
� In 1950, Claude Shannon published his seminal
work on how to program a computer to play chess.
Since then, developing game-playing programs
that can compete with (and even exceed) the abil-
ities of the human world champions has been a
long-sought-after goal of the AI research commu-
nity. In Shannon’s time, it would have seemed
unlikely that only a scant 50 years would be need-
ed to develop programs that play world-class
backgammon, checkers, chess, Othello, and Scrab-
ble. These remarkable achievements are the result
of a better understanding of the problems being
solved, major algorithmic insights, and tremen-
dous advances in hardware technology. Computer
games research is one of the important success sto-
ries of AI. This article reviews the past successes,
current projects, and future research directions for
AI using computer games as a research test bed.

Games are ideal domains for exploring
the capabilities of computational intel-
ligence. The rules are fixed, the scope of

the problem is constrained, and the interac-
tions of the players are well defined. Contrast
the game world with the real world—the game
of life—where the rules often change, the
scope of the problem is almost limitless, and
the participants interact in an infinite number
of ways. Games can be a microcosm of the real
world (for example, the role of game theory in
economics, social interaction, and animal
behavior), and successfully achieving high
computer performance in a nontrivial game
can be a stepping stone toward solving more
challenging real-world problems.

Historically, games have been a popular
choice for demonstrating new research ideas in
AI. Indeed, one of the early goals of AI was to
build a program capable of defeating the
human world chess champion in a match. This
challenge proved to be more difficult than was
anticipated; the AI literature is replete with
optimistic predictions. It eventually took
almost 50 years to complete the task—a
remarkably short time when one considers the
software and hardware advances needed to

make this amazing feat possible. Often over-
looked, however, is that this result was also a
testament to human abilities. Considering the
formidable computing power that DEEP BLUE

used in its 1997 exhibition match against
world chess champion Garry Kasparov
(machine: 200,000,000 chess positions a sec-
ond; man: 2 a second), one can only admire
the human champions for withstanding the
technological onslaught for so long.

Computer game research was started by
some of the luminaries in computing science
history. In 1950, Claude Shannon published
his seminal paper that laid out the framework
for building high-performance game-playing
programs (Shannon 1950). In 1951, Alan Tur-
ing (1953) did a hand simulation of his com-
puter chess algorithm (a lack of resources pre-
vented him from actually programming it); the
algorithm lost to a weak human player.
Around this time, Arthur Samuel began work
on his famous checkers-playing program, the
first program to achieve notable success
against human opposition (Samuel 1967,
1959). By 1958, Alan Newell and Herb Simon
had begun their investigations into chess,
which eventually led to fundamental results
for AI and cognitive science (Newell, Shaw, and
Simon 1958). An impressive lineup to say the
least!

In the half century since Shannon’s paper,
enormous progress has been made in con-
structing high-performance game-playing pro-
grams. In Shannon’s time, it would have
seemed unlikely that within a scant 50 years
checkers (8 � 8 draughts), Othello, and Scrab-
ble programs would exist that exceed the abil-
ities of the best human players,1,2 and back-
gammon and chess programs could play at a
level comparable to the human world champi-
on. These remarkable accomplishments are the
result of a better understanding of the
problems being solved, major algorithmic
insights, and tremendous advances in hard-
ware technology. The work on computer
games has been one of the most successful and
visible results of AI research. For some games,

Articles

FALL 2001 29

A Gamut of Games
Jonathan Schaeffer

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 22 Number 3 (2001) (© AAAI)

Considering
the

formidable
computing
power that

DEEP BLUE

used in its
1997

exhibition
match against

world chess
champion

Garry
Kasparov

(machine:
200,000,000

chess
positions a

second; man:
2 a second),

one can only
admire the

human
champions for
withstanding

the
technological
onslaught for

so long.

these enhancements include iterative deepen-
ing, caching previously seen subtree results
(transposition tables), successor reordering,
search extensions and reductions, probabilistic
cutoffs, and parallel search. The results are tru-
ly amazing. Even though there is an exponen-
tial difference between the best case and the
worst case for an alpha-beta search, most high-
performance game-playing programs are
searching within a small constant of the best
case (Plaat et al. 1996).

Sadly, the community of researchers in-
volved in this work has done a relatively poor
job of selling the technology, resulting in many
of the ideas being reinvented for other
domains. For example, many search tech-
niques pioneered with alpha-beta have become
standard in other search domains, with few
realizing the lineage of the ideas.

At the heart of many game-playing programs
is an evaluation function. Early on, game
developers quickly encountered the knowl-
edge-acquisition bottleneck and traded quality
of knowledge for speed of the program. Simple
evaluation functions, linear combinations of
easily identifiable features, were the mainstay
of computer game programs for many decades.
Alternative approaches, such as modeling
human cognitive processes, turned out to be
much harder to do than initially expected and
generally resulted in poor performance. Game
programmers quickly learned that a little
heuristic knowledge, when combined with
deep search, can produce amazing perfor-
mance results. Indeed, one could argue that the
viability of brute-force search, once a term with
negative connotations in the AI community, is
one of the main research results from games-
related research (Ginsberg 1996b).

In the last decade, new techniques have
moved to the forefront of games research. Two
in particular are mentioned here because they
are likely to play a more prominent role in the
near future: (1) Monte Carlo simulation and (2)
temporal-difference learning.

Monte Carlo simulation has successfully
been applied to games with imperfect or non-
deterministic information. In these games, it is
too expensive to search all possible outcomes.
Instead, only a representative sample is chosen
to give a statistical profile of the outcome. This
technique has been successful in bridge, poker,
and Scrabble.

Temporal-difference learning is the direct
descendent of Samuel’s machine learning
research (Sutton 1988). Here, a database of
games (possibly generated by computer self-
play) can be used to bootstrap a program to
find a good combination of knowledge fea-

one could argue that the Turing test has been
passed (Krol 1999).

This article discusses the progress made in
developing programs for the classic board and
card games. For a number of games, a short his-
tory of the progress in building a world-class
program for the game is given, along with a
brief description of the strongest program. In
each case, a single feature of the program that
is a major contributor to the program’s
strength is highlighted. The histories are neces-
sarily brief. I apologize in advance to the many
hard-working researchers and hobbyists whose
work is not mentioned here.

Enabling Technologies briefly summarizes
some of the major advances in technology that
facilitated the construction of world-champi-
onship–caliber programs. Success in Computer
Games reports the past successes where comput-
ers have met or exceeded the best human play-
ers (backgammon, checkers, chess, Othello, and
Scrabble). Current Research Efforts highlights
games of current academic interest (bridge, go,
and poker). The Future of Computer Games dis-
cusses some of the future challenges of using
games as a research test bed for AI.

Although this article emphasizes the AI
viewpoint, one should not underestimate the
engineering effort required to build these pro-
grams. One need only look at the recent suc-
cess of the DEEP BLUE chess machine to appreci-
ate the effort required. This project spanned 8
years (12 if one includes the pre-IBM time) and
included several full-time people, extensive
computing resources, chip design, and grand
master consultation. Some of the case studies
hint at the amount of work required to con-
struct these systems. In all cases, the successes
reported in this article are the result of consis-
tent progress over many years.

Enabling Technologies
The biggest advances in computer game play-
ing have come as a result of work done on the
alpha-beta search algorithm. This algorithm
received the most attention because of the
research community’s preoccupation with
chess. With the DEEP BLUE victory over world
chess champion Garry Kasparov, interest in
methods suitable for chess has waned and been
replaced by activity in other games. One could
argue that the chess victory removed a ball and
shackle that was stifling the creativity of
researchers who were building high-perfor-
mance game-playing systems.

The alpha-beta research led to a plethora of
search enhancements, which significantly
improved the efficiency of the search. Some of

Articles

30 AI MAGAZINE

tures. The algorithm has successfully been
applied to backgammon and has recently
shown promise in chess and checkers (Schaef-
fer, Hlynka, and Jussila 2001).

The most obvious hardware advance is sim-
ply speed. To read about Samuel’s checkers-
playing program running on a 1963 machine
that could execute 15 million additions a
minute (Pfeiffer 1964) starkly brings home the
point that orders of magnitude more comput-
ing power makes many things possible. Indeed,
considering the paucity of computing power at
Samuel’s disposal, one can only be filled with
admiration at what he achieved.

Computer games research pioneered compe-
titions to assess the quality of the systems
being developed. Since 1970, there have been
annual computer chess tournaments. There is
now an annual Computer Olympiad that
brings together many of the top programs and
their developers in head-to-head competition.3

The competitive spirit has spread throughout
the AI community; competitions now exist for
other applications, including theorem proving,
planning, and natural language.

Success in Computer Games
In a number of games, computers have enjoyed
success that puts them on par or better with
the best humans in the world. In some sense,
these games are now the past, in that active
research to develop high-performance pro-
grams for them is on the wane (or is now
nonexistent). These include games where com-
puters are better than all humans (checkers,
Othello, Scrabble) and those where computers
are competitive with the human world cham-
pion (backgammon, chess).

Backgammon
The first concerted effort at building a strong
backgammon program was undertaken by
Hans Berliner of Carnegie Mellon University.
In 1979, his program, BKG9.8, played an exhibi-
tion match against the then newly crowned
world champion Luigi Villa (Berliner 1980a,
1980b). The stakes were $5,000, winner take
all. The final score was seven points to one in
favor of the computer, with BKG9.8 winning
four of the five games played (the rest of the
points came from the doubling cube).

Backgammon is a game of both skill and
luck. In a short match, the dice can favor one
player over another. Berliner writes that “in the
short run, small percentage differences favor-
ing one player are not too significant. However,
in the long run a few percentage points are
highly indicative of significant skill differ-

ences” (Berliner 1980a, p. 215). Thus, assessing
the results of a five-game match is difficult.
Afterwards, Berliner (1980b, p. 71) analyzed
the program’s play and concluded that

There was no doubt that BKG9.8 played
well, but down the line Villa played better.
He made the technically correct plays
almost all the time, whereas the program
did not make the best play in eight out of
73 non-forced situations.

BKG9.8 was an important first step, but major
work was still needed to bring the level of play
up to that of the world’s best players.

In the late 1980s, IBM researcher Gerry
Tesauro began work on a neural net–based
backgammon program. The net used encoded
backgammon knowledge and, training on data
sets of games played by expert players, learned
the weights to assign to these pieces of knowl-
edge. The program, NEUROGAMMON, was good
enough to win first place in the 1989 Comput-
er Olympiad (Tesauro 1989).

Tesauro’s next program, TD-GAMMON used a
neural network that was trained using tempo-
ral difference learning. Instead of training the
program with data sets of games played by
humans, Tesauro was successful in having the
program learn using the temporal differences
from self-play games. The evolution in TD-GAM-
MON from version 0.0 to 3.0 saw an increase in
the knowledge used, a larger neural net, and
the addition of small selective searches. The
resulting program is acknowledged to be on par
with the best players in the world and, possi-
bly, even better.

In 1998, an exhibition match was played
between world champion Malcolm Davis and
TD-GAMMON 3.0 (at the AAAI-98 conference). To
reduce the luck factor, 100 games were played
over 3 days. The final result was a narrow eight-
point win for Davis. Both Davis and Tesauro
have done extensive analysis of the games,
coming up with similar conclusions:4

While this analysis isn’t definitive, it sug-
gests that we may have witnessed a super-
human level of performance by TD-GAM-
MON, marred only by one horrible blunder
redoubling to 8 in game 16, costing a
whopping 0.9 points in equity and proba-
bly the match!

A notable feature of TD-GAMMON is its neural
net evaluation function. The net takes as input
the current board position and returns as out-
put the score for the position (roughly, the
probability of winning) (Tesauro 1995). The net
has approximately 300 input values (Tesauro
2001). The latest version, TD-GAMMON 3.0, con-
tains 160 hidden units. Each unit takes a linear

Articles

FALL 2001 31

Sadly, the
community of
researchers
involved in
this work has
done a
relatively poor
job of selling
the
technology,
resulting in
many of the
ideas being
reinvented for
other
domains. For
example,
many search
techniques
pioneered
with alpha-
beta have
become
standard in
other search
domains,
with few
realizing the
lineage of the
ideas.

1990, the program earned the right to chal-
lenge for the human world championship. The
checkers federations refused to sanction the
match, leading to the creation of a new title:
The World Man-Machine Championship. This
title was contested for the first time in 1992,
with Marion Tinsley defeating CHINOOK in a 40-
game match by a score of 4 wins to 2. CHINOOK’s
wins were the first against a reigning world
champion in a nonexhibition event for any
competitive game.

There was a rematch in 1994, but after six
games (all draws), Tinsley resigned the match
and the title to CHINOOK, citing health con-
cerns. The following week he was diagnosed
with cancer, and he died eight months later.
CHINOOK has subsequently defended its title
twice and has not lost a game since 1994. The
program was retired from human competitions
in 1997 (Schaeffer 1997).

The structure of CHINOOK is similar to that of
a typical chess program: search, knowledge,
database of opening moves, and endgame data-
bases (Schaeffer 1997; Schaeffer et al. 1992).
CHINOOK uses alpha-beta search with a myriad
of enhancements, including iterative deepen-
ing, transposition table, move ordering, search
extensions, and search reductions. CHINOOK was
able to average a minimum of 19-ply searches
against Tinsley (using 1994 hardware), with
search extensions occasionally reaching 45 ply
into the tree. The median position evaluated
was typically 25-ply deep into the search.

A notable feature in CHINOOK is its use of end-
game databases. The databases contain all
checkers positions with 8 or fewer pieces, 444
billion (4 � 1011) positions compressed into 6
gigabytes for real-time decompression. Unlike
chess programs, which are compute bound,
CHINOOK becomes input-output bound after a
few moves in a game. The deep searches mean
that the database is occasionally being hit on
the first move of a game. The databases intro-
duce accurate values (win/loss/draw) into the
search (no error), reducing the program’s
dependency on its heuristic evaluation func-
tion (small error). In many games, the program
is able to back up a draw score to the root of a
search within 10 moves by each side from the
start of a game, suggesting that it might be pos-
sible to determine the game-theoretic value of
the starting position of the game (one defini-
tion of “solving” the game).

CHINOOK is the first program to win a human
world championship for any game. At the time
of CHINOOK’s retirement, the gap between the
program and the highest-rated human was 200
rating points (using the chess rating scale)
(Schaeffer 1997). A gap this large means that

sum of the weighted values of its input and
then converts it to a value in the range –3 to 3
(a backgammon is worth three points, a gam-
mon two, and a win one). The conversion is
done with a sigmoid function, allowing the
output to be a nonlinear function of the input.
The resulting neural net has approximately
50,000 weights that need to be trained.

The weights in the hidden units were trained
using temporal-difference learning from self-
play games. By playing the program against
itself, there was an endless supply of data for
the program to train itself against. In a given
game position, the program uses the neural net
to evaluate each of the roughly 20 different
ways it can play its dice roll and then chooses
the move leading to the maximum evaluation.
Each game is played to completion, and then
temporal-difference learning is applied to the
sequence of moves. Close to 1,500,000 self-
play games were used for training TD-GAMMON

3.0.
Tesauro’s success with temporal-difference

learning in his backgammon program is a
major milestone in AI research.

Checkers
Arthur Samuel began thinking about a check-
ers program in 1948 but did not start coding
until a few years later. He was not the first to
write a checkers-playing program; Christopher
Strachey (1952) predated him by a few months.
Over the span of three decades, Samuel worked
steadily on his program, with performance tak-
ing a back seat to his higher goal of creating a
program that learned. Samuel’s checkers player
is best known for its single win against Robert
Nealey in a 1963 exhibition match. From this
single game, many people erroneously con-
cluded that checkers was a “solved’” game.

In the late 1970s, a team of researchers at
Duke University built a strong checkers-play-
ing program that defeated Samuel’s program in
a short match (Truscott 1979). Early success
convinced the authors that their program was
possibly one of the 10 best players in the world.
World champion Marion Tinsley effectively
debunked that, writing that “the programs
may indeed consider a lot of moves and posi-
tions, but one thing is certain. They do not see
much!’’ (Tinsley 1980). Efforts to arrange a
match between the two went nowhere, and the
Duke program was quietly retired.

Interest in checkers was rekindled in 1989
with the advent of strong commercial pro-
grams and a research effort at the University of
Alberta—CHINOOK. CHINOOK was authored prin-
cipally by Jonathan Schaeffer, Norman Treloar,
Robert Lake, Paul Lu, and Martin Bryant. In

Tesauro’s
success with

temporal-
difference

learning in his
backgammon
program is a

major
milestone in
AI research.

Articles

32 AI MAGAZINE

the program would score 75 percent of the pos-
sible points in a match against the human
world champion. Since then, faster processor
speeds mean that CHINOOK has become
stronger, further widening the gap between
man and machine.

Chess
The progress of computer chess was strongly
influenced by an article by Ken Thompson that
equated search depth with chess-program per-
formance (Thompson 1982). Basically, the
paper presented a formula for success: Build
faster chess search engines. The milestones in
chess program development become a state-
ment of the state of the art in high-perfor-
mance computing:

1978–1980: The pioneering programs from
Northwestern University, most notably CHESS

4.6 (Slate and Atkin 1977), ran on a top-of-the-
line Control Data computer and achieved the
first major tournament successes.

1980–1982: BELLE, the first program to earn a
U.S. master title, was a machine built to play
chess. It consisted of 10 large wire-wrapped
boards using LSI chips (Condon and Thomp-
son 1982).

1983–1984: CRAY BLITZ used a multiprocessor
Cray supercomputer (Hyatt, Gower, and Nel-
son 1990).

1985–1986: The HITECH chess machine was
based on 64 special-purpose VLSI chips (one to
a board square) (Ebeling 1987; Berliner and
Ebeling 1989).

1985–1986: WAYCOOL used a 256-processor
hypercube (Felten and Otton 1988).

1987–present: CHIPTEST (and its successors
DEEP THOUGHT and DEEP BLUE) took VLSI technol-
ogy even further to come up with a full-board
chess chip (Hsu 1999; Hsu et al. 1990a, 1990b).

In 1987, CHIPTEST shocked the chess world
by tying for first place in a strong tournament,
finishing ahead of a former world champion
and defeating a grand master. The unexpected
success aroused the interest of world champion
Garry Kasparov, who played a two-game exhi-
bition match against the program in 1989.
Man easily defeated machine in both games.

The DEEP BLUE team worked for seven years to
improve the program, including designing a
single-chip chess search engine and making
significant strides in the quality of their soft-
ware. In 1996, the chess machine played a six-
game exhibition match against Kasparov. The
world champion was stunned by a defeat in the
first game, but he recovered to win the match,
scoring three wins and two draws to offset the
single loss. The following year, another exhibi-
tion match was played. DEEP BLUE scored a bril-

liant win in game two, handing Kasparov a
psychological blow from which he never recov-
ered. In the final, decisive game of the match,
Kasparov fell into a trap, and the game ended
quickly, giving DEEP BLUE an unexpected match
victory, scoring two wins, three draws, and a
loss.

It is important to keep this result in perspec-
tive. First, it was an exhibition match; DEEP BLUE

did not earn the right to play Kasparov.5 Sec-
ond, the match was too short to accurately
determine the better player; world-champi-
onship matches have varied from 16 to 48
games in length. Although it is not clear just
how good DEEP BLUE is, there is no doubt that
the program is a strong grand master.

What does the research community think of
the DEEP BLUE result? Many are filled with admi-
ration at this feat of engineering. Some are cau-
tious about the significance. John McCarthy
(1997) wrote that “in 1965, the Russian math-
ematician Alexander Kronrod said, ‘Chess is
the Drosophila of artificial intelligence.’ Howev-
er, computer chess has developed much as
genetics might have if the geneticists had con-
centrated their efforts starting in 1910 on
breeding racing Drosophila. We would have
some science, but mainly we would have very
fast fruit flies.”6

In retrospect, the chess “problem” turned
out to be much harder than was expected by
the computing pioneers. The DEEP BLUE result is
a tremendous achievement, and a milestone in
the history of computing science.

From the scientific point of view, it is to be
regretted that DEEP BLUE has been retired, the
hardware unused, and the programming team
disbanded. The scientific community has a sin-
gle data point that suggests machine might be
better than man at chess. The data are insuffi-
cient, and the sample size is not statistically sig-
nificant. Moreover, given the lack of interest in
DEEP BLUE from IBM, it is doubtful that this
experiment will ever be repeated. Of what val-
ue is a single, nonrepeatable data point?

DEEP BLUE and its predecessors represent a
decade-long intensive effort by a team of peo-
ple. The project was funded by IBM, and the
principal scientists who developed the program
were Feng-Hsiung Hsu, Murray Campbell, and
Joe Hoane.

The notable technological feature of DEEP

BLUE is its amazing speed, the result of building
special-purpose chess chips. The chip includes
a search engine, a move generator, and an eval-
uation function (Cambell, Hoane, and Hsu
2001; Hsu 1999). The chip’s search algorithm is
based on alpha-beta. The evaluation function is
implemented as small tables on the chip; the

Articles

FALL 2001 33

tion. Bayesian learning was used to combine
the evaluation-function features in a weighted
quadratic polynomial.

Statistical analysis of the program’s play
indicated that it was a strong Othello player.
BILL won a single game against Brian Rose, the
highest-rated American Othello player at the
time. In test games against IAGO, BILL won every
game. These results led Lee and Mahajan to
conclude that “BILL is one of the best, if not the
best, Othello player in the world.’’ As usual,
there is danger in extrapolating conclusions
based on limited evidence.

With the advent of the Internet Othello serv-
er (IOS), computer Othello tournaments
became frequent. In the 1990s, they were dom-
inated by Michael Buro’s LOGISTELLO. The pro-
gram participated in 25 tournaments, finished
first 18 times, second 6 times, and fourth once.
The program combined deep search with an
extensive evaluation function that was auto-
matically tuned, which when combined with
an extensive database of opening moves and a
perfect end-game player, is a winning recipe for
Othello.

Although it was suspected that by the mid-
1990s, computers had surpassed humans in
their playing abilities at Othello, this was not
properly demonstrated until 1997, when LOGIS-
TELLO played an exhibition match against world
champion Takeshi Murakami. In preparation
for the match, Buro (1997, p. 189) that

BILL played a series of games against differ-
ent versions of LOGISTELLO. The results
showed that bill, when playing 5-minute
games running on a PentiumPro/200 PC,
is about as strong as a 3-ply LOGISTELLO,
even though BILL searches 8 to 9 plies.
Obviously, the additional search is com-
pensated for by knowledge. However, the
3-ply LOGISTELLO can only be called
mediocre by today’s human standards.

Two explanations for the overestima-
tion of playing strength in the past come
to mind: (1) during the last decade human
players have improved their playing skills
considerably, and (2) the playing strength
of the early programs was largely overesti-
mated by using … nonreliable scientific
methods.

LOGISTELLO won all six games against Muraka-
mi by a total disc count of 264 to 120 (Buro
1997), which confirmed what everyone had
expected about the relative playing strengths
of man and machine. The gap between the best
human players and the best computer pro-
grams is believed to be large and effectively
unsurmountable.

Outwardly, LOGISTELLO looks like a typical

values for these tables can be downloaded to
the chip before the search begins. These tables
are indexed by board features and the results
summed in parallel to provide the positional
score.

A single chip is capable of analyzing over
two million chess positions a second (using
1997 technology). It is important to note that
this speed understates the chip’s capabilities.
Some operations that are too expensive to
implement in software can be done with little
or no cost in hardware. For example, one capa-
bility of the chip is to selectively generate sub-
sets of legal moves, such as all moves that can
put the opponent in check. These increased
capabilities give rise to new opportunities for
the search algorithm and the evaluation func-
tion. Hsu (1999) estimates that each chess chip
position evaluation roughly equates to 40,000
instructions on a general-purpose computer. If
so, then each chip translates to a 100 billion
instruction a second chess supercomputer.

Access to the chip is controlled by an alpha-
beta search algorithm that resides on the host
computer (an IBM SP-2). Each of the 30 SP-2
processors could access 16 chips. The reported
cumulative performance, 200,000,000 posi-
tions analyzed a second, falls short of the peak
speed (over 1 billion positions a second)
because of the inherent difficulty of getting
good parallel performance out of the alpha-
beta algorithm. This massive amount of com-
puting allows the program to search deeper,
significantly reducing the probability that it
will make an error (as Kasparov found out to
his regret).

The AI community gave a collective sigh of
relief when DEEP BLUE defeated Kasparov. It was
time to move on to new challenges in the field.

Othello
The first major Othello program was Paul
Rosenbloom’s (1982) IAGO, achieving impres-
sive results given its early-1980 hardware. It
dominated play against other Othello pro-
grams of the time but played only two games
against world-class human players, losing
both. The program’s ability to predict 59 per-
cent of the moves played by human experts
was extrapolated to conclude that the pro-
gram’s playing strength was of world-champi-
onship caliber.

By the end of the decade, IAGO had been
eclipsed. Kai-Fu Lee and Sanjoy Mahajan’s pro-
gram BILL represented a major improvement in
the quality of computer Othello play (Lee and
Mahajan 1990). The program combined deep
search with extensive knowledge (in the form
of precomputed tables) in its evaluation func-

Articles

34 AI MAGAZINE

alpha-beta–based searcher (Buro 2001). Howev-
er, the construction of the evaluation function
is novel. The program treats the game as having
13 phases: 13–16 discs on the board, 17–20
discs, …, and 61–64 discs.7 Each phase has a dif-
ferent set of weights in the evaluation function.
The evaluation-function features are patterns of
squares comprising combinations of corners,
diagonals, and rows. These patterns capture
important Othello concepts, such as mobility,
stability, and parity. LOGISTELLO has 11 such pat-
terns, which with rotations and reflections
yield 46. The patterns include a 3 � 3 and a 5 �
2 configuration of stones anchored in a corner
and all diagonals of length greater than 3.

The weights for each entry in each pattern
(46) for each phase of the game (11) are deter-
mined by linear regression. More than 1.5 mil-
lion table entries need to be determined. The
data were trained using 11 million scored posi-
tions obtained from self-play games and prac-
tice games against another program (Buro
1995). The evaluation function is completely
table driven. Given a position, all 46 patterns
are matched against the position, with a suc-
cessful match returning the associated weight.
These weights are summed to get the overall
evaluation that approximates the final disc dif-
ferential.

Michael Buro (1997, p. 193) comments on
the reasons why LOGISTELLO easily won the
Murakami match:

When looking at the games of the match
the main reasons for the clear outcome are
as follows:

1. Lookahead search is very hard for
humans in Othello. The disadvantage
becomes very clear in the endgame phase,
where the board changes are more sub-
stantial than in the opening and mid-
dlegame stage. Computers are playing per-
fectly in the endgame while humans often
lose discs.
2. Due to the automated tuning of the eval-
uation functions and deep selective search-
es, the best programs estimate their win-
ning chance in the opening and
middlegame phase very accurately. This
leaves little room for human innovations
in the opening, especially because the best
Othello programs are extending their
opening books automatically to explore
new variations.

Scrabble
The first documented Scrabble program
appears to have been written by Stuart Shapiro
and Howard Smith and was published in 1977

(Shapiro and Smith 1977). In the 1980s, a num-
ber of Scrabble programming efforts emerged,
and by the end of the decade, it was apparent
that these programs were strong players. With
access to the entire Scrabble dictionary in
memory (now over 100,000 words), the pro-
grams held an important advantage in any
games against humans.

At the first Computer Olympiad in 1989, the
Scrabble winner was CRAB written by Andrew
Appel, Guy Jacobson, and Graeme Thomas
(Leavy and Beal 1989). Second was TYLER writ-
ten by Alan Frank. Subsequent Olympiads saw
the emergence of TSP (Jim Homan), which
edged out TYLER in the second and third
Olympiads. All these programs were very good
and quite possibly strong enough to be a seri-
ous test for the best players in the world.

Part of their success was a result of the fast,
compact Scrabble move generator developed
by Andrew Appel (Appel and Jacobson 1988).
Steven Gordon (1994) subsequently developed
a move generator that was twice as fast but
used five times as much storage.

Brian Sheppard began working on a Scrabble
program in 1983 and started developing MAVEN

in 1986. In a tournament in December 1986,
MAVEN scored eight wins and two losses over an
elite field, finishing in second place on a tie
breaker. Sheppard describes the games against
humans at this tournament:8

MAVEN reels off JOUNCES, JAUNTIER, and OVER-
TOIL on successive plays, each for exactly
86 points, to come from behind against
future national champion Bob Felt. MAVEN

crushed humans repeatedly in offhand
games. The human race begins to contem-
plate the potential of computers.

In the following years, MAVEN continued to
demonstrate its dominating play against
human opposition. Unfortunately, because it
did not compete in the Computer Olympiads,
it was difficult to know how strong it was com-
pared to other programs at the time.

In the 1990s, Sheppard developed a pre–end-
game analyzer (when there were a few tiles left
in the bag) and improved the program’s ability
to simulate likely sequences of moves. These
represented important advances in the pro-
gram’s ability. It was not until 1997, however,
that the opportunity arose to properly assess
the program’s abilities against world-class play-
ers. In 1997, a two-game match between MAVEN

and Adam Logan at AAAI-97, one of the best
players in North America, ended in two wins
for the human. Unfortunately, the match was
not long enough to get a sense of who was real-
ly the best player.

In March 1998, the New York Times sponsored

Articles

FALL 2001 35

of QXI would be less preferable than leaving
QUI; the latter offers more potential for play-
ing the Q effectively.

Bingo blocking: Playing all 7 letters in a sin-
gle turn leads to a bonus of 50 points (a bingo).
This move generator finds moves that reduce
the chances of the opponent scoring a bingo
on his/her next turn. Sometimes it is worth sac-
rificing points to reduce the opponent’s
chances of scoring big.

Immediate scoring: This generator finds the
moves with the maximum number of points
(which becomes more important as the end of
the game nears).

Each routine provides as many as 10 candi-
date moves. Merging these lists results in typi-
cally 20 to 30 unique candidate moves to con-
sider. In the early part of the game, only the
score-and-rack generator is used. In the
pre–end-game, there are four: the three listed
above plus a pre–end-game evaluator that
“took years to tune to the point where it didn’t
blunder nearly always.”11 In the end game, all
possible moves are considered.

The move-generation routines are highly
effective at filtering the hundreds or thousands
of possible moves:12

It is important to note that simply select-
ing the one move preferred by the score-
and-rack evaluator plays championship-
caliber Scrabble. My practice of combining
10 moves from multiple generators is evi-
dence of developing paranoia on my part.
“Massive overkill” is the centerpiece of
maven’s design philosophy.

Obviously, this move filtering works very
well, given the level of the program’s play. The
Scrabble community has extensively analyzed
MAVEN’s play and found a few minor errors in
the program’s play. Postmortem analysis of the
Logan match showed that MAVEN made mistakes
that averaged nine points a game. Logan’s aver-
age was 40 points a game. MAVEN missed seven
fishing moves—opportunities to exchange
some tiles (69 points lost), some programming
errors (48 points lost), and several smaller mis-
takes (6 points lost). The programming errors
have been corrected. If a future version of MAVEN

included fishing, the error rate would drop to
less than one point to a game. MAVEN would be
playing nearly perfect Scrabble.

Of the points lost because of programming
errors, Brian Sheppard 13

It just drives me crazy that I can think up
inventive ways to get computers to act
intelligently, but I am not smart enough
to implement them correctly.

The soliloquy of every games programmer!

an exhibition match between MAVEN and a team
consisting of world champion Joel Sherman
and runner-up Matt Graham. It is not clear
whether the collaboration helped or hindered
the human side, but the computer won con-
vincingly by a score of six wins to three. The
result was not an anomaly. In July 1998, MAVEN

played another exhibition match against Adam
Logan (at AAAI-98), scoring nine wins to five.

Shortly after the Logan match, Brian Shep-
pard wrote:9

The evidence right now is that MAVEN is far
stronger than human players.… I have
outright claimed in communication with
the cream of humanity that MAVEN should
be moved from the “championship cal-
iber’’ class to the “abandon hope’’ class,
and challenged anyone who disagrees
with me to come out and play. No takers
so far, but maybe one brave human will
yet venture forth.

No one has.
MAVEN divides the game into three phases

(Sheppard 2001): (1) early game, (2) pre–end
game, and (3) end game. The early game starts
at move one and continues until there are 9 or
fewer tiles left in the bag (that is, with the
opponent’s 7 tiles, there are 16 or fewer
unknown tiles). In the pre–end-game and end-
game phases, specialized searches are per-
formed, taking advantage of the limited
amount of unknown information.

In the early game phase, the program uses
simulations to get a statistical analysis of the
likely consequences of making a move. Typical-
ly, 1,000 three-ply simulations are done when
making a move decision. The move leading to
the highest average point differential is select-
ed. The issue with the simulations is move gen-
eration. On average, there are over 700 legal
moves to a position, and the presence of 2
blanks in the rack can increase this figure to
more than 5000!10 Contrast this number, for
example, with chess, where the average number
of moves to consider in a position is roughly 40.
Thus, MAVEN needs to pare the list of possible
moves down to a small list of likely moves.
Omitting an important move from this list will
have serious consequences; it will never be
played. Consequently, MAVEN uses multiple
move generators, each identifying moves that
have important features that merit considera-
tion. These move generators are as follows:

Score and rack: This generator finds moves
that result in a high score and a good rack (tiles
remaining in your possession). Strong players
evaluate their rack based on the likeliness of
the letters being used to aid upcoming words.
For example, playing a word that leaves a rack

Articles

36 AI MAGAZINE

Articles

FALL 2001 37

At AAAI-98, MAVEN played an exhibition
match against Adam Logan, one of the top
Scrabble players in North America. Logan
won three of the first four games of the
match, but MAVEN won six of the next seven.
Going into the critical twelfth game, MAVEN

led by a score of seven wins to four. The fol-
lowing annotations are based on comments
from Brian Sheppard. The columns of a
Scrabble board are specified from left to
right by the letters a to o. Rows are specified
from top to bottom using the numbers 1 to
15. Moves are specified by giving the square
of the first letter of the word. If the coordi-
nate begins with a number, then the word
is placed horizontally. If the coordinate
begins with a letter, then the word is placed
vertically. The blank is referred to by “?.”

Follow along yourself. How good are the
moves that you find?

MAVEN (ACNTVYZ) plays CAVY at 8f, 24
pts, MAVEN = 24 Logan = 0. The alternative is
ZANY, scoring 32 points, but leaving a poor
selection of letters in the rack.

Logan (EGLNORY) plays YEARLONG at
g6, 66 pts, MAVEN = 24 Logan = 66. The only
bingo! A 50 point bonus.

MAVEN (ADNNOTZ) plays DOZY at 6d, 37
pts, MAVEN = 61 Logan = 66. AZLON
(10e,34,NTD) or ZOON (11e,26,ADNT) can
also be considered.

Logan (ADEFOTV) plays OFT at h13, 21
pts, MAVEN = 61 Logan = 87. Of course, you
also considered VOTED (5A,27,AF), OVA
(H13,21,DEFT), FOVEAL (10b,22,DT), and
ADVENT (12c,22,FO).

MAVEN (AENNNOT) plays NEON at 5b, 15
pts, MAVEN = 76 Logan = 87.

Logan (ACDEEIV) plays DEVIANCE at
12b, 96 pts, MAVEN = 76 Logan = 183. Anoth-

er bingo!
MAVEN (AHINRTU) plays HURT at 4a, 34

pts, MAVEN = 110 Logan = 183.
Logan (DDEEMMN) plays EMENDED at

c7, 26 pts, MAVEN = 110 Logan = 209.
MAVEN (ABEINNP) plays IAMB at 8a, 33

pts, MAVEN = 143 Logan = 209.
Logan (AILMTTU) plays MATH at a1, 27

pts, MAVEN = 143 Logan = 236. Strong play-
ers also consider UTA (3a,20,ILMT), which
scores fewer points but gets rid of the
annoying “U.”

MAVEN (EFGNNPS) plays FEIGN at e10, 18
pts, MAVEN = 161 Logan = 236. FENS
(j9,24,GNP) scores more points, but FEIGN
keeps better tiles.

Logan (AILORTU) plays TUTORIAL at
15h, 77 pts, MAVEN = 161 Logan = 313.
Adam Logan’s third bingo!

MAVEN (?ABNOPS) plays BOS at j10, 26
pts, MAVEN = 187 Logan = 313. See figure A.
Sheppard considers this to be a “fantastic
move” and one of the most difficult moves
in the game.

Logan (IILPRSU) plays PILIS at 15a, 34
pts, MAVEN = 187 Logan = 347. PILIS, PULIS,
PILUS, and PURIS are all good.

MAVEN (?AKNPRS) plays SPANKER at k5,
105 pts, MAVEN = 292 Logan = 347. The only
bingo, reviving Maven’s chances despite
the 160-point deficit.

Logan (EEEORUS) plays OE at b1, 12 pts,
MAVEN = 292 Logan = 359. The best move,
dumping extra vowels.

MAVEN (?HJTTWW) plays JAW at 7j, 13
pts, MAVEN = 305 Logan = 359.

Logan (AEEGRSU) plays GREASE at m3,
31 pts, MAVEN = 305 Logan = 390. AGER
(L9,24,ESU) also merits consideration.

MAVEN (?HRTTWX) plays AX at 6m, 25

pts, MAVEN = 330 Logan = 390. Maven’s sec-
ond brilliant move, choosing AX over GOX
(13G,36) and sacrificing 11 points.

Logan (EIIILQU) plays LEI at o5, 13 pts,
MAVEN = 330 Logan = 403.

MAVEN (?AHRTTW) plays WE at 9b, 10
pts, MAVEN = 340 Logan = 390.

Logan (AIIIOQU) plays QUAI at j2, 35
pts, MAVEN = 340 Logan = 438. A 98-point
lead and only a few moves are left in the
game. Obviously, it’s all over.

MAVEN (?AHRTTU) plays MOUTHPART at
1a, 92 + 8 pts, MAVEN = 440 Logan = 438. See
figure B. Wonderful! MAVEN scores exactly
100 points, edging Adam Logan by 2. Shep-
pard writes that “MAVEN steals the game on
the last move. Adam, of course, was
stunned, as it seemed that there were no
places for bingos left on this board. If I
hadn’t felt so bad for Adam, who played
magnificently, I would have jumped and
cheered” (Brian Sheppard, personal com-
munication, 1999). This game put MAVEN up
by eight games to four, so winning the
match was no longer in doubt.

How often do you score 438 points in a
game of Scrabble…and lose?

Just in case some of the words used in
this game are not part of your everyday
vocabulary, here are a few useful definitions
(taken from the commercial version of
MAVEN):

Bos: a pal.
Fens: marshes.
Foveal: a shallow anatomical depression.
Gox: gaseous oxygen.
Pilis: a Philippine tree.
Uta: a type of lizard.
Zoon: whole product of one fertilized

egg.

So, You Think You Are Good at Scrabble?

Figure A. MAVEN Plays BOS (j10), Scoring 26 Points. Figure B. MAVEN—Logan, Final Position.

Zia Mahmood. In 1990, he offered a prize of
£1,000,000 to the person who developed a pro-
gram that could defeat him at bridge. At the
time, this bet seemed safe for the foreseeable
future.

In the 1990s, several academic efforts began
using bridge for research in AI (Frank 1998;
Ginsberg 1999; Smith, Nau, and Throop 1998a,
1998b; Ginsberg 1996b). The commercial
BRIDGE BARON program teamed up with Dana
Nau and Steve Smith from the University of
Maryland. The result was a victory in the 1997
World Computer Bridge Championship. The
program used a hierarchical task network for
the play of the hand. Rather than build a
search tree where each branch was the play of
a card, they would define each branch as a
strategy, using human-defined concepts such
as finesse and squeeze (Smith, Nau, and Throop
1998a, 1998b). The result was an incremental
improvement in the program’s card play, but it
was still far from being world-class caliber.

Beginning in 1998, Matthew Ginsberg’s pro-
gram GIB started dominating the computer
bridge competition, handily winning the
World Computer Bridge Championship. The
program started producing strong results in
competitions against humans, including an
impressive result in an exhibition match
against world champions Zia Mahmood and
Michael Rosenberg (held at AAAI-98). The
match lasted two hours, allowing 14 boards to
be played. The result was in doubt until the last
hand, before the humans prevailed by 6.31
international match points (IMPs). This result
was the first notable man-machine success for
computer bridge-playing programs. Zia Mah-
mood, impressed by the rapid progress made
by GIB, withdrew his million pound prize.

GIB was invited to compete in the Par Con-
test at the 1998 World Bridge Championships.
This tournament tests the contestant’s skills at
playing out bridge hands. In a select field of 35
of the premier players in the world, the pro-
gram finished strongly in twelfth place.
Michael Rosenberg won the event with a score
of 16,850 out of 24,000; GIB scored 11,210. Of
the points lost by GIB, 1,000 were because of
time (there was a 10-point penalty for each
minute spent thinking), 6,000 were because GIB

did not understand the bidding, and 6,000
were because GIB was unable to handle some
hands where the correct strategy involves com-
bining different possibilities (Ginsberg 1999).

The name GIB originally stood for “Goren in
a box,” a tribute to one of the pioneers of
bridge. Another interpretation is “Ginsberg’s
Intelligent Bridge.’’ Previous versions of GIB

used a fast search to play out a hand. It simu-

Other Games
Superhuman performance has been achieved
in several lesser-known games. For example,
for both the acient African game of Awari and
the recently invented Lines of Action, there
seems little doubt that computers are signifi-
cantly stronger than all human players. In
Awari, databases containing all positions with
38 or fewer stones on the board have been con-
structed (the game starts with 48 stones), sug-
gesting that a perfect computer player will
soon be available. In Lines of Action, the pro-
gram MONA won the world mail-play champi-
onship in competition against most of the top
human players. The gap between the top pro-
grams and the best humans appears to be large
and growing.

For some games, computers have been able
to determine the result of perfect play and a
sequence of moves to achieve this result (van
den Herik, Uiterwijk, and van Rijswijck 2001).14

In these games, the computer can play perfect-
ly, in the sense that the program will never
make a move that fails to achieve the best-pos-
sible result. Solved games include Nine Men’s
Morris (Gasser 1995), Connect-4 (Allis 1988),
Qubic (Allis 1994), Go Moku (Allis 1994), and 8
� 8 Domineering (Breuker, Uiterwijk, and van
den Herkik 2000).

This article has not addressed one-player
games (or puzzles). Single-agent search (A*) has
successfully been used to optimally solve
instances of the 24-puzzle (Korf 2000; Korf and
Felner 2001) and Rubik’s Cube (Korf 1997).

Current Research Efforts
In the past decade, a number of games have
become popular research test beds. These
games are resistant to alpha-beta search, either
because of the large branching factor in the
search tree or the presence of unknown infor-
mation. In many respects, the research being
done for these games has the potential to be
much more widely applicable than the work
done on the alpha-beta search-based programs.

Bridge
Work on computer bridge began in the early
1960s (Berlekamp [1963], for example), but it
wasn’t until the 1980s that major efforts were
undertaken. The advent of the personal com-
puter spurred numerous commercial projects
that resulted in programs with relatively poor
capabilities. Perennial world champion Bob
Hamman once remarked that the commercial
programs “would have to improve to be hope-
less’’ (Ginsberg 1999). A similar opinion was
shared by another frequent world champion,

Articles

38 AI MAGAZINE

lated roughly 50 different scenarios for the
placement of the opponent’s cards and chose
the play that maximized the expected score
(Ginsberg 1999). For the play of the hand,
Ginsberg has developed a new version of the
algorithm that eliminates the simulations and
replaces it with perfect information (Ginsberg
2001).

A challenging component of the game is the
bidding. Most previous attempts at bridge bid-
ding have been based on an expert-defined set
of rules. This is largely unavoidable because
bidding is an agreed-on convention for com-
municating card information. GIB takes this
bidding one step further, building on the abil-
ity to quickly simulate a hand (Ginsberg 1999).
The program has access to a large database of
bidding rules (7,400 rules from the commercial
program MEADOWLARK BRIDGE). At each point in
the bidding, GIB queries the database to find the
set of plausible bids. For each bid, the rest of
the auction is projected using the database,
and then the play of the resulting contract is
simulated. GIB chooses the bid that leads to the
average best result for the program.

Although intuitively appealing, this ap-
proach does have some problems. Notably, the
database of rules might have gaps and errors in
it. Consider a rule where the response to the
bid 4� is incorrect in the database. GIB will
direct its play toward this bid because it
assumes the opponents will make the (likely
bad) database response. As Ginsberg writes, “It
is difficult to distinguish a good choice that is
successful because the opponent has no win-
ning options from a bad choice that appears
successful because the heuristic fails to identify
such options’’ (Ginsberg 1999, p. 588).

GIB uses three partial solutions to the prob-
lem of an erroneous or incomplete bidding sys-
tem. First, the bidding database can be exam-
ined by doing extensive offline computations
to identify erroneous or missing bid informa-
tion. This is effective but can take a long time
to complete. Second, during a game, simula-
tion results can be used to identify when a
database response to a bid leads to a poor
result. This may be evidence of a database
problem, but it could also be the result of effec-
tive disruptive bidding by GIB. Finally, GIB can
be biased to make bids that are “close” to the
suggested database bids, allowing the program
the flexibility to deviate from the database.

To summarize, GIB is well on the way to
becoming a world-class bridge player. The pro-
gram’s card play is already at a world-class level
(as evidenced by the Par Contest result), and
current efforts will only enhance the program’s
abilities. The bidding needs improvement, an

effort that is currently being addressed. Had Zia
Mahmood not withdrawn his offer, he might
eventually have lost his money.

Go
The history of computer go has not been dom-
inated by hardware advances, as seen in com-
puter chess. Computer go tournaments prolif-
erated in the 1990s, and the organizers had the
benefit of the chess experience. Two tourna-
ment rules were instituted that had a signifi-
cant impact on how program development
would occur. The first required all competitors
to run on a commercially available single-
processor machine, which had the advantage
of putting all the programs on a level playing
field by factoring out most hardware differ-
ences. The second rule required that an entire
game had to be completed in 30 minutes for
each player. Because games could be as long as
180 moves a side, programmers were faced
with critical cost-benefit decisions in their
implementations. The rules had the advan-
tages of making tournaments easy to organize
(no expensive hardware setup or modem con-
nections needed) and ensuring that competi-
tions could be completed quickly with lots of
games being played.

The first go program was written by Al
Zobrist in 1970 (Zobrist 1970). Walter Reitman
and Bruce Wilcox began researching go pro-
grams in 1972 (Reitman et al. 1974), an effort
that has continued for Wilcox to the current
day. These early efforts produced weak pro-
grams; there was no obvious single algorithm
to build a program around, as alpha-beta had
done for chess. The difficulty in writing a go
program became evident; a strong program
would need lots of patterns and knowledge,
with only a limited dependence on search.

Computer go tournaments began in 1984
with a short-lived series of annual tournaments
at the USENIX Conference. In 1987, the First
International Go Congress was held, and there
have been annual events ever since. The mid-
1990s were dominated by the program
HANDTALK, written by Zhixing Chen. HANDTALK

remained stagnant for a few years while it was
being rewritten. During this time, Michael
Reiss’ GO4++ assumed front-runner status.
Chen’s new program, GOEMATE, now appears to
be the best. Although the top programs claim a
performance level of as many as 3 kyu on the
go rating scale (a middle amateur level), most
experts believe that the programs are much
weaker than that (around 8 kyu).

The Ing Prize has been set up as an incentive
to build strong go programs. The grand prize of
roughly $1.5 million will be won by the devel-

Articles

FALL 2001 39

Poker
There are many popular poker variants. Texas
Hold’em is generally acknowledged to be the
most strategically complex variant of poker
that is widely played. It is the premier event at
the annual World Series of Poker.15 Until
recently, poker has been largely ignored by the
computing academic community. There are
two main approaches to poker research
(Billings 1995): One approach is to use simpli-
fied variants that are easier to analyze. Howev-
er, one must be careful that the simplification
does not remove challenging components of
the problem. For example, Findler (1977)
worked on and off for 20 years on a poker-play-
ing program for 5-card–draw poker. His
approach was to model human cognitive
processes and build a program that could learn,
ignoring many of the interesting complexities
of the game.

The other approach is to pick a real variant
and investigate it using mathematical analysis,
simulation, and ad hoc expert experience.
Expert players with a penchant for mathemat-
ics are usually involved in this approach. None
of this work has led to the development of
strong poker-playing programs.

There is one event in the meager history of
computer poker that stands out. In 1984 Mike
Caro, a professional poker player, wrote a pro-
gram that he called ORAC (Caro spelled back-
wards). It played one-on-one, no-limit Texas
Hold’em. Few technical details are known
about ORAC other than it was programmed on
an Apple II computer in Pascal. However, Caro
arranged a few exhibitions of the program
against strong players:16

It lost the TV match to casino owner Bob
Stupak, but arguably played the superior
game. The machine froze on one game of
the two-out-of-three set when it had
moved all-in and been called with its
three of a kind against Stupak’s top two
pair. Under the rules, the hand had to be
replayed. In the [world series of poker]
matches, it won one (from twice world
champion Doyle Brunson—or at least it
had a two-to-one chip lead after an hour
and a quarter when the match was can-
celed for a press conference) and lost two
(one each to Brunson and then-reigning
world champion Tom McEvoy), but—
again—was fairly unlucky. In private,
preparatory exhibition matches against
top players, it won many more times than
it lost. It had even beaten me most of the
time.

Unfortunately, ORAC was never properly doc-

opers of the first program to beat a strong
human player on a 19 � 19 board. To qualify to
play for the grand prize, a program must win a
number of matches of increasing difficulty.
Currently, the programs have to defeat three
junior players (ages 11 to 13). Don’t let their
age fool you; they are very strong players! The
winner of the annual International Go Con-
gress gets the chance to play. To qualify for this
event, a program must finish in the top three
in one of the North American, European, or
Asian championships.

Go has been resistant to the techniques that
have been successfully applied to the games
discussed in this article. For example, because
of the 19 � 19 board and the resulting large
branching factor, alpha-beta search alone has
no hope of producing strong play. Instead, the
programs perform small, local searches that use
extensive application-dependent knowledge.
David Fotland, the author of the MANY FACES OF

GO program, identifies over 50 major compo-
nents needed by a strong go-playing program.
The components are substantially different
from each other, few are easy to implement,
and all are critical to achieving strong play. In
effect, you have a linked chain, where the
weakest link determines the overall strength.

Martin Müller (author of EXPLORER) gives a
stark assessment of the reality of the current
situation in developing go programs (Müller
1999, pp. 105–106):

Given the complexity of the task, the sup-
porting infrastructure for writing go pro-
grams should offer more than is offered
for other games such as chess. However,
the available material (publications and
source code) is far inferior. The playing
level of publicly available source code…,
though improved recently, lags behind
that of the state-of-the-art programs.
Quality publications are scarce and hard
to track down. Few of the top program-
mers have an interest in publishing their
methods. Whereas articles on computer
chess or general game-tree search methods
regularly appear in mainstream AI jour-
nals, technical publications on computer
go remain confined to hard to find pro-
ceedings of specialized conferences. The
most interesting developments can be
learned only by direct communication
with the programmers and never get pub-
lished.

Although progress has been steady, it will
take many decades of research and develop-
ment before world-championship–caliber go
programs exist (Mueller 2001).

Articles

40 AI MAGAZINE

umented and the results never reproduced. It is
highly unlikely that ORAC was as good as this
small sample suggests. No scientific analysis
was done to see whether the results were the
result of skill or luck. As further evidence, none
of the current-day commercial efforts can
claim to be anything but intermediate-level
players.

In the 1990s, the creation of an internet
relay chat (IRC) poker server gave the opportu-
nity for humans (and computers) to play inter-
active games over the internet. A number of
hobbyists developed programs to play on IRC.
Foremost among them is R00LBOT, developed
by Greg Wohletz. The program’s strength
comes from using expert knowledge at the
beginning of the game and doing simulations
for subsequent betting decisions.

The University of Alberta program POKI,
authored by Darse Billings, Aaron Davidson,
Jonathan Schaeffer, and Duane Szafron, is the
first serious academic effort to build a strong
poker-playing program. POKI plays on the IRC
poker server and, like R00LBOT, is a consistent
big winner. Unfortunately, because these games
are played with fictitious money, it is hard to
extrapolate these results to casino poker.

To play poker well, a program needs to be
able to assess hand strength (chances that you
have the current best hand), assess hand poten-
tial (chances that additional cards will improve
your hand), model the opponents (exploiting
tendencies in their play), handle deception
(misleading information given by the oppo-
nents), and bluff (deceive the opponents). In
strategic games such as chess, the performance
loss by ignoring opponent modeling is small;
hence, it is usually ignored. In contrast, not
only does opponent modeling have tremen-
dous value in poker, it can be the distinguish-
ing feature between players at different skill
levels. If a set of players all have a comparable
knowledge of poker fundamentals, the ability
to alter decisions based on an accurate model
of the opponent can have a greater impact on
success than any other strategic principle.17

To assess a hand, POKI compares its cards
against all possible opponent holdings. Naive-
ly, one could treat all opponent hands as equal-
ly likely; however, this skews the hand evalua-
tions compared to more realistic assumptions.
Many weak hands are likely to have been fold-
ed early on in the game. Therefore, for each
possible opponent hand, a probability (or
weight) is computed that indicates the likeli-
hood that the opponent would have played
the hand in the observed manner.

The simplest approach to determining these
weights is to treat all opponents the same, cal-

culating a single set of weights to reflect reason-
able behavior, and use them for all opponents.
An offline simulation was used to compute the
expected value for each possible hand; these
results closely approximate the ranking of
hands by strong players. This is called generic
opponent modeling (GOM) (Billings et al.
1998). Although rather simplistic, this model is
quite powerful in that it does a good job of
skewing the hand evaluations to take into
account the most likely opponent holdings.

Obviously, treating all opponents the same is
clearly wrong; each player has a different style.
Specific opponent modeling (SOM) customizes
the calculations to include opponent-specific
information. The probability of an opponent
holding a particular hand is adjusted by feed-
ing into a neural net the betting frequency sta-
tistics gathered on this opponent from previ-
ous hands. These statistics usually provide
enough information to differentiate, for exam-
ple, aggressive playing styles from conservative
ones.

In competitive poker, opponent modeling is
much more complex than portrayed here. For
example, players can act to mislead their oppo-
nents into constructing an erroneous model.
Early in a session, a strong poker player might
try to create the impression of being very con-
servative, only to exploit this image later in the
session when the opponents are using an
incorrect opponent model. A strong player has
to have a model of each opponent that can
quickly adapt to changing playing styles.

At best, POKI plays at the strong intermediate
level (Billings et al. 2001). A considerable gap
remains to be overcome before computers will
be as good as the best human players. Recent
research has focused on trying to build “opti-
mal” playing strategies (Koller and Pfeffer
1997).

Other Games
Several less well-known games are providing
interesting challenges. The following three
examples all have one property in common: a
large branching factor.

Shogi, often referred to as Japanese chess, is
very popular in Japan, with major tournaments
each year culminating in a computer world
championship. From the search point of view,
Shogi is more challenging than chess: 9 � 9
board (versus 8 � 8 for chess), 40 pieces (32 for
chess), 8 piece types (6), 80 to 120 average
branching factor (40), and ability of the cap-
tured pieces to be returned to the board
(removed from the board). Checkmating
attacks are critical in Shogi; the programs need
specialized checkmate solvers. These solvers

Articles

FALL 2001 41

and deep solution lengths (some optimal solu-
tions are over 700 moves) make for a daunting
search. On a standard test set, the program
ROLLING STONE can only solve 57 of 90 problems
(Junghanns and Schaeffer 2001, 1999).

The Future of Computer Games
In the realm of board and card games, go will
continue to taunt AI researchers for many
decades to come. As well, new games will come
along to provide interesting challenges. For
example, the game of Octi was invented to be
resistant to computer algorithms.18 It is charac-
terized by having a large branching factor,
making deep search impractical. However, Octi
has the additional dimension that a move can
change the capabilities of a piece, making it
challenging to design an evaluation function.

The research into board and card games is, in
some sense, historically motivated because
these challenges were interesting at the dawn
of the computing age. However, with the
advent of home computers, new forms of com-
puter games and a $20 billion (and growing)
industry has emerged: interactive computer
games. There are numerous products on the
market covering the gamut of action games
(for example. shoot’em-up games such as
Quake), role-playing games (for example, player
goes on a quest, as in Baldur’s Gate), adventure
games (for example, navigating through a
scripted story, as in King’s Quest), strategy
games (for example, controlling armies in a
war, such as in Command and Conquer), “God”
games (for example, evolving a simulated pop-
ulation, as in SimCity), and sports (for example,
controlling a player or coaching a team, such
as FIFA’01) (Laird and van Lent 2000). Histori-
cally, these games have been long on graphics
and short on AI.19

John Laird has promoted interactive com-
puter games as an opportunity for the AI
research community (Laird and van Lent
2000). Many interactive computer games
require computer characters that need to inter-
act with the user in a realistic, believable man-
ner. Computer games are the ideal application
for developing human-level AI. There is
already a need for it because human game
players are generally dissatisfied with comput-
er characters. The characters are shallow, too
easy to predict, and, all too often, exhibit arti-
ficial stupidity rather than artificial intelli-
gence. This has led to the success of online
games (such as Ultima Online), where players
compete against other humans. The current
state of the art in developing realistic charac-
ters can be described as primitive, with simple

have had some spectacular successes. For
example, programs are now capable of solving
composed problems with a solution length of
over 1500 ply! Nevertheless, the best programs
play at the master’s level, but world-champi-
onship–level play is still a few decades away
(Iida, Sakuta, and Rollason 2001).

Hex is an elegant game with a simple rule
set: alternate placing a stone of your color on
an empty square. One player tries to create a
chain of stones connecting the top to the bot-
tom of the board. The other player tries to con-
nect the left side to the right side. It can be
shown mathematically that the game is a first-
player win and that draws are not possible.
QUEENBEE was the first program to achieve suc-
cess against strong programs (van Rijswijk
2000). The program uses alpha-beta search
with a novel evaluation function. Hexy is cur-
rently the strongest program in the world and
is competitive with strong human players for
smaller board sizes. The program uses a special-
ized search for virtual connections, utilizing a
theorem-prover-like technique to prove that
two points not connected can be connected by
a series of moves (Anshelevich 2001, 2000).

A recently invented game that has become
popular for games researchers is Amazons. It is
played on a 10 � 10 board, with each player
having four queens. Pieces move like a queen
in chess, but after moving, they shoot an
arrow in any direction. The square on which
the arrow lands now becomes a wall and can-
not be occupied by a queen. In effect, each
move reduces the playing area available. If you
run out of moves, you lose. In the opening
phase of the game, there can be several thou-
sand moves to choose from. The best programs
typically search five ply ahead (deeper in the
end game). Because of the territorial nature of
the game, Amazons is often touted as a
research stepping stone between the search-
intensive approaches used in chess and the
knowledge-intensive approaches used in go. AI
research into this game is only three years old.
The best programs play reasonably well but are
not yet competitive with strong human play-
ers (van den Herik 2000).

Interesting research is also being done on
puzzles. Recently, major advances have
occurred in building programs that can solve
crossword puzzles. PROVERB (Michael Littman,
Greg Keim, and colleagues) scores remarkably
well (over 95 percent of the words correct) on
the New York Times crossword puzzles without
understanding the clues (Keim et al. 1999;
Keim, and Shazeer 2001)!

Another challenging puzzle is SOKOBAN. Here
the large branching factor (could be over 100),

Articles

42 AI MAGAZINE

rule-based systems and finite-state machines
the norm. The lack of sophistication is the
result of the lack of research effort (and, cause
and effect, research dollars). This is changing
because more game companies and researchers
recognize that AI will play an increasingly
important role in game design and develop-
ment. The quality of the computer graphics
might draw you to a product, but the play of
the game will keep you using the product (and
buying the sequel). AI is critical to creating a
satisfying gaming experience.

Finally, the last few years have seen research
on team games become popular. The annual
RoboCup competition encourages hardware
builders and software designers to test their
skills on the soccer field.20

Although this article has emphasized build-
ing games programs that can compete with
humans, there are many other AI challenges
that can use games as an interesting experi-
mental test bed. Some sample projects include
data mining, learning, and annotators.

Data mining: There are large databases of
end-game positions for chess, checkers, and
awari. It is dissatisfying that all a program can
do is look up a specific position in the database.
If the exact position is in the database, you get
useful information, else nothing. Surely there
must be some way of mining the data to learn
the principles of strong end-game play. As well,
there are large databases of chess opening
moves. Can these databases be analyzed to dis-
cover new opening ideas? Can one characterize
an opponent’s strengths and weaknesses? Can
the data be extrapolated to similar positions?

Learning: Using temporal-difference learn-
ing to tune an evaluation function is just the
precursor to other exciting applications of
learning technology to games. For example,
research in applying learning algorithms can
result in more focused and informed game-tree
searches, better opponent modeling in poker,
and adaptive characters in commercial games.

Annotators: Developing annotators that
can provide an interesting and informative
analysis of a game is a challenging problem.
There have been some attempts at automating
the commentary for chess games (the Interna-
tional Computer Chess Association has an
annual competition), but the results are
mediocre. It is hard to differentiate between
the trivial and the interesting, the verbose and
the informative, all the while anticipating the
questions humans would like answered in the
commentary. An interesting example is the
work done on providing computer commen-
tary to RoboCup games (Frank et al. 2001).

Games will continue to be an interesting

domain for exploring new ideas in AI.

Conclusions
Shannon, Turing, Samuel, Newell, and Simon’s
early writings were pioneering, realizing that
computer games could be a rich domain for
exploring the boundaries of computer science
and AI. Software and hardware advances have
led to significant success in building high-per-
formance game-playing programs, resulting in
milestones in the history of computing. With it
has come a change in people’s attitudes.
Whereas in the 1950s and 1960s, understand-
ing how to build strong game-playing pro-
grams was at the forefront of AI research, today
it has been demoted to lesser status. In part,
this is an acknowledgment of the success
achieved in this field—no other area of AI
research can claim such an impressive track
record of producing high-quality working sys-
tems. However, it is also a reflection on the
nature of AI itself. It seems that as the solution
to problems become understood, the tech-
niques become less “AIish.”

The work on computer games has resulted in
advances in numerous areas of computing.
One could argue that the series of computer-
chess tournaments that began in 1970 and
continue to this day represents the longest run-
ning experiment in computing science history.
Research using games has demonstrated the
benefits of brute-force search, something that
has become a widely accepted tool for a num-
ber of search-based applications. Many of the
ideas that saw the light of day in game-tree
search have been applied to other algorithms.
Building world-championship–caliber games
programs has demonstrated the cost of con-
structing high-performance AI systems. Games
have been used as experimental test beds for
many areas of AI. And so on.

Arthur Samuel’s concluding remarks from
his 1960 paper are as relevant today as they
were when he wrote the paper (Samuel 1960):

Programming computers to play games is
but one stage in the development of an
understanding of the methods which
must be employed for the machine simu-
lation of intellectual behavior. As we
progress in this understanding it seems
reasonable to assume that these newer
techniques will be applied to real-life situ-
ations with increasing frequency, and the
effort devoted to games … will decrease.
Perhaps we have not yet reached this turn-
ing point, and we may still have much to
learn from the study of games.

One could
argue that
the series of
computer-
chess
tournaments
that began in
1970 and
continue to
this day
represents the
longest
running
experiment in
computing
science
history.

Articles

FALL 2001 43

(rock, paper, scissors) competitions (www.cs.ualber-
ta.ca/~games).

18. www.octi.net.

19. For example, path finding is a critical component
of many games, yet it took until 1996 for the indus-
try to “discover” A*.

20. www.robocup.com.

21. Portions of this article were published in Schaef-
fer (2000) and are reproduced with permission.

References
Allis, V. 1994. Searching for Solutions in Games and
Artificial Intelligence. Ph.D. dissertation, Depart-
ment of Computer Science, University of Limburg.

Allis, V. 1980. A Knowledge-Based Approach to Con-
nect-Four. The Game Is Solved: White Wins. M.Sc.
thesis, Department of Computer Science, Vrije Uni-
versiteit.

Anshelevich, V. 2001. A Hierarchical Approach to
Computer Hex. Artificial Intelligence. Forthcoming.

Anshelevich, V. 2000. The Game of Hex: An Auto-
matic Theorem-Proving Approach to Game Program-
ming. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence,189–194. Menlo
Park, Calif.: American Association for Artificial Intel-
ligence.

Appel, A., and Jacobson, G. 1980. The World’s Fastest
Scrabble Program. Communications of the ACM 31(5):
572–578, 585.

Berlekamp, E. 1963. A Program for Playing Double-
Dummy Bridge Problems. Journal of the ACM 10(4):
357–364.

Berliner, H. 1980a. Backgammon Computer Program
Beats World Champion. Artificial Intelligence 14(2):
205–220.

Berliner, H. 1980b. Computer Backgammon. Scientif-
ic American 242(6): 64–72.

Berliner, H., and Ebeling, C. 1989. Pattern Knowledge
and Search: The supreme Architecture. Artificial Intel-
ligence 38(2): 161–198.

Billings, D. 1995. Computer Poker. M.Sc. thesis,
Department of Computing Science, University of
Alberta.

Billings, D.; Davidson, A.; Schaeffer, J.; Szafron, D.
2001. The Challenge of Poker. Artificial Intelligence.
Forthcoming.

Billings, D.; Papp, D.; Schaeffer, J.; and Szafron, D.
1998. Opponent Modeling in Poker. In Proceedings
of the Fifteenth National Conference on Artificial
Intelligence, 493–499. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Breuker, B.; Uiterwijk, J.; and van den Herik, J. 2000.
Solving 8 3 8 Domineering. Theoretical Computer Sci-
ence 20(1–2): 195–206.

Buro, M. 2001. Improving Heuristic Min-Max Search
by Supervised Learning. Artificial Intelligence. Forth-
coming.

Buro, M. 1997. The Othello Match of the Year:
Takeshi Murakami vs. LOGISTELLO. Journal of the Inter-
national Computer Chess Association 20(3): 189–193.

Buro, M. 1995. Statistical Feature Combination for

Acknowledgments
I would like to extend my deepest admiration
to the brave human champions who accepted
the challenge of a computer opponent. In most
cases, the champion had little to gain but
everything to lose. Malcolm Davis, Garry Kas-
parov, Adam Logan, Zia Mahmood, Marion
Tinsley, Michael Rosenberg, and Takeshi
Murakami made it possible to scientifically
measure the progress of game-playing pro-
grams.

The initial impetus for this article came
almost two years ago when Marvin Zelkowitz
suggested I write an article for Advances in Com-
puters 50, reflecting back on the 40 years since
Arthur Samuel wrote an article on computer
games in volume 1 of this series. This article
was eventually worked into a talk that was pre-
sented at AAAI-00. I want to thank David Leake
for encouraging me to write this article.

Financial support was provided by the Nat-
ural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and Alberta’s Informat-
ics Circle of Research Excellence (CORE).21

Notes
1. Othello is a registered trademark of Tsukuda Orig-
inal, licensed by Anjar Co.

2. Scrabble is a registered trademark of the Milton
Bradley Company, a division of Hasbro, Inc.

3. See www.msoworld.com.

4. E-mail message from G. Tesauro, 14 August 1998.

5. To be fair, it is unlikely that the International
Chess Federation will ever allow computers to com-
pete for the world championship.

6. The drosophila is the fruit fly. The analogy is that
the fruit fly is to genetics research as games are to AI
research.

7. Note that there is no need for a phase for less than
13 discs on the board because the search from the
first move easily reaches 13 or more discs.

8. E-mail message from B. Sheppard, 9 March 1999.

9. Personal communication with B. Sheppard, 1999.

10. As a frequent Scrabble player, I painfully admit
that the number of words that I find is considerably
smaller than this!

11. E-mail message from B. Sheppard, 1 June 1999.

12. E-mail message from B. Sheppard, 1 June 1999.

13. Personal communication with B. Sheppard, 1999.

14. This is in contrast to the game of Hex, where it is
easy to prove the game to be a first-player win, but
computers are not yet able to demonstrate this win.

15. The 2000 winner of this event was Chris Fergu-
son, whose research career began in AI (he has pub-
lished with Richard Korf [Powley, Ferguson, and Korf
1993]).

16. E-mail message from M. Caro, 13 March 1999.

17. The importance of opponent modeling can be
seen in the First and Second International RoShamBo

Articles

44 AI MAGAZINE

the Evaluation of Game Positions. Journal of Artificial
Intelligence Research 3:373–382

Campbell, M.; Hoane, J.; and Hsu, F.-H. 2001. DEEP

BLUE. Artificial Intelligence. Forthcoming.

Condon, J., and Thompson, K. 1982. Belle Chess
Hardware. In Advances in Computer Chess 3, ed. M.
Clarke, 45–54. New York: Pergamon.

Ebeling, C. 1987. All the Right Moves. Cambridge,
Mass.: MIT Press.

Felten, E., and Otto, S. 1988. A Highly Parallel Chess
Program. In Proceedings of the Conference on Fifth Gen-
eration Computer Systems, 1001–1009. New York:
Springer-Verlag.

Findler, N. 1977. Studies in Machine Cognition
Using the Game of Poker. Communications of the
ACM 20(4): 230–245.

Frank, I. 1998. Search and Planning under Incomplete
Information: A Study Using Bridge Card Play. New York:
Springer Verlag.

Frank, I.; Tanaka-Ishii, K.; Okuno, H.; Nakagawa, Y.;
Maeda, K.; Nakadai, K.; and Kitano, H. 2001. And the
Fans Are Going Wild! SIG plus MIKE. In Proceedings
of the Fourth International Workshop on RoboCup. New
York: Springer-Verlag. Forthcoming.

Gasser, R. 1995. Efficiently Harnessing Computation-
al Resources for Exhaustive Search. Ph.D. disserta-
tion, Institute of Theoretical Computer Science, ETH
Zürich.

Ginsberg, M. 1999. GIB: Steps toward an Expert-Level
Bridge-Playing Program. In Proceedings of the Six-
teenth International Joint Conference on Artificial
Intelligence, 584–589. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Ginsberg, M. 1996a. Do Computers Need Common
Sense? In Proceedings of the Fifth International Confer-
ence on Knowledge Representation and Reasoning,
620–626. San Francisco, Calif.: Morgan Kaufmann.

Ginsberg, M. 1996b. Partition Search. In Proceedings
of the Thirteenth National Conference on Artificial
Intelligence, 228–233. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Gordon, S. 1994. A Faster Scrabble Move Generation
Algorithm. Software Practice and Experience 24(2):
219–232.

Hsu, F. 1999. IBM’s DEEP BLUE Chess Grandmaster
Chips. IEEE Micro 19(2): 70–81.

Hsu, F.; Anantharaman, T.; Campbell, M.; and
Nowatzyk, A. 1990a. A Grandmaster Chess Machine.
Scientific American 263(4): 44–50.

Hsu, F.; Anantharaman, T.; Campbell, M.; and
Nowatzyk, A. 1990b. Deep Thought. In Computers,
Chess, and Cognition, eds. T. Marsland and J. Schaef-
fer, 55–78. New York: Springer Verlag.

Hyatt, R.; Gower, A; and Nelson, H. 1990. Cray Blitz.
In Computers, Chess, and Cognition, eds. T. Marsland
and J. Schaeffer, 111–130. New York: Springer Verlag.

Iida, H.; Sakuta, M.; and Rollason, J. 2001. The State
of the Art in Computer Shogi. Artificial Intelligence.
Forthcoming.

Junghanns, A., and Schaeffer, A. J. 2001. Enhancing
Single-Agent Search Using Domain Knowledge. Art-
ficial Intelligence 129(1–2): 219–251.

Junghanns, A., and Schaeffer, J. 1999. Domain-
Dependent Single-Agent Search Enhancements. In
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, 570–575. Men-
lo Park, Calif.: International Joint Conferences on
Artificial Intelligence.

Keim, G.; Shazeer, N.; Littman, M.; Agarwal, S.;
Cheves, C.; Fitzgerald, J.; Grosland, J.; Jiang, F.; Pol-
lard, S.; and Weinmeister, K. 1999. PROVERB: The Prob-
abilistic Cruciverbalist. In Proceedings of the Six-
teenth National Conference on Artificial Intelligence,
710–717. Menlo Park, Calif.: American Association
for Artificial Intelligence.

Koller, D., and Pfeffer, A. 1997. Representations and
Solutions for Game-Theoretic Problems. Artificial
Intelligence 94(1): 167–215.

Korf, R. 2000. Recent Progress in the Design and
Analysis of Admissible Heuristic Functions. In Pro-
ceedings of the Seventeenth National Conference on
Artificial Intelligence, 1165–1170. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Korf, R. 1997. Finding Optimal Solutions to Rubik’s
Cube Using Pattern Databases. In Proceedings of the
Fourteenth National Conference on Artificial Intelli-
gence, 700–705. Menlo Park, Calif. : American Asso-
ciation for Artificial Intelligence.

Korf, R., and Felner, A. 2001. Disjoint Pattern Data-
base Heuristics. Artificial Intelligence. Forthcoming.

Krol, M. 1999. Have We Witnessed a Real-Life Turing
Test. Computer 32(3): 27–30.

Laird, J., and van Lent, M. 2000. Human-Level AI’s
Killer Application: Interactive Computer Games. In
Proceedings of the Seventeenth National Conference
on Artificial Intelligence, 1171–1178. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Lee, K.-F., and Mahajan, S. 1990. The Development of
a World Class Othello Program. Artificial Intelligence
43(1): 21–36.

Levy, D., and Beal, D., eds. 1989. Heuristic Program-
ming in Artificial Intelligence. New York: Ellis Hor-
wood.

Littman, M.; Keim, G.; and Shazeer, N. 2001. Solving
Crossword Puzzles by Computer. Artificial Intelligence.
Forthcoming.

McCarthy, J. 1997. AI as Sport. Science 276: 1518–
1519.

Mueller, M. 2001. Computer Go. Artificial Intelligence.
Forthcoming.

Müller, M. 1999. Computer Go: A Research Agenda.
Journal of the International Computer Chess Association
22(2): 104–112.

Newell, A.; Shaw, J.; and Simon, H. 1958. Chess-Play-
ing Programs and the Problem of Complexity. IBM
Journal of Research and Development 2(2): 320–335.

Pfeiffer, J. 1964. Man vs. Machine in the Mechanical
Age. Popular Mechanics, August, 52–57,172–173.

Plaat, A.; Schaeffer, J.; Pijls, W.; and de Bruin, A. 1996.
Exploiting Graph Properties of Game Trees. In Pro-
ceedings of the Thirteenth National Conference on
Artificial Intelligence, 234–239. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Articles

FALL 2001 45

Sutton, R. 1988. Learning to Predict by the Methods
of Temporal Differences. Machine Learning 3:9–44.

Tesauro, G. 2001. Programming Backgammon Using
Self-Teaching Neural Nets. Artificial Intelligence.
Forthcoming.

Tesauro, G. 1995. Temporal-Difference Learning and
td-gammon. Communications of the ACM 38(3):
58–68.

Tesauro, G. 1989. Neurogammon Wins Computer
Olympiad. Neural Computation 1(3): 321–323.

Thompson, K. 1982. Computer Chess Strength. In
Advances in Computer Chess 3, ed. M. Clarke, 55–56.
Oxford, U.K.: Pergamon.

Tinsley, M. 1980. Letter to the Editor. Scientific Amer-
ican, August.

Truscott, T. 1979–1980. The Duke Checkers Program.
Journal of Recreational Mathematics 12(4): 241–247.

Turing, A. 1953. Digital Computers Applied to
Games. In Faster Than Thought, ed. B. Bowden,
286–295. London: Pitman.

van den Herik, J. 2000. The Fifth Computer
Olympiad. International Computer Games Association
Journal 23(3): 164–187.

van den Herik, J.; Uiterwijk, J.; and van Rijswijck, J.
2001 Games Solved: Now and in the Future. Artificial
Intelligence.

van Rijswijk, J. 2000. Computer Hex: Are Bees Better
Than Fruit Flies? M.Sc. thesis, Department of Com-
puting Science, University of Alberta.

Zobrist, A. 1970. Feature Extractions and Representa-
tion for Pattern Recognition and the Game of Go.
Ph.D. dissertation, University of Wisconsin.

Jonathan Schaeffer is a professor
of computing science at the Uni-
versity of Alberta. He received his
B.Sc. from the University of Toron-
to (1979) and his M.Math (1980)
and Ph.D. (1986) degrees from the
University of Waterloo. His
research interests are in AI and
parallel/distributed computing. He

is best known for his work on computer games. He is
the creator of the checkers program CHINOOK, the first
program to win a human world championship in
any game. He is also a cofounder of the bioinformat-
ics software company BioTools, Inc. His e-mail
address is jonathan@cs.ualberta.ca.

Powley, C.; Ferguson, C.; and Korf, R. E. 1993. Depth-
First Heuristic Search on a SIMD Machine. Artificial
Intelligence 60(2): 199–242.

Reitman, W.; Kerwin, J.; Nado, R.; Reitman, J.; and
Wilcox, B. 1974. Goals and Plans in a Program for
Playing Go. In Proceedings of the Association of
Computing Machinery National Conference,
123–127. New York: Association of Computing
Machinery.

Rosenbloom, P. 1982. A World-Championship-Level
Othello Program. Artificial Intelligence 19(3): 279–320.

Samuel, A. 1967. Some Studies in Machine Learning
Using the Game of Checkers: Recent Progress. IBM
Journal of Research and Development 11(6): 601–617.

Samuel, A. 1960. Programming Computers to Play
Games. In Advances in Computers, Volume 1, ed F. Alt,
165–192. San Diego, Calif.: Academic.

Samuel, A. 1959. Some Studies in Machine Learning
Using the Game of Checkers. IBM Journal of Research
and Development 3(2): 210–229.

Schaeffer, J. 2000. The Games Computers (and Peo-
ple) Play. In Advances in Computers 50, ed. M.
Zelkowitz, editor, 189–266. San Diego, Calif.: Acade-
mic Press.

Schaeffer, J. 1997. One Jump Ahead: Challenging
Human Supremacy in Checkers. New York: Springer-
Verlag.

Schaeffer, J.; Hlynka, M.; and Jussila, V. 2001.
Termporal Difference Learning Applied to a High-
Performance Game-Playing Program. Paper present-
ed at the Seventeenth International Joint Conference
on Artificial Intelligence, 4–10 August, Seattle, Wash-
ington.

Schaeffer, J.; Culberson, J.; Treloar, N.; Knight, B.; Lu,
P.; and Szafron, D. 1992. A World Championship Cal-
iber Checkers Program. Artificial Intelligence 53(2–3):
273–290.

Shannon, C. 1950. Programming a Computer for
Playing Chess. Philosophical Magazine 41(4): 256–275.

Shapiro, S., and Smith, H. 1977. A Scrabble Cross-
word Game-Playing Program. Technical Report, 119,
Department of Computer Science, State University of
New York at Buffalo.

Sheppard, B. 2001. World Championship–Caliber
Scrabble. Artificial Intelligence. Forthcoming.

Slate, D., and Atkin, L. 1977. Chess 4.5—The North-
western University Chess Program. In Chess Skill in
Man and Machine, 82–118. New York: Springer-Ver-
lag.

Smith, S.; Nau, D.; and Throop, T. 1998a. Computer
Bridge: A Big Win for AI Planning. AI Magazine 19(2):
93–105.

Smith, S.; Nau, D.; and Throop, T. 1998b. Success in
Spades: Using AI Planning Techniques to Win the
World Championship of Computer Bridge. In Pro-
ceedings of the Fifteenth National Conference on
Artificial Intelligence, 1079–1086. Menlo Park, Calif.:
American Association for Artificial Intelligence.

Strachey, C. 1952. Logical or Non-Mathematical Pro-
grammes. In Proceedings of the Association for Com-
puting Machinery Meeting, 46–49. New York: Associ-
ation of Computing Machinery.

Articles

46 AI MAGAZINE

