by an omnidirectional
vision system, based on a camera plus
a convex mirror designed to obtain (by
hardware) the soccer field bird’s eye
view, thus preserving the field geome-
try in the image. This mirror, although
developed independently, was first
introduced in Hicks and Bajcsy (1999).
The image green-white-green color
transitions over a predetermined num-
ber of circles centered with the robot
are collected as the set of transition
pixels. The Hough transform is applied
to the set of transition pixels in a given
image, using the normal representa-
tion of a line (Gonzalez and Woods
1992) 

(1)

where 

are the image coordinates of transition
pixel pt and �, � the line parameters.
The q (q = 6 in this application)
straight lines (�1, �1), …, (�q, �q) corre-
sponding to the top q accumulator
cells in Hough space are picked and,
for all pairs {(�j, �j), (�k, �k), j, k = 1, …,
q, j ≠ k} made out of the those q
straight lines, the following distances
in Hough space are computed:

(2)

(3)

Note that a small �� denotes almost
parallel straight lines, and �� is the dis-
tance between two parallel lines. The
�� and �� values are subsequently
classified by relevance functions,
which, based on the knowledge of the
field geometry, will filter out lines
whose relative orientation and/or dis-
tances do not match the actual field
relative orientation and/or distances.
The remaining lines are correlated in
Hough space with the geometric field
model to obtain the robot posture esti-
mate. An additional step must be taken
to disambiguate the robot orientation.
In the application to a soccer robot,
the ambiguity is the result of the soccer
field symmetry. The goal colors are
used to remove such ambiguity.

Currently, the algorithm has been
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implemented in C and runs on a PEN-
TIUM 233 megahertz with 64
megabytes of RAM in less than 0.5 sec-
onds. It is used by each of the ISOCROB

team robots to obtain their self-local-
ization during a game after either a
predetermined timeout has expired, or
more than a predetermined number of
bumps were sensed by the robot (fig-
ure 15). The algorithm is part of each
robot’s navigation system, but it is also
used by the robot to share information
with its teammates regarding team
postures and ball location. The naviga-
tion system includes a guidance-con-
trol algorithm that relies on odometry
most of the time, but odometry is reset
whenever the self-localization algo-
rithm runs.

A similar method was proposed by
Iocchi and Iocchi and Nardi (2000) for
soccer robots too. Their method also
matches the observed field lines with a
2D field model in the Hough space.
However, because only a single frontal
camera is used, their approach consid-
ers lines detected locally, rather than
globally, and requires odometry to
remove ambiguities. The AGILO team
(Schmitt et al. 2000) also proposes a
vision-based approach to the self-
localization problem. A single frontal
camera is used to match a 3D geomet-
ric model of the field with the border
lines and goals line segments in the
acquired image. Only a partial field
view is used in this method. Several
teams use a vision-based omnidirec-
tional hardware system but only for
tracking the ball and the markings on
opposing robots (Machado et al. 2000;
Nakamura et al. 2000; Pagello et al.
2000).

Conclusion
RoboCup-2000 showed many ad-
vances, both in the existing competi-
tion leagues and in the introduction of
several new events. The participation
and attendance were greater than ever,
with about 500 participants and more
than 5000 spectators.

RoboCup-2001 is going to be held
in the United States for the first time.
It will run from 2 August through 10
August 2001 in Seattle, colocated with
the Seventeenth International Joint
Conference on Artificial Intelligence
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