
■ We are interested in solving real-world planning
problems and, to that end, argue for the use of
domain knowledge in planning. We believe that
the field must develop methods capable of using
rich knowledge models to make planning tools
useful for complex problems. We discuss the suit-
ability of current planning paradigms for solving
these problems. In particular, we compare knowl-
edge-rich approaches such as hierarchical task net-
work planning to minimal-knowledge methods
such as STRIPS-based planners and disjunctive plan-
ners. We argue that the former methods have
advantages such as scalability, expressiveness, con-
tinuous plan modification during execution, and
the ability to interact with humans. However,
these planners also have limitations, such as
requiring complete domain models and failing to
model uncertainty, that often make them inade-
quate for real-world problems.

In this article, we define the terms knowledge-based
and primitive-action planning and argue for the use
of knowledge-based planning as a paradigm for
solving real-world problems. We next summarize
some of the characteristics of real-world problems
that we are interested in addressing. Several cur-
rent real-world planning applications are de-
scribed, focusing on the ways in which knowledge
is brought to bear on the planning problem. We
describe some existing knowledge-based approach-
es and then discuss additional capabilities, beyond
those available in existing systems, that are need-
ed. Finally, we draw an analogy from the current
focus of the planning community on disjunctive
planners to the experiences of the machine learn-
ing community over the past decade.

We are interested in solving real-world
planning problems and believe that
doing so will require techniques that

are more expressive and provide a wider range
of capabilities than current planning systems.
Real-world problems have been found to

require more expressive representations and
capabilities than are needed for the standard
set of benchmark planning problems (blocks
world, towers of Hanoi, simplified logistics,
and the like) or for the problems used in the
1998 and 2000 Artificial Intelligence Planning
and Scheduling (AIPS) Conference planning
competitions (Bacchus et al. 2000; Long 2000;
McDermott 2000).

Past research in AI planning can roughly be
divided into two camps: (1) systems that take
a minimalist approach to domain knowledge
and (2) systems that focus on leveraging as
much domain knowledge as possible. Tech-
niques in the first set generally restrict them-
selves to domain models consisting of STRIPS-
style descriptions of primitive actions. We refer
to these methods in the first set as primitive-
action planning techniques because they con-
struct plans from descriptions of the actions
that can appear in the final plan.1 A currently
popular form of primitive-action planning is
disjunctive planning, which uses primitive
action descriptions to encode and solve propo-
sitional representations of planning problems.
(A recent survey of current directions in AI
planning [Weld 1999] focuses almost exclu-
sively on this style of planning.)

Techniques in the second set are based on a
philosophy of using whatever domain knowl-
edge is available to solve the planning prob-
lem. These systems are characterized by the use
of multiple types of domain knowledge and
complex domain models to support their rea-
soning processes. This knowledge can include
task and goal structures, additional con-
straints, search-control techniques, and inter-
action with humans when necessary to make
use of their expertise. We refer to these tech-
niques as knowledge-based planning methods.

Articles

SPRING 2001 99

A Call for Knowledge-
Based Planning

David E. Wilkins and Marie desJardins

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2001 / $2.00

AI Magazine Volume 22 Number 1 (2001) (© AAAI)

We describe some real-world planning prob-
lems that have been addressed by current
knowledge-based planners. We then discuss
how multiple types of knowledge and capabil-
ity are exploited in existing knowledge-based
planners. However, current knowledge-based
techniques represent only a small step in the
direction of the level of knowledge-based plan-
ning that we envision. We next argue that
achieving goal-directed behavior in a complex,
dynamic world will require reasoning about
the consequences of future actions, which, in
turn, will entail the use of much more knowl-
edge and richer knowledge models than those
used in today’s knowledge-based planners. We
discuss forms of knowledge that current knowl-
edge-based planners do not use and give some
examples of problems that today’s planners are
not able to solve. Finally, we draw some lessons
from the history of the machine learning
research community that are analogous to the
current trends in the planning community.

Characteristics of Real-World
Planning Problems

Real-world problems have been found by many
researchers to require more expressive repre-
sentations and capabilities than those provided
by current AI planning systems. Chien et al.
(1996) conclude from their experience with
multiple National Aeronautics and Space Ad-
ministration (NASA) applications that current
plan representations are impoverished. They
discuss the requirements of an operational con-
text in which users must interact with the sys-
tem and must be able to understand and mod-
ify the plans produced by the planner. Our
experience with military and oil-spill–planning
applications supports these conclusions. Here,
we describe some of the specific capabilities
that are needed to solve real-world problems:
numeric reasoning, concurrent actions, con-
text-dependent effects, interaction with users,
execution monitoring, replanning, and scala-
bility.

Reasoning with numbers is essential in every
realistic domain that we have studied. Com-
mon needs for numbers are time, sharable
resources having a specific capacity, continu-
ous resources available in limited quantities,
and goals of accumulation. An example of
goals of accumulation is obtaining a certain
quantity of resource that must be assembled
from smaller aggregations, such as getting
enough boom from several warehouses to con-
tain an oil spill or enough soldiers or equip-
ment for a military operation. In practice, dis-
junctive planners have difficulty handling

In this article, we argue that to scale up to
complex problems, multiple types of knowl-
edge must be explicitly encoded in understand-
able structures, and planning algorithms must
be able to use this explicit knowledge effective-
ly.

One possible approach to achieving this
knowledge encoding would be to augment
primitive-action planners with additional
knowledge. Indeed, researchers have begun to
investigate how these systems can be augment-
ed with domain-specific, hand-encoded con-
trol rules (see sidebar). However, only certain
types of knowledge can be captured in these
rules, and they are difficult and time consum-
ing to construct. The result is that this
approach to encoding knowledge is not scal-
able to large, complex problems. It seems
unlikely that hand-coded control rules will be
a sufficient approach to knowledge modeling
for the types of problem that arise in the real
world.

Knowledge-based planning methods have
limitations as well. On the one hand, current
knowledge-based methods are not knowledge
based enough: As we discuss later in the article,
they do not incorporate many types of knowl-
edge that are important for real-world prob-
lems. On the other hand, they are too knowl-
edge based for some problems: The inference
entailed by modeling many aspects of the plan-
ning problem can be expensive computational-
ly, with the result that knowledge-based meth-
ods might not be the most efficient approach
to solving certain types of constraint-satisfac-
tion subproblem within a larger planning
problem. Therefore, we believe that solving
large, complex problems will require both the
development of new knowledge-based meth-
ods and the integration of primitive-action
methods with these new techniques.

Knowledge-based planning and primitive-
action planning represent two ends of a con-
tinuum: A planner might be more or less
knowledge based depending on what the range
of knowledge is that it uses and how effectively
it uses it. Integrated systems might ultimately
provide the best of both worlds. However, we
argue that knowledge-based methods can solve
problems that primitive-action methods can-
not because of the greater expressivity and
more natural representations of knowledge-
based planning.

The remainder of this article is organized as
follows: We first describe some common char-
acteristics of real-world planning problems
that are not solvable by current primitive-
action methods, and we argue that these meth-
ods are unlikely to extend to these problems.

… to scale up
to complex

problems,
multiple types
of knowledge

must be
explicitly

encoded in
under-

standable
structures …

Articles

100 AI MAGAZINE

problems involving reasoning about numbers.2

In most existing non–hierarchical task network
(HTN) AI planners, the need for numeric rea-
soning is reduced by assuming that sharable
resources have infinite capacity and that con-
tinuous resources are unlimited (Srivastava and
Kambhampati 1999).

Realistic domains can have dozens of (per-
haps necessarily) parallel activities as activities
of various agents are coordinated. Parallelism
can cause computational problems for disjunc-
tive planners, and some systems produce only
sequential plans.

Realistic domains often have numerous con-
text-dependent effects, which can cause an
exponential explosion in the number of STRIPS

operators needed. This problem is being
addressed to some extent in disjunctive plan-
ners. Extensions to the GRAPHPLAN algorithm to
handle conditional effects are given in Kamb-
hampati, Parker, and Lambrecht (1997) and
Guere and Alami (1999), but applications of
GRAPHPLAN are already limited by computation-
al efficiency, and neither paper discusses the
time or space complexity of the algorithms.
Other approaches have also been tried, perhaps
the most promising being factored expansion, in
which an action with conditional effects is split
into new actions called components, one for
each conditional effect. This approach appears
to outperform a straightforward splitting of
each action into (a possibly exponential num-
ber of) STRIPS operators, at least on large prob-
lems. The cost is added complexity in the plan-
ning algorithms involving tricky extensions
(Anderson, Smith, and Weld 1998).

Interacting with people is a critical aspect of
real-world planning. Realistic problems are
embedded in the world and generally do not
have precisely defined boundaries or evalua-
tion functions. Thus, most interesting plan-
ning problems will be difficult or impossible to
model fully. For example, criteria for plan eval-
uation often cannot be quantified, such as
when the political consequences of a military
or media action are crucial. It is also hard to
specify when a situation warrants breaking
rules or ignoring certain information, yet such
situations are common in real life. In such cas-
es, a human user must be able to guide the
planner and evaluate the plans produced,
allowing the planning system to take advan-
tage of the user’s expertise.

In the real world, the goal of planning is not
simply to build the plan but to use it to control
actions in the world. Therefore, realistic plan-
ning systems must support execution monitor-
ing and continuous plan modification during
execution. Figure 1 shows a possible architec-

ture for a system incorporating both planning
and execution. The intention is not to promote
this architecture but to show some of the added
complication introduced by executing a plan.
The planner and executor have specialized
knowledge bases to support their respective
roles and must also share common ontologies,
models of actions, and knowledge about the
world. The executor requires a rich model of
the relationships among tasks in the plan and
of possible outcomes and contingencies. The
executor generally operates at a faster tempo
than the planner and attempts to provide effec-
tive responses to changing conditions, which
requires rapid replanning and possibly
responding to time-critical situations without
invoking the planner (perhaps using proce-
dures from the monitoring knowledge).

The plan initializer-synchronizer in figure 1
prepares plans for execution. This module can
generate plan-specific monitors to efficiently
monitor conditions over certain intervals. It
must also synchronize the transfer of control
from the original plan to a newly modified ver-
sion of the plan, even though the original plan
has continued execution during the replan-
ning process. In many domains, large quanti-
ties of information about the world state (for
example, from sensor networks) are constantly
arriving, but only small portions might affect
the current plan. The information manager fil-
ters the incoming data, passing the relevant
parts to the execution manager.

Because there is no dependency structure in
the disjunctive planner’s plans, monitoring
them is difficult. In addition, the disjunctive
planning approach is brittle in the face of
changing problem requirements, and any
change in the environment can result in the
planning system having to start from scratch.
Because knowledge-based planners record
dependencies and goal structure, knowledge-
based replanning techniques can often modify
an executing plan in the face of new require-
ments (Myers 1999; Wilkins et al. 1995).

Finally, realistic problems involve enormous
search spaces, so scalability is essential. Vast
strides have been made in the size of problems
solved by disjunctive planners, such as solving
instances with 1016 to 1019 configurations.
However, these large disjunctive planning
problems are still representations of toy prob-
lems, such as a logistics problem with 9 pack-
ages, 5 trucks, 2 airplanes, and 15 locations
(Kautz and Selman 1998). Simply increasing
the number of locations to a realistic number
will make even these toy problems unsolvable.
In contrast, HTN planners can generate plans
in domains with thousands of objects and hun-

Interacting
with people
is a critical
aspect of
real-world
planning.

Articles

SPRING 2001 101

ness requirements that have carefully been
defined and validated by human experts. A
description of such testing and the issues
involved can be found in Smith, Feather, and
Muscettola (2000).

Oil-Spill Crisis Response Planning
Oil-spill incident response is a race against time
to contain or remove oil before it damages the
shore. Planning begins by entering the specifics
of a spill incident—location, time of day, spill
rate, and so on—and then forecasting (using
legacy systems) the spill trajectory, considering
the uncertainty in its spreading caused by wind
and waves. This forecast determines which
environmentally sensitive shore sectors that
the oil will hit and when.

The spill response configuration system
(SRCS) helps the United States Coast Guard
(USCG) estimate the adequacy of the amounts
and locations of cleanup equipment in its
coastal oil-spill incident response plans (Agosta
and Wilkins 1996). SRCS determines adequacy
by building plans that meet a range of spill sce-
narios and then evaluating the plans. Previous
approaches used approximate rules to estimate
equipment needs. By automating the planning
process, SRCS enables users to plan and evalu-

dreds or thousands of actions (Wilkins and
Myers 1998; Wilkins and Desimone 1994).

Real-World Applications
We describe several existing planning applica-
tions that include many of the characteristics
of hard real-world problems that we are inter-
ested in exploring. These applications use a
variety of knowledge-based planning tech-
niques and represent a starting point for
research into real-world planning methods.
They also highlight the need for further work
in many of the areas we have discussed. Anoth-
er survey of real-world planning applications
can be found in Knoblock (1996).

Unlike toy problems, real-world problems
generally cannot be modeled completely, par-
ticularly when plans are executed in the real
world. Therefore, validating the correctness of
a planner raises many challenging issues. The
NASA domains described in this section have
been fielded, and the planners have been sub-
jected to extensive validation procedures. Gen-
erally, validation involves empirical tests for
carefully selected test cases (against simulators,
test harnesses, or the real world). Results can be
checked automatically against a set of correct-

Articles

102 AI MAGAZINE

 Planner

 Planner

Information
Manager

Executor

Network: collaborators, sensors, information sources, …

Cue: (TEST (ready unit1))ACT2
Cue:

Answer query
ACT1Planning

Knowledge

Executor
Domain Knowledge

Cue: (TEST (ready unit1))ACT2
Cue:

Answer query
ACT1Monitoring

KnowledgePlan
Initializer/

Synchronizer

Executable
Plan

Requests, updates

Executable plan
Monitors

 Requests
Notifications

Updates

Partial plan
Resources
Guidance

Executable
Plan

Execution
Manager

Common: ontology,
action model, …

Situation Updates
Requests
Plans

Planner
Domain Knowledge

Common: ontology,
action model, …

Figure 1. Possible Architecture for a System That Incorporates Both Planning and Execution.
The planner sends plans to the executor, which monitors the executing plan and sends requests and situation updates to the planner.

ate a range of detailed responses to a range of
spill scenarios, enabling the USCG to more
accurately estimate its needs.

The planner works from the spill-trajectory
forecast together with geographic information
such as the sectors into which the region is
divided and the USCG requirements for protec-
tion of these areas. In addition, the planner
works with a database of the quantities and
capabilities of available equipment and
resources, which are often located over a large
geographic area with varying time and trans-
portation costs.

SRCS integrates simulation, evaluation, map
display, and scheduling tools with SIPE-2. The
planner, which uses a knowledge base of oil-
spill–response HTN operators, and the sched-
uler work interactively with the user to gener-
ate a plan consisting of equipment deployment
and employment actions. The actions in this
plan must satisfy constraints determined by
the projected oil-dispersal pattern, equipment
cleanup capabilities and transport times, and
environmental protection requirements. SRCS
is intended to be used for configuration plan-
ning—advance planning to prepare for likely
incidents—rather than for real-time planning
as an incident unfolds.

This application requires extensive use of
metric (numeric) goals, primarily resource and
temporal reasoning. The temporal reasoning
involves deadlines and concurrency. One
important use of resource reasoning is the ac-
cumulation of a certain level of some resource
at a certain place and time. An example is a
goal to provide several thousand feet of oil-
containment boom to protect a sensitive area.
This goal must typically be met by transporting
several shipments of boom from different loca-
tions around the state or country.

Most of the user’s interaction with SRCS is
mediated by the map interface, implemented
in a commercial geographic information sys-
tem. Thus, the user can immediately see both
what the extent of the spill is and where
resources are used at various times.

Plans are evaluated on the degree to which
they achieve the overall objective of cleaning
up the spilled oil. In many spills, much of the
oil will escape, no matter how much equip-
ment is available, because of the difficulty of
operations and speed of spread because of the
weather. Furthermore, for any spill, SRCS can
generate many possible plans, and users can
partially or completely sacrifice a sector
cleanup goal if they believe equipment that
would have been assigned to a sector better
serves the overall goals by being used else-
where.

Because there are many feasible plans that
vary widely in their degree of success, SRCS
includes an evaluation model for finding good
plans. The plan is used as an input to this mod-
el, along with the projected flows determined
by the trajectory model. The evaluation model
accounts for the quantities of oil contained and
removed in each sector for each period. From
this accounting, it can calculate measures of
plan merit, such as the final fraction of oil
removed by the plan.

Space Applications
Several planning domain models have been
developed by NASA researchers for studying a
range of space applications of AI planning sys-
tems.3 Three of these domains are described
here; they highlight the need for planning sys-
tems that can represent and reason about com-
plex activities, resources, and interactions.

DATA-CHASER

DATA-CHASER flew aboard the Space Shuttle Dis-
covery on mission STS-85 as a hitchhiker pay-
load with the international extreme ultraviolet
hitchhiker bridge (IEH-2) in August 1997 (fig-
ure 2). This mission used automated planning
and scheduling techniques to decrease mission
commanding effort by 80 percent and increase
science return (that is, efficiency of instrument
utilization) by 40 percent (compared to manual
sequence generation) (Chien et al. 1999).

DATA-CHASER consisted of three coaligned
instruments that collected data in the far and
extreme ultraviolet wavelengths. These instru-
ments obtained images of the sun that correlat-
ed solar activity with radiation flux, associating

Articles

SPRING 2001 103

Figure 2. The Space Shuttle Discovery Lands at Kennedy Space Center after
Successfully Completing Mission STS-85.

Photo by National Aeronautics and Space Administration (taken by Bionetics).
Used with permission.

this flux with individual active regions of the
sun. The irradiance data could be sent to the
ground system using low-rate (available 90 per-
cent of the time, at 1200 bits a second) or medi-
um-rate (available when scheduled, at 200 kilo-
bits a second) transmission. The payload was
capable of receiving commands sent from the
ground system when uplink was available. The
DATA module contained the science instru-
ments themselves. The CHASER module (figure
3) contained the planning and scheduling sys-
tem that managed the shuttle resources to
accomplish the mission successfully.

Shuttle resources are shared by multiple mis-
sions, and their availability is subject to change
every 12 hours (the frequency at which NASA
changes shuttle flight plans). These resources
include access to uplink and downlink chan-
nels and time windows when the instruments
are allowed to operate. In addition, DATA-CHASER

had thermal constraints that limited the dura-
tion of payload exposure to the sun and envi-
ronmental constraints that restricted the state
and activities of the payload when shuttle con-
tamination events occurred. Therefore, DATA-
CHASER’s planner needed to interoperate with
the shuttle flight plan to enforce numerous
resource constraints.

DATA-CHASER posed a challenge for automated
scheduling techniques because of its complex
resource- and power-management require-
ments. The scheduler needed to identify an
optimal data-collection schedule while it
adhered to the resource constraints. In addi-
tion, scientists wanted to be able to perform
dynamic scheduling during the mission. For
example, the summary data might indicate the
presence of a solar flare. If a solar flare occurred,
scientists could change their requirements and
goals, for example, raising the priority on cer-
tain instruments or providing longer integra-
tion times. These new goals could require a dif-
ferent schedule of activities.

Citizen Explorer
The Citizen Explorer (CX-1) satellite project is a
small satellite built and operated by the Col-
orado Space Grant Consortium at the Universi-
ty of Colorado at Boulder. CX-1 was scheduled
to launch as a secondary payload aboard a
Delta-II launch vehicle in November 2000 but
has been postponed. The science mission of
CX-1 will focus on obtaining geographic cover-
age of ozone, aerosols, and ultraviolet radiation
measurements using both on-board and
ground-based science instruments. CX-1 mis-
sion operations will include ground-based
automated planning using the ASPEN knowl-
edge-based planning system (Willis, Rabideau,
and Wilklow 1999).

Articles

104 AI MAGAZINE

Figure 3. The CHASER Module of the DATA-CHASER Planning and Scheduling
System That Flew aboard the Space Shuttle Discovery in August 1997.

Photo by National Aeronautics and Space Administration. Used with permission.

CX-1 operations require managing resources
such as the spectrophotometer (Speck) science
instrument, battery power, solar array power,
and the solid-state disk. There are also several
data-collection modes that must be scheduled
based on the spacecraft’s orbital location. A
typical daily CX-1 operations scenario includes
Speck data collection, engineering health and
status data collection, data downlink to opera-
tions ground stations and participating
schools, command-set uplink, updates to the
on-board executive control database, and
updates to ephemeris data. Interactions be-
tween limited power availability and limited
downlink opportunities (because of ground-
station placement, orbital constraints, on-
board memory limitations, and the transmis-
sion power costs) make mission operations a
complex optimization problem.

Antarctic Mapping Mission
The Modified Antarctic Mapping Mission
(MASS) used RadarSAT, a synthetic aperture
radar (SAR) satellite operated by the Canadian
Space Agency, to gather interferometry infor-
mation covering the Antarctic continent from
September to December 2000. The ASPEN auto-
mated planner (Chien et al. 2000) was used to
develop and verify the MAMM mission plan,
resulting in a reduction from one work year of
planning effort in the first Antarctic Mapping
Mission to around eight work weeks for
MAMM. The mission plan was executed flaw-
lessly aboard RadarSAT during the operation.

RadarSAT is in a 100-minute polar orbit
around the earth. One mapping cycle, consist-
ing of 356 orbits, takes about 24 days and must
end by positioning RadarSAT in the same posi-
tion and trajectory as at the start of the cycle.
During each of its three mapping cycles,
RadarSAT collected images of the entire conti-
nent of Antarctica, with significant redundan-
cy around interesting regions, such as dynamic
areas around the coastline and fast-moving ice
flows. These three sets of images were used to
construct interferometry data, which will allow
scientists to determine the surface flow of the
continent.

The downlink scheduling problem was com-
plex and highly constrained. Five ground sta-
tions were used to downlink information from
RadarSAT. There are two methods of capturing
an image: (1) real time, where the image is cap-
tured and simultaneously downlinked to a
receiving station, and (2) recorded, where the
image is captured on the on-board recorder
(OBR). The OBR has a capacity of approx-
imately 916 seconds. Data on the OBR must be
downlinked to a receiving station when
RadarSAT is visible from the station. Each

ground station is only available for downlink-
ing for as many as 15 minutes an orbit. The
only station capable of receiving real-time
downlinks from MAMM was MacMurdo
Ground Station, which is located in Antarctica.
Furthermore, the availability of each downlink-
ing station could change; for example, if Mac-
Murdo were shut down by weather, all imaging
had to be recorded and downlinked to other
stations.

Many additional operational constraints
complicated the scheduling problem. For
example, real-time imaging and OBR downlink
can occur simultaneously, but real-time imag-
ing and recording images to the OBR cannot.
The SAR imager can be on for at most 32 min-
utes an orbit. Each imaging activity has to be at
least one minute long, including the eight-sec-
ond intervals before and after the imaging. To
use the OBR, there is a 13-second spin-up time
and a 2.5-second spin-down time, although if
two images occur less than 30 seconds apart,
the OBR continues to record. The OBR cannot
play back until it has recorded all 916 seconds,
and then it must play the entire tape back with
no pause. There are also delays associated with
switching from recording to playback mode,
connecting to and disconnecting from a
ground receiver, and calibrating this connec-
tion between transmissions. In the final sched-
ule, there were approximately 819 imaging
activities a cycle, of which one-third were
recorded, and two-thirds were real time.

The most challenging planning issue for
MAMM was to ensure that all the images were
captured within the operational constraints
and that all the data were downlinked success-
fully within the downlink constraints. Because
the availability of resources could change dur-
ing the cycle, rapid replanning in the event of
such changes was critical.

Military Air-Campaign Planning
In air-campaign planning, a human planner is
typically given a set of high-level political and
military goals (for example, protect U.S. citi-
zens and forces from hostile attack) and refines
the goals that are attainable (wholly or in part)
by the employment of air power into more spe-
cific goals. This process iterates until each goal
is directly attainable by the execution of a mis-
sion. A group of identical aircraft acting in con-
cert performs a mission. Each mission consists
of a mission type, a time and a place, a type of
aircraft, munitions, and the number of sorties
required to execute the mission. Thus, a mis-
sion might be expressed as four F-15Cs to
escort strike package P to target T on day D + 1.
Mission planning details such as flight path

Articles

SPRING 2001 105

plex and has not been automated. Some simple
measures can be computed such as whether
deadlines are met and what percentage of
desired targets are attacked given available
resources. In MPA, the air campaign simulator
(Cohen, Anderson, and Westbrook 1996) from
the University of Massachusetts provided
many Monte Carlo simulations of plans, and
the results were presented to the user through
visualization tools. Many variables could be
viewed, including levels of destruction of the
targets and attrition of assets for both friend
and foe. However, only humans can evaluate
some of the more complex effects such as polit-
ical costs and benefits.

Using Knowledge in
Knowledge-Based Planning

We describe some of the uses made of domain
knowledge in current knowledge-based plan-
ners. These features can be candidates for
extending non–knowledge-based planners,
and in some cases, such extensions are current-
ly being explored. Kautz and Selman (1998)
identify three kinds of planning knowledge: (1)
knowledge about the domain, (2) knowledge
about good plans, and (3) explicit search-con-
trol knowledge. Knowledge-based planners are
also concerned with other types of knowledge,
such as knowledge about interacting with the
user, knowledge about a user’s preferences, and
knowledge about plan repair during execution
(see the discussion of expressiveness later).

Knowledge-Based Planning
Our intent is not to provide a comprehensive
survey of knowledge-based planning approach-
es in this article, although they are sometimes
ignored in other planning surveys (Weld 1999).
Instead, we mention several examples of
knowledge-based planners and draw our exam-
ples of knowledge use from them. HTN plan-
ning is the most studied and well understood
of the knowledge-based methods. The best-
known knowledge-intensive applications of
HTN are SIPE-2 and O-PLAN.

Smith, Frank, and Jonsson (2000) identified
a common framework that is emerging from
the NASA work: the use of interval representa-
tions for actions and propositions and con-
straint-satisfaction techniques for reasoning
about these intervals. They refer to this frame-
work as the constraint-based interval ap-
proach. Recent knowledge-based approaches
include OZONE, remote-agent experiment plan-
ner-scheduler (RAX-PS), and ASPEN. Each of these
is described briefly here.

OZONE (Becker and Smith 2000; Smith, Lassi-

and altitude profile are at a lower level of gran-
ularity and can be left until later in the plan-
ning process. Support missions, which include
refueling and reconnaissance, must be planned
because they must compete with combat mis-
sions for resources such as aircraft and fuel.

There are often multiple ways to refine goals
into subgoals. These refinements reflect the dif-
ferent strategies and tactics that are available.
Available options are constrained by the situa-
tion, which include local geography; the ene-
my’s characteristics and capabilities; restric-
tions imposed by political authority; and the
availability of aircraft, fuel, crews, and other
resources.

The multiagent planning architecture (MPA)
was used to demonstrate automated planning
capability within the air-campaign planning
domain (Wilkins and Myers 1998). This appli-
cation starts with a high-level military objec-
tive—achieve air superiority—and expands the
plan down to the level of individual missions
and their support missions. The planner works
from a knowledge base of planning operators
(encoded specifically for the planner), which
encode air-campaign tactics and strategy for
goals from achieving air superiority down to
mission-level goals. There are often multiple
ways to refine goals into subgoals. Thus, the
HTN operators at multiple abstraction levels
encode what it means to achieve air superiori-
ty, a concept that would be difficult to express
in primitive-action planners.

The planner has access to an extensive
knowledge base of available assets (including
aircraft and munitions), which was down-
loaded from existing military databases. Each
aircraft has a dozen or more properties that
affect its suitability for missions, such as speed,
range, crew requirements, and munitions.
Constraints on these properties appear in the
HTN operators. The planner also has access to
the results of the (human-conducted) intelli-
gence analysis of the situation, which the plan-
ning operators use to focus the planner on ene-
my strengths, weaknesses, and other salient
aspects of the situation.

The air-campaign planning application, like
oil-spill response, requires extensive use of
metric goals, such as deadlines, resource use,
and resource accumulation. Combat missions
and their support missions must compete for
use of pooled resources such as fuel, aircraft,
and munitions. Concurrency is important
because dozens or hundreds of missions must
all take place at the same time. Capacity analy-
sis is used to determine the number of missions
that a given pool of resources can support.

Evaluation of plans in this domain is com-

Articles

106 AI MAGAZINE

la, and Becker 1996), a planning and schedul-
ing tool kit, is centered on a knowledge-inten-
sive modeling of the problem domain. A model
is specified in terms of basic types of entity,
operation, resource, demand, and product.
OZONE provides knowledge-structuring primi-
tives for each of these, including several spe-
cialized resource classes. Operations can be
organized hierarchically to model processes at
different levels of detail.

ASPEN (Chien et al. 2000) automates planning
and scheduling for space mission operations. It
provides, among other capabilities, an expres-
sive constraint modeling language, a language
for representing plan preferences, constraint-
reasoning systems, and a graphic interface for
visualizing plans in mixed-initiative systems.
These capabilities are used to model many
forms of knowledge, including spacecraft oper-
ability constraints, flight rules, spacecraft hard-
ware models, science experiment goals, and
operations procedures. High-level activities can
be decomposed into lower-level activities using
ASPEN’s activity hierarchies.

RAX-PS (Jonsson et al. 2000) generates plans
that could safely be executed on the Deep Space
One spacecraft. The plans achieve high-level
goals that are provided as input to the planner
while they satisfy resource constraints and
complex flight safety rules. As in ASPEN, large
amounts of knowledge are encoded about
spacecraft resources, constraints, and proce-
dures. RAX-PS also provides a rule language for
the search controller that can be used to help
avoid inefficient searches. RAX-PS incorporates
specialized knowledge about the development
of plan fragments from planning experts,
which are generally legacy software systems or
other specialized software.

SIPE-2 (Wilkins 1990; Wilkins et al. 1995) is a
domain-independent HTN planner that models
various types of domain knowledge. For exam-
ple, SIPE-2 includes languages to represent activ-
ities at multiple levels of abstraction (HTN oper-
ators, also known as methods or schemas),
knowledge about a user’s preferences (Myers
1996) (which are expressed as advice to the
planner), search-control knowledge, and know-
ledge about plan repair during execution.
Example applications include containing oil
spills (Agosta and Wilkins 1996), planning air
campaigns for the United States Air Force
(Wilkins and Myers 1998; Lee and Wilkins
1996), and joint military operations planning
(Wilkins and Desimone 1994). In the latter
applications, the domain knowledge includes
100 to 200 operators, around 500 objects with
15 to 20 properties to an object (which are men-
tioned in constraints), and a few thousand ini-

tial predicate instances. Plans can include as
many as several hundred actions—several thou-
sand if all abstraction levels are counted—usu-
ally having numerous parallel activities.

O-PLAN (Tate, Drabble, and Kirby 1994) is a
domain-independent HTN planner with the
ability to encode extensive domain knowledge,
including temporal constraints, object-variable
constraints, resource constraints, goal struc-
ture, and condition types. Plug-in constraint
managers can be used to extend or modify sys-
tem capabilities. O-PLAN’s agenda mechanism
provides flexible control of the planning and
execution process. Applications include space
station assembly and the control of a simple
satellite.

In the following subsections, we mention
features of these knowledge-based planning
systems that are good candidates for extending
primitive-action planners, particularly disjunc-
tive planning techniques.

Expressiveness
It has been known for some time that HTN for-
malisms are more expressive than the STRIPS for-
malism used by most primitive-action plan-
ners, roughly analogous to the additional
expressivity of context-free grammars over
right-linear (regular) grammars (Erol, Hendler,
and Nau 1994a).

In practice, the gap in expressiveness is wide.
In the problems addressed by current knowl-
edge-based planners, actions can occur concur-
rently and have different durations. Goals can
include temporal deadlines and constraints,
maintenance conditions, and accumulation of
metric quantities of some entity. Goals and
actions can be at multiple levels of abstraction.
Metric resource constraints must be satisfied.
All these aspects are problematic in the STRIPS

formalism.

The knowledge-based approaches men-
tioned provide languages for expressing the
types of goal and constraint mentioned earlier,
making them suitable for complex domains.
Figure 4 shows a hypothetical knowledge-
based planning system, illustrating the range of
domain knowledge, input, and output that can
be required for planning in real-world
domains. General domain knowledge includes
knowledge about actions, tactics, and strate-
gies, at multiple abstraction levels, as well as
situation assessment information, knowledge
about resources, world knowledge, and so on.
Problem-specific input for a particular plan-
ning session can include goals and assump-
tions, constraints, additional resources that can
be brought to bear, and advice or guidance
from the user.

Articles

SPRING 2001 107

defend goal can be generated for every current-
ly known threat.

All the knowledge-based planners mentioned
can reason about numbers, a capability that is
crucial in nearly all their applications. For
example, a planning variable can be con-
strained to refer to a runway with length greater
than 9000 feet, multiple-capacity resources that
have a specific capacity, and continuous
resources that are available in limited quanti-
ties. In many application domains, it is neces-
sary to accumulate a certain quantity of some
resource or achieve a certain level of effect, such
as obtaining a sufficient length of boom to sur-
round an oil spill. Such goals are not accom-
plished by a single action; rather, several (often
concurrent) actions contribute to the accumu-
lation. For example, SIPE-2 determines when a
set of actions (that individually produce some
amount of the resource in question) together
achieve an accumulation goal.

Temporal reasoning is important in nearly

Encoding activities at multiple abstraction
levels is crucial in many complex problems.
The higher levels can model various solution
methods and constraints on the goal and plan
structure, which can be required by the
domain or desired for efficient search. The
high-level goals in knowledge-based planners
can only be expressed in terms of primitive
actions as disjunctions of thousand or millions
of possible final states (corresponding to all
possible plans that achieve the high-level goal).
Multiple levels can be necessary for user inter-
action or to support different planning interac-
tions for different levels of management. In
time-critical domains, multiple abstraction lev-
els might be required to quickly produce a plan
within the available time. ASPEN, OZONE, O-PLAN,
and SIPE-2 all support hierarchical descriptions
at multiple abstraction levels.

SIPE-2 operators can dynamically generate a
set of goals at planning time, a capability that
has been extensively used. For example, a

Articles

108 AI MAGAZINE

Planning
Knowledge

Base

Domain Knowledge Knowledge-based
Planner

Planning
Goals

Key
Assumptions

Operational
Constraints

Additional
Resources

Advice,
Preferences

Problem-specific
input

•
•
•

•
•
•

Textual Trace of
Planning Actions

Network Display

Map Display

•••

Resource
Histogram

Timeline Display

•
•
•

Visualization of
Simulation Results

•
••

Evaluation/Simulation
Knowledge

Execution
Policies

Standard
Operating
Procedures

Constraints

World Knowledge
• Physics
• Locations
• Capabilities …

Resources

Situation
Assessment

Multilevel Actions
Tactics, Strategies

Figure 4. Potential Sources of Knowledge and Modes of Interaction for a Hypothetical Knowledge-Based Planning System.

all complex problems. All the knowledge-based
planners mentioned here have temporal con-
straint reasoners. In the HTN planners, they are
plug-in modules that can be replaced by exter-
nal temporal reasoners. For example, SIPE-2 has
two different modes for reasoning about time.
The most general allows specification of any of
the 13 Allen relations between any two nodes.
The temporal constraints are solved separately
from the other constraints by passing them to
TACHYON (Arthur and Stillman 1992).

Situation-dependent effects of actions are
deduced by a causal theory in SIPE-2 but not
supported by O-PLAN. Such effects have proven
their use in practice—without them, the num-
ber of operators can grow exponentially in
complex domains. As mentioned earlier, Smith
and Weld have developed factored expansion
to address this problem. Correcting an error in
previous publications, SIPE-2 does recalculate
these deductions (and always has) when new
actions or ordering links are added to the plan
before the action in question.

Finally, calls can be made to planning
experts, which are specialized software mod-
ules, including legacy software. RAX-PS uses such
experts in the development of plan fragments.
In SIPE-2, functions on planning variables can
compute an instantiation (for example, the
duration of a flight), and procedural attach-
ment on predicates can compute whether a
condition is true. These techniques allow
encoding of knowledge in arbitrary domain-
specific Lisp code for knowledge that cannot
easily be modeled in the planner’s formalism
and for sophisticated numeric calculations.

Correctness
Erol, Handler, and Nau (1994b) gave a formal
definition of HTN planning and also analyzed
its complexity (1994a). Since then, many HTN
planners have been proven correct and com-
plete (for example, SHOP [Nau et al. 1999]).
Planning and execution in real-world domains
generally cannot be modeled completely.
Although particular properties of a system can
formally be verified, system validation must
often rely on empirical methods, which raises
many challenging issues (Smith, Feather, and
Muscettola 2000). Defining evaluation criteria
and correctness requirements for empirical
tests is another type of knowledge that must be
specified.

User Interaction
In many real-world domains, plans and actions
have far-reaching effects, not all of which are
modeled within the planner’s formalism. For
example, political consequences of actions can

be important in choosing a plan but difficult or
impossible to model formally. Thus, it is often
necessary to have an interactive planner that
allows a human expert to guide plan develop-
ment. In addition, experienced human plan-
ners can guide the search effectively and are
often reluctant to give control to an automated
system in any case.

Hierarchical knowledge like that used by
knowledge-based planners often models the
world in the same way that human users do,
using the same abstractions (generally provid-
ed by the human experts themselves). For
example, in the air-campaign planning do-
main, higher-level goals include achieving air
superiority and breaching the enemy’s air
defenses. Human users use these same abstrac-
tions and ontology, so they can naturally, for
example, advise the system on how to breach
air defenses or drill down to see how the air
defenses were breached in an effort to under-
stand the plan. This modeling approach
enables users to control and understand the
planning process and the resulting plans.
(Note, however, that current HTN planners still
leave much to be desired in terms of interactive
planning.) In contrast, disjunctive planning
approaches model the planning problem as
millions of conjunctive normal form expres-
sions, making it difficult for users even to
understand the planner’s reasoning process,
much less intervene to modify or guide it.

Because HTN plans and domain knowledge
can be complex, a powerful graphic user inter-
face (GUI) is essential. Without natural pictor-
ial representations of the knowledge and plans,
it would be nearly impossible for a human to
understand them. ASPEN, OZONE, O-PLAN, and
SIPE-2 all provide a GUI to aid in generating
plans, viewing complex plans, and following
and controlling the planning process. The GUI
can also be used to view information relevant
to planning decisions.

SIPE-2 provides hyperlinked descriptions of
plans and plan objects in a web server. Particu-
larly useful for visualizing the plan derivation
and structure is the ability to view a tree rooted
at the most abstract goals and selectively drill
down through abstraction levels for selected
goals (such as breaching air defenses). When
the plan contains thousands of nodes, selective
drill-down is often a user’s preferred method
for understanding it.

Several of the knowledge-based techniques
mentioned provide flexible and powerful inter-
active planners. For example, the user might be
able to interact with the planning process at
many levels of detail and can direct the plan-
ner to solve certain parts of the problem auto-

Articles

SPRING 2001 109

matically. Under interactive control in SIPE-2,
the user can determine (among other things)
when and how resources are allocated, which
operators to select, which goal to expand next,
how to instantiate planning variables, and how
to resolve conflicts (Wilkins 1999). The user
can also control or influence the plan-develop-
ment process using the ADVISABLE PLANNER

(Myers 1996), which allows users to direct the
planning process by providing high-level guid-
ance that influences the nature of the solutions
generated. Advice consists of task-specific prop-
erties of both the desired solution and the
problem-solving process to be used for a partic-
ular problem.

Constraints and Efficiency
It is sometimes argued that the knowledge used
by HTN planners is simply search-control
knowledge rather than part of the problem
statement. (We argued earlier that knowledge-
based planners encode much more than just
search-control knowledge.) However, if the
goal is to solve realistic planning problems,
then intelligent, principled search control that
takes advantage of knowledge about the
domain is precisely what is needed. This
knowledge can often be captured naturally and
efficiently in HTN operators, where much of
the context is implicit and therefore need not
be expressed or checked during each attempted
application.

OZONE, SIPE-2, and other systems represent
invariant object properties in a hierarchical
ontology, which describes the classes to which
an object belongs and allows for inheritance of
properties. The ontology encodes a large
amount of knowledge, and the planner can
reason more efficiently about this knowledge
because it knows that the relationships cannot
change as actions are performed.

O-PLAN and SIPE-2 have, for a long time, sepa-
rated various classes of constraints for efficien-
cy, for example, solving temporal constraints
and constraints on static attributes of objects
separately. O-PLAN pioneered the use of modu-
lar, specialized constraint solvers used at cer-
tain intervals. This separation of constraints is
an example of an HTN idea that has migrated
to disjunctive planners in recent work, show-
ing that the performance of disjunctive plan-
ners can be improved by separating out
resource reasoning to prevent thrashing (Sri-
vastava and Kambhampati 1999).

How soon to make commitments in the
search depends on the search strategy being
used and the problem being solved. SIPE-2 and
O-PLAN have developed techniques to exploit
the least-commitment approach (Myers and

Articles

110 AI MAGAZINE

Adding Knowledge to
Disjunctive Planners

Much of the effort of the planning community is currently focused
on improving the performance of disjunctive planners, which
embody a form of primitive-action planning. Kambhampati (1997)
defines disjunctive planners as planners that retain the current
plan set without splitting its components into different search
branches. This family of planners includes GRAPHPLAN (Blum and
Furst 1995), SATPLAN (Kautz and Selman 1996), and their deriva-
tives. These systems all use STRIPS-style planning knowledge to rep-
resent a planning problem and then transform the problem into a
propositional form that can be solved using efficient graph manip-
ulation or constraint-satisfaction techniques.

To impact realistic problems, we predict that disjunctive plan-
ners will have to incorporate the types of knowledge used by hier-
archical task network (HTN) planners as well as knowledge to over-
come the limitations of HTN approaches that we have discussed. It
is encouraging that this knowledge incorporation is already start-
ing to occur. For example, there is initial work on adding knowl-
edge about the temporal extent of actions to SATPLAN encodings
(Smith and Weld 1999) and encoding HTN method knowledge for
satisfiability solvers (Mali and Kambhampati 1998).

However, although HTN planners can generally make effective
use of additional knowledge, the same is not necessarily true of dis-
junctive planners. Additional knowledge encoded as axioms can
increase the size of the problem with redundant axioms and make
the problem harder to solve. Initial experiments indicate that
whether added knowledge helps or hurts can depend on the par-
ticular combination of knowledge, problem, and algorithm (Kautz
and Selman 1998). For example, the point of diminishing returns
from the addition of axioms would be sooner reached for stochas-
tic search than for systematic search (Kautz and Selman 1998).
Thus, the knowledge added to a disjunctive planner might have to
be chosen carefully for the problem being solved and the algo-
rithm being used.

Knowledge-based approaches are rightly criticized for the
expense of modeling a new domain. However, we conjecture that
building computationally efficient encodings for disjunctive plan-
ners of complex planning domains is no easier than building HTN
models. Many encoding issues are still under study, even for toy
domains (Brafman 1999; Kautz and Selman 1999; Mali and Kamb-
hampati 1998). Disjunctive planners often start with STRIPS-based
encodings, further restricting the types of action that can be encod-
ed and causing a possible exponential explosion in the number of
operators when context-dependent effects are not permitted.

Wilkins 1998; Tate, Drabble, and Kirby 1994;
Wilkins 1990). For example, in SIPE-2, con-
straints are placed on variables by domain
knowledge in the operators (for example, a par-
ticular truck must have a capacity greater than
100). Instantiations are not chosen until suffi-
cient constraints accumulate to identify a
unique acceptable value. (Early instantiation
might result in a poor choice and failure to find
a solution leading to a possible exploration of
a large search space.) Because uninstantiated
variables increase computational complexity,
domain-specific knowledge can be used to
require early instantiation of variables (by soft-
ware planning experts) at particular points in
the planning process. Human experts often
know when certain instantiations can be done
without adversely affecting solution quality
(Myers and Wilkins 1998). Thus, this knowl-
edge can improve performance without sacri-
ficing quality.

In some knowledge-based systems, predi-
cates can be declared as functional in certain
arguments, allowing a dramatic speedup,
which has been documented experimentally
(Myers and Wilkins 1998). Functional predi-
cates are of particular importance to reasoning
about locations in planning systems and have
proven valuable in nearly every application of
SIPE-2 as well as in procedural reasoning sys-
tems (Georgeff and Ingrand 1989).

HTN systems often rely on plan critics that
find conflicts or flaws in a plan. Plan critics can
be invoked after some number of plan modifi-
cations, rather than after every modification,
thus reducing computational costs during plan
expansion. Examples of plan critics include the
finding of resource conflicts, failed precondi-
tions, or unsatisfiable constraints. In SIPE-2,
domain knowledge can be used to increase or
decrease the frequency of plan-critic applica-
tion (Wilkins 1990).

Finally, OZONE, ASPEN, and O-PLAN include spe-
cialized resource classes. The system can effi-
ciently implement specialized reasoners for
these classes, instead of trying to represent, for
example, multiple-capacity resources in the
underlying planning formalism.

Knowledge beyond
Hierarchical Task Networks

Despite the power of HTN planning systems,
and their demonstrated ability to address real-
world planning problems, they have limita-
tions that make them inadequate for many
problems of interest. In particular, HTN plan-
ners (1) require complete (except for anticipat-
ed incompleteness) and certain knowledge

about the world; (2) model the effects of
actions as deterministic, fully understood out-
comes; (3) assume that the planner controls all
agents that cause changes in the world state;
(4) require significant effort in domain model-
ing and knowledge acquisition for complex
problems; (5) cannot perform or incorporate
complex or decision-theoretic evaluations of
plan quality; (6) ignore the qualification prob-
lem; (7) use simplistic frame-problem solutions
that prevent drawing the most appropriate
conclusions when contradictory (perceptual)
information arrives (Pollack 1998); (8) do not
consider risks and utilities; (9) do not use
knowledge and probabilities to handle uncer-
tainty; and (10) are brittle (might not work if
the problem changes slightly). These limita-
tions are shared by primitive-action planners,
although some of them, such as handling
uncertainty, are the subject of ongoing research
(Boutilier, Dean, and Hanks 1999; Onder and
Pollack 1999; Majercik and Littman 1998;
Smith and Weld 1998; Weld, Anderson, and
Smith 1998; Kushmerick, Hanks, and Weld
1994).

In addition to these limitations, planning
systems that could solve interesting problems
in a complex, dynamic world will need capabil-
ities that represent a fundamental shift in how
we think about planning problems. An ideal
system would be able to behave like humans
do in these sorts of environments; in particular,
it would have to exhibit creativity, devising
new actions that can solve a problem or short-
en a plan; use analogy to transfer solutions
from other problems; effectively interact with
humans to use their knowledge in decisions;
and behave intelligently in the face of conflict-
ing or incomplete information.

We believe that these capabilities will
require more knowledge, including back-
ground knowledge of what other domains are
and how the world works.

Erol, Handler, and Nau (1994b) showed that
if a domain is completely modeled, then an
HTN planner can provide a guarantee that the
plans it produces are correct with respect to
this domain model. However, for realistic
domains, evaluation criteria other than cor-
rectness and plan length will have to be fac-
tored in explicitly. Interacting effectively with
humans will be essential because we will never
model every possible issue that might affect a
planning decision. Humans often have evalua-
tion criteria that cannot be captured precisely
and have commonsense knowledge that allows
them to determine appropriate actions in
unusual situations that were unforeseen when
the domain was modeled. Plans that are pro-

An ideal
system would
exhibit
creativity, use
analogy,
[and] interact
with humans
to use their
knowledge in
decisions ….

Articles

SPRING 2001 111

vised learning algorithms. Despite these limita-
tions, however, it became the de facto standard
that papers submitted to the International
Conference on Machine Learning had to
include an evaluation on these benchmark
problems.

In some ways, these benchmarks, and the
emphasis on evaluation, were good for the
community: On the one hand, they forced
researchers to think about metrics and the
comparison of their systems to other systems,
and they provided a baseline of performance
against which researchers could test new ideas.
On the other hand, they tended to stifle
research that did not fit neatly into the prob-
lem space defined by the benchmark problems.
Application-oriented researchers reported that
it was difficult or impossible to get their papers
accepted to the leading machine learning con-
ferences (Provost and Kohavi 1998). Mean-
while, more and more papers appeared show-
ing minor tweaks and incremental
improvements to existing algorithms (but they
showed statistically significant improvements
on the benchmark algorithms!).

As a result, there are now many well-under-
stood and effective methods for propositional
supervised learning—and there has been much
less progress in other areas of machine learn-
ing, such as the incorporation of background
knowledge, feature engineering, relational
learning, interactive learning techniques, visu-
alization of learned knowledge, and complex
evaluation criteria.

Most recently, there has been an explosion
of interest in learning Bayesian networks.
Bayesian network learning and inference tech-
niques have appealing computational proper-
ties that are analogous to those of disjunctive
planning approaches: They efficiently capture
certain types of problem structure and signifi-
cantly speed up certain types of inference over
previous methods. However, like disjunctive
planning approaches, they use a propositional
representation and do not address many of the
other challenges posed by realistic learning
problems. As with disjunctive planning ap-
proaches, the rush of enthusiasm over Bayesian
network techniques has threatened to over-
shadow the fact that despite their computa-
tionally attractive properties, they still solve
only a small subproblem within the overall
field of machine learning.

Similarly, in the planning community, there
is a danger that by focusing too much atten-
tion and effort on disjunctive planning meth-
ods and the problems they solve, we risk losing
the ability to recognize other contributions
and advances. In particular, if the benchmark

duced should be evaluated in the same way
that plans produced by humans are evaluated,
for example, scoring performance against a
simulator or the real world or having human
experts evaluate the plans by hand.

Of course, not all interesting problems have
these characteristics, and in any given case, it
might be possible to formulate the problem in
such a way as to remove the need for these
capabilities. For example, in developing the
Burton planner, Williams and Nayak (1996)
used a purely propositional representation.
However, it seems unlikely that most interest-
ing problems will be amenable to such an
approach, and other NASA applications have
required richer representations (Chien et al.
1996).

All system types mentioned earlier (includ-
ing both disjunctive planners and the knowl-
edge-based planners mentioned) ignore the
qualification problem and have simplistic solu-
tions to the frame problem (Pollack 1998).
These issues must be addressed by future
knowledge-based planners. Among other prob-
lems with traditional planners, Pollack shows
that new perceptions that contradict old
assumptions cause difficulty. Pollack’s system
handles these problems more robustly,
although it does not currently appear scalable
to real-world problems. Not surprisingly, signif-
icantly more knowledge must be encoded,
such as knowledge about causation, defeasibil-
ity, and when causations can be “undercut.”

Lessons from Machine Learning
In every research community, there is an
ongoing tension between well-defined and
more ambitious problems. On the one hand,
if a field focuses on small, well-understood
problems, with well-defined algorithmic prop-
erties and evaluation metrics, then a set of
benchmark problems can be formulated to
facilitate formal and empirical analysis and
comparison of competing methods. On the
other hand, many of the interesting chal-
lenges posed by realistic applications have
broader implications and less well-understood
properties, and the problems are more diffi-
cult to define crisply and to evaluate.

Several years back, the machine learning
community established a repository of bench-
mark problems to evaluate machine learning
systems. Naturally, these problems all had
commonalities: Most used an attribute-vector
representation; most consisted of sets of
instances with no background knowledge. In
practice, they could be used only to evaluate
predictive accuracy on propositional, super-

Articles

112 AI MAGAZINE

of performance becomes solely how many
blocks our planners can stack, and how fast
they can do it, then it will become increasingly
difficult to recognize and learn from research
that performs well along other dimensions—or
that addresses problems that disjunctive plan-
ning systems overlook completely. As we dis-
cussed earlier, disjunctive planning researchers
within the planning community are starting to
look toward extending their systems to incor-
porate richer forms of knowledge. We applaud
this trend and hope that it will continue, but it
is not enough to simply broaden the uses of
disjunctive planning systems: We need to be
open to completely different approaches and
paradigms as well.

Although improving the speed of solving
problems we know how to formulate precisely
is a valuable research activity, so is continuing
to investigate problems that we do not yet
have a good handle on formulating or solving.
Results might be more difficult to achieve or
quantify for these latter problems, but it does
not mean we should not be working on them.

Conclusion
Ginsberg (1996) pointed out that the SATPLAN

approach is successful because it solves the
puzzle part of a problem and overlooks any
commonsense reasoning aspects of the true
problem. In Ginsberg’s view, commonsense
reasoning is the heuristic process by which we
reduce extremely complex problems to NP-
hard or simpler problems for which search is
feasible. The aspects of a problem to pay atten-
tion to, frame and context assumptions, and
default strategies for organizing complex activ-
ities are all aspects of commonsense reasoning.
As Ginsberg (1996) puts it, “It is Kautz and Sel-
man who are solving the commonsense aspects
of the problem; their ‘planner’ is solving the
puzzle-mode kernel of the problem instead of
the problem itself” (p. 624). Indeed, the prob-
lems solved by primitive-action approaches are
almost exclusively puzzle-style problems (or
real-world problems that have been reformu-
lated as puzzles).

We favor using primitive-action methods to
solve puzzle-style subproblems that can be
handled by constraint-satisfaction engines in
acceptable time. However, AI planners also
need to provide support for the commonsense
reasoning aspects of the problem so that plans
can be used to guide behavior while they are
embedded in a complex, dynamic environ-
ment. We have argued that incorporating
knowledge, encoded in understandable struc-

tures, into the planning process is the most
promising way to provide these abilities. HTN
planning methods are better suited than dis-
junctive planners for such problems because
HTN systems can interact with humans effec-
tively, use more expressive representations,
and can make use of domain knowledge to
scale up to complex problems. However, HTN
methods still have significant limitations, and
we have argued that one must use still more
knowledge (both in quantity and in quality)
than HTN planners do to solve the hardest
problems.

Although primitive-action methods are
clearly useful approaches for solving certain
subproblems, it is important for the field as a
whole to continue to look at a wider range of
problems. There is a danger of allowing the
current popularity of disjunctive planning
approaches, and the associated evaluation
techniques and puzzle-style problem suite, to
overly influence the field, making it more diffi-
cult for advanced knowledge-based planning
methods to find an audience.

Acknowledgments
This research was supported by contract
F30602-95-C-0235 with the Defense Advanced
Research Projects Agency under the supervi-
sion of Air Force Research Lab–Rome. Thanks
to Dana Nau, Steve Chien, and Foster Provost
for contributing their ideas to this article and
to Steve Chien for parts of the section on space
applications.

Notes
1. The term domain-independent planning has some-
times been used in the literature to describe these sys-
tems, but this term is a misnomer because the action
descriptions do in fact constitute a form of domain
knowledge. In this article, we use the term domain
independent to refer to any planner that is designed to
be applicable generically to any domain encoded in
the proper form. Using this definition, knowledge-
based planning methods that operate on explicit
domain descriptions—as opposed to systems that are
hard wired for particular domains—are as domain
independent as primitive-action planning systems.

2. Although simple, finite arithmetic could be added
to disjunctive planners, the combinatorics would
generally explode. Another approach is given by
Wolfman and Weld (1999), who describe a system
that combines SATPLAN with an incremental SIMPLEX

algorithm for solving linear inequalities, a useful
extension, but combinatorics allow the solution of
only toy problems.

3. These descriptions were generously provided by
Steve Chien of NASA’s Jet Propulsion Lab; however,
the authors take responsibility for the final text.

Articles

SPRING 2001 113

Joint Conferences on Artificial Intelligence.

Kautz, H., and Selman, B. 1998. The Role of
Domain-Specific Knowledge in the Plan-
ning as Satisfiability Approach. In Proceed-
ings of the 1998 International Conference
on AI Planning Systems, 181–189. Menlo
Park, Calif.: American Association for Arti-
ficial Intelligence.

Kautz, H., and Selman, B. 1996. Planning as
Satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence,
359–363. New York: Wiley.

Knoblock, C. 1996. AI Planning Systems in
the Real World. IEEE Expert 11(6): 4–12.

Kushmerick, N.; Hanks, S.; and Weld, D.
1994. An Algorithm for Probabilistic Least
Commitment Planning. In Proceedings of
the Twelfth National Conference on Artifi-
cial Intelligence, 1073–1078. Menlo Park,
Calif.: American Association for Artificial
Intelligence.

Lee, T. J., and Wilkins, D. E. 1996. Using
SIPE-2 to Integrate Planning for Military Air
Campaigns. IEEE Expert 11(6): 11–12.

Long, D. 2000. The AIPS-98 Planning Sys-
tems Competition. AI Magazine 21(2):
13–33.

McDermott, D. 2000. The 1998 AI Planning
Systems Competition. AI Magazine 21(2):
35–55.

Majercik, S., and Littman, M. 1998. MAX-
PLAN: A New Approach to Probabilistic Plan-
ning. In Proceedings of the 1998 Interna-
tional Conference on AI Planning Systems,
86–93. Menlo Park, Calif.: American Associ-
ation for Artificial Intelligence.

Mali, A. D., and Kambhampati, S. 1998.
Encoding HTN Planning in Propositional
Logic. In Proceedings of the 1998 Interna-
tional Conference on AI Planning Systems,
190–198. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Myers, K. L. 1999. CPEF: A Continuous Plan-
ning and Execution Framework. AI Maga-
zine 20(4): 63–70.

Myers, K. L. 1996. Strategic Advice for Hier-
archical Planners. In Principles of Knowledge
Representation and Reasoning: Proceedings of
the Fifth International Conference (KR ‘96),
eds. L. C. Aiello, J. Doyle, and S. C. Shapiro,
112–123. San Francisco, Calif.: Morgan
Kaufmann.

Myers, K. L., and Wilkins, D. E. 1998. Rea-
soning about Locations in Theory and Prac-
tice. Computational Intelligence 14(2):
151–187.

Nau, D.; Cao, Y.; Lotem, A.; and Munoz-
Avila, H. 1999. SHOP: Simple Hierarchical
Ordered Planner. In Proceedings of the Six-
teenth International Joint Conference on
Artificial Intelligence, 968–983. Menlo
Park, Calif.: International Joint Confer-
ences on Artificial Intelligence.

ed at SpaceOps 2000, 19–23 June, Toulouse,
France.

Cohen, P.; Anderson, S.; and Westbrook, D.
1996. Simulation for ARPI and the Air Cam-
paign Simulator. In Advanced Planning Tech-
nology: Technological Achievements of the
ARPA/Rome Laboratory Planning Initiative,
ed. A. Tate, 113–118. Menlo Park, Calif.:
AAAI Press.

Erol, K.; Hendler, J.; and Nau, D. S. 1994a.
HTN Planning: Complexity and Expressiv-
ity. In Proceedings of the Twelfth National
Conference on Artificial Intelligence,
1123–1128. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Erol, K.; Hendler, J.; and Nau, D. S. 1994b.
UMCP: A Sound and Complete Procedure
for Hierarchical Task-Network Planning.
Paper presented at the 1994 International
Conference on AI Planning Systems, 13–15
June, Chicago, Illinois.

Georgeff, M. P., and Ingrand, F. F. 1989.
Decision-Making in an Embedded Reason-
ing System. In Proceedings of the Eleventh
International Joint Conference on Artificial
Intelligence, 972–978. Menlo Park, Calif.:
International Joint Conferences on Artifi-
cial Intelligence.

Ginsberg, M. L. 1996. Do Computers Need
Common Sense? Paper presented at the
Fifth International Conference on Knowl-
edge Representation and Reasoning, 5–8
November, Cambridge, Massachusetts.

Guere, E., and Alami, R. 1999. A Possibilis-
tic Planner That Deals with Non-Determin-
ism and Contingency. In Proceedings of
the Sixteenth International Joint Confer-
ence on Artificial Intelligence, 996–1001.
Menlo Park, Calif.: International Joint Con-
ferences on Artificial Intelligence.

Jonsson, A.; Morris, P.; Muscettola, N.; and
Rajan, K. 2000. Planning in Interplanetary
Space: Theory and Practice. In Proceedings
of the 2000 International Conference on AI
Planning and Scheduling, 177–186. Menlo
Park, Calif.: American Association for Arti-
ficial Intelligence.

Kambhampati, S. 1997. Challenges in
Bridging Plan Synthesis Paradigms. In Pro-
ceedings of the Fifteenth International
Joint Conference on Artificial Intelligence,
44–49. Menlo Park, Calif.: International
Joint Conferences on Artificial Intelligence.

Kambhampati, S.; Parker, E.; and Lam-
brecht, E. 1997. Understanding and
Extending GRAPHPLAN. Paper presented at
the Fourth European Conference on Plan-
ning, 24–26 September, Toulouse, France.

Kautz, H., and Selman, B. 1999. Unifying
SAT-Based and Graph-Based Planning. In
Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence,
318–325. Menlo Park, Calif.: International

References
Agosta, J. M., and Wilkins, D. E. 1996.
Using SIPE-2 to Plan Emergency Response to
Marine Oil Spills. IEEE Expert 11(6): 6–8.

Anderson, C.; Smith, D. E.; and Weld, D.
1998. Conditional Effects in GRAPHPLAN. In
Proceedings of the 1998 International Con-
ference on AI Planning Systems, 44–53.
Menlo Park, Calif.: American Association
for Artificial Intelligence.

Arthur, R., and Stillman, J. 1992. TACHYON: A
Model and Environment for Temporal Rea-
soning. Technical report, GE Corporate
Research and Development Center, Sch-
enectady, New York.

Bacchus, F.; Kautz, H.; Smith, D. E.; Long,
D.; Geffner, H.; and Koehler, J. 2000. The
Fifth International Conference on Artificial
Intelligence Planning and Scheduling:
Planning Competition. Available at www.
cs.toronto.edu/aips00.

Becker, M. A., and Smith, S. F. 2000. Mixed-
Initiative Resource Management: The AMC
Barrel Allocator. In Proceedings of the 2000
International Conference on AI Planning
and Scheduling, 32–41. Menlo Park, Calif.:
American Association for Artificial Intelli-
gence.

Blum, A., and Furst, M. 1995. Fast Planning
through Planning Graph Analysis. In Pro-
ceedings of the Fourteenth International
Joint Conference on Artificial Intelligence,
1636–1642. Menlo Park, Calif.: Internation-
al Joint Conferences on Artificial Intelli-
gence.

Boutilier, C.; Dean, D.; and Hanks, S. 1999.
Decision-Theoretic Planning: Structural
Assumptions and Computational Leverage.
Journal of Artificial Intelligence Research
11:1–94.

Brafman, R. I. 1999. Reachability, Rele-
vance, Resolution, and the Planning as Sat-
isfiability Approach. In Proceedings of the
Sixteenth International Joint Conference
on Artificial Intelligence, 976–981. Menlo
Park, Calif.: International Joint Confer-
ences on Artificial Intelligence.

Chien, S.; Rabideau, G.; Willis, J.; and
Mann, T. 1999. Automating Planning and
Scheduling of Shuttle Payload Operations.
Artificial Intelligence 114(1): 239–255.

Chien, S.; Hill-Jr, R.; Wang, X.; Estlin, T.;
Fayyad, K.; and Mortensen, H. 1996. Why
Real-World Planning Is Difficult: A Tale of
Two Applications. In Advances in AI Plan-
ning, eds. M. Ghallab and A. Milani,
287–298. Amsterdam: IOS.

Chien, S.; Rabideau, G.; Knight, R.; Sher-
wood, R.; Engelhardt, B.; Mutz, D.; Estlin,
T.; Smith, B.; Fisher, F.; Barrett, T.; Stebbins,
G.; and Tran, D. 2000. ASPEN Automating
Space Mission Operations Using Automat-
ed Planning and Scheduling. Paper present-

Articles

114 AI MAGAZINE

Onder, N., and Pollack, M. E. 1999. Conditional,
Probabilistic Planning: A Unifying Algorithm and
Effective Search Control Mechanisms. In Proceedings
of the Sixteenth National Conference on Artificial
Intelligence, 577–584. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Pollock, J. L. 1998. Perceiving and Reasoning about a
Changing World. Computational Intelligence 14(4):
498–562.

Provost, F., and Kohavi, R. 1998. Guest Editors’ Intro-
duction: On Applied Research in Machine Learning.
Machine Learning 30(2–3): 127–132.

Smith, B.; Feather, M.; and Muscettola, N. 2000.
Challenges and Methods in Validating the Remote
Agent Planner. In Proceedings of the 2000 Interna-
tional Conference on AI Planning and Scheduling,
254–263. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Smith, D., and Weld, D. 1998. Conformant GRAPH-
PLAN. In Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence, 889–896. Menlo
Park, Calif.: American Association for Artificial Intel-
ligence.

Smith, D. E., and Weld, D. S. 1999. Temporal Plan-
ning with Mutual Exclusion Reasoning. In Proceed-
ings of the Sixteenth International Joint Conference
on Artificial Intelligence, 326–333. Menlo Park,
Calif.: International Joint Conferences on Artificial
Intelligence.

Smith, D. E.; Frank, J; and Jonsson, A. K. 2000. Bridg-
ing the Gap between Planning and Scheduling.
Knowledge Engineering Review 15(1): 61–94.

Smith, S.; Lassila, O.; and Becker, M. 1996. Config-
urable, Mixed-Initiative Systems for Planning and
Scheduling. In Advanced Planning Technology: Techno-
logical Achievements of the ARPA/Rome Laboratory
Planning Initiative, 235–241. Menlo Park, Calif.: AAAI
Press.

Srivastava, B., and Kambhampati, S. 1999. Scaling Up
Planning by Teasing Out Resource Scheduling. In
Proceedings of the Fifth European Conference on
Planning, 8–10 September, Durham, United King-
dom.

Tate, A.; Drabble, B.; and Kirby, R. B. 1994. O-PLAN2:
An Open Architecture for Command, Planning, and
Control. In Intelligent Scheduling, eds. M. Fox and M.
Zweben, 213–239. San Francisco, Calif.: Morgan
Kaufmann.

Weld, D. S. 1999. Recent Advances in AI Planning. AI
Magazine 20(2): 93–123.

Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending GRAPHPLAN to Handle Uncertainty and
Sensing Actions. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence,
897–904. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Wilkins, D. E. 1999. Using the SIPE-2 Planning Sys-
tem: A Manual for Version 6.0. SRI International Arti-
ficial Intelligence Center, Menlo Park, California.

Wilkins, D. E. 1990. Can AI Planners Solve Practical
Problems? Computational Intelligence 6(4): 232–246.

Wilkins, D. E., and Desimone, R. V. 1994. Applying
an AI Planner to Military Operations Planning. In

Intelligent Scheduling, eds. M. Fox and M. Zweben,
685–709. San Francisco, Calif.: Morgan Kaufmann.

Wilkins, D. E., and Myers, K. L. 1998. A Multiagent
Planning Architecture. In Proceedings of the 1998
International Conference on AI Planning Systems,
154–162. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Wilkins, D. E.; Myers, K. L.; Lowrance, J. D.; and Wes-
ley, L. P. 1995. Planning and Reacting in Uncertain
and Dynamic Environments. Journal of Experimental
and Theoretical AI 7(1): 197–227.

Williams, B. C., and Nayak, P. P. 1996. A Model-Based
Approach to Reactive Self-Configuring Systems. In
Proceedings of the Thirteenth National Conference
on Artificial Intelligence, 971–978. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Willis, J.; Rabideau, G.; and Wilklow, C. 1999. The
CITIZEN EXPLORER Scheduling System. In Proceedings of
the IEEE Aerospace Conference. Washington, D.C.:
IEEE Computer Society.

Wolfman, S. A., and Weld, D. S. 1999. The LPSAT

Engine and Its Application to Resource Planning. In
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, 310–316. Men-
lo Park, Calif.: International Joint Conferences on
Artificial Intelligence.

David E. Wilkins is a senior com-
puter scientist in the Artificial
Intelligence Center at SRI Interna-
tional. A fellow of the American
Association for Artificial Intelli-
gence, he received his Ph.D. in
computer science from Stanford
University in 1979. His current
research focuses on continuous

planning and execution monitoring, mixed-initia-
tive planning, and multiagent planning. He is inter-
ested in the application of these technologies to real-
world problems. His e-mail address is wilkins@
ai.sri.com.

Marie desJardins is a senior com-
puter scientist at SRI International.
Her ongoing research projects are
developing methods for multia-
gent planning and negotiation,
mixed-initiative planning, and
model visualization for machine
learning. Other research interests
include probabilistic reasoning,

decision theory, and knowledge representation. des-
Jardins was awarded a Ph.D. in AI from the Universi-
ty of California at Berkeley in 1992, where her disser-
tation presented a model for autonomous machine
learning in probabilistic domains. Her e-mail address
is marie@ai.sri.com.

Articles

SPRING 2001 115

