
� Planning domains often feature subproblems such
as route planning and resource handling. Using
static domain analysis techniques, we have been
able to identify certain commonly occurring sub-
problems within planning domains, making it
possible to abstract these subproblems from the
overall goals of the planner and deploy specialized
technology to handle them in a way integrated
with the broader planning activities. Using two
such subsolvers our hybrid planner, STAN4, partici-
pated successfully in the Fifth International Con-
ference on Artificial Intelligence Planning and
Scheduling (AIPS’00) planning competition.

The philosophy underlying our work on
domain analysis is that uninformed,
knowledge-sparse planning is impracti-

cal for real application. Although such strate-
gies can be impressive when applied to toy
domains, they cannot address highly struc-
tured problem domains effectively. However,
when knowledge-sparse approaches are supple-
mented by domain knowledge, they can per-
form impressively (Bacchus and Kabanza 2000)
at the cost of an increased representation bur-
den on the domain designer. We have been
exploring the use of automatic domain analy-
ses to identify structure in a planning domain
that a planner can exploit to combat search.

In this article, we introduce a way of decom-
posing planning problems to identify instances
of common subproblems. In many cases, high-
performance approximation strategies exist for
solving such problems, and it is inappropriate
to address them using brute-force search. We
have been experimenting with using the auto-
matic domain analysis techniques of TIM (Fox
and Long 2001a, 2001b, 1998; Long and Fox
2000a, 2000b) to recognize and isolate sub-
problems and integrate their solution, by

means of specialized algorithms, with the
search behavior of a knowledge-sparse planner.
Full descriptions of the processes involved can
be found in Fox and Long (2001a, 2001b).

A preliminary hybrid architecture was suc-
cessfully implemented in version 4 of the STAN

system (STAN4) and has proved very promising.
STAN4 competed in the Fifth International Con-
ference on Artificial Intelligence Planning and
Scheduling (AIPS’00) planning competition
where it excelled in problems involving route-
planning subproblems and certain simple
resource-allocation subproblems involving a
restricted form of discrete, reusable resource.
This article describes the key features of the
competition version of STAN4.

The Architecture of STAN4
The way in which TIM recognizes the presence
of combinatorial subproblems in a planning
domain builds on its identification of generic
types.

Generic types (Long and Fox 2001, 2000a)
are collections of types, characterized by spe-
cific kinds of behaviors, examples of which
appear in many different planning domains.
For example, domains often feature trans-
portation behaviors because they often involve
the movement of self-propelled or portable
objects between locations. The recognition of
transportation features within a domain sug-
gests the likelihood of route-planning sub-
problems arising in planning problems within
the domain.

Another generic behavior is resource alloca-
tion, one form of which is indicated by the exis-
tence of finite renewable resources that can be
consumed and released in units. STAN4 exploited
this kind of subproblem to interesting effect in

Articles

FALL 2001 81

STAN4
A Hybrid Planning
Strategy Based on

Subproblem Abstraction

Maria Fox and Derek Long

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 22 Number 3 (2001) (© AAAI)

relaxed version of GRAPHPLAN (Blum and Furst
1995) to compute the relaxed plan estimate.
However, unlike FF, FORPLAN uses a two-part
process to compute this estimate. In FORPLAN,
the relaxed plan is constructed for the abstract-
ed planning problem, giving only part of the
heuristic estimate. The heuristic estimate is
then improved using the calculations, per-
formed by the appropriate specialized solver, to
estimate the cost of solving the removed sub-
problem. For example, in the case of route-
planning abstraction, these calculations esti-
mate the cost of traversing the routes between
the locations that must be visited by any
mobile objects used in the plan.

To calculate a shortest path that visits all
these locations and respects any additional
orderings imposed by the plan is a variation on
a traveling salesman problem. We produce an
estimate of the cost using a simple nearest-
neighbor heuristic, which is an unsophisticat-
ed first attempt at integrating a solver for a
traveling salesman problem and does not
always perform well. For example, in the STRIPS

elevator domain, abstract plans require the ele-

the FreeCell domain in the competition.
The competition version of STAN4 consists of

the integrated combination of TIM, two distinct
planning strategies, and two specialized sub-
solvers. Given a problem, TIM is responsible for
invoking an appropriate planner and a special-
ized strategy. Integration of the specialized
technology with a planner is easiest to achieve
in a heuristic forward-search–based planner
because the states of all variables can be known
at any point during the forward-search process.
We therefore implemented a forward planner,
FORPLAN, using a simple best-first search strate-
gy. FORPLAN is only ever invoked when TIM rec-
ognizes that a planning domain contains a
route-planning or resource-allocation subprob-
lem. Before invoking FORPLAN, TIM modifies the
domain description to abstract out the recog-
nized subproblem. FORPLAN is then invoked on
the simplified domain description.

FORPLAN uses a heuristic evaluation function,
based on solving the relaxed planning prob-
lem, similar to the approach taken by HSP

(Bonet, Loerincs, and Geffner 1997) and FF

(Hoffmann 2000). Like FF, FORPLAN uses a

Articles

82 AI MAGAZINE

TIM

STAN3

STAN4

Path-planning or
Resource Management

Other Domain
Characteristics

FORPLAN

Path-planner

Resource Manager

Figure 1. The Architecture of the Hybrid System Showing How TIM Selects between FORPLAN

and STAN3 Depending on the Outcome of Domain Analysis.

vator to visit a number of pick-up locations
before their corresponding drop-off locations.
The simplest solution for the nearest-neighbor
heuristic is to visit all the pick-up locations
before any of the drop-off locations, resulting
in poor estimates. Better estimates could be
obtained by interleaving the visits, but the
nearest-neighbor heuristic cannot exploit this
possibility. When such interleaving is not
needed (as in logistics), this heuristic gives a
better estimate of the cost than a pure relaxed-
plan estimate can give. It can be observed,
from the competition data, that STAN4 pro-
duced the best-quality plans in all the logistics
problems it could solve, whereas its perfor-
mance in the elevator domain was variable.

Once an action is selected, it is checked to
determine whether it entails obligations that
must be satisfied by the plan (for example, in
route abstraction, actions in the abstracted
plan entail commitments on mobile objects to
reach key locations). If so, a way of meeting
these obligations is proposed by the specialized
algorithm. In the case of route abstraction, the
subsolver proposes the shortest path between
the current location of the mobile (which is
always known in a forward search) and the
required location, which is recorded in the
action as part of the abstraction process. STAN4
uses Floyd’s (1962) algorithm to compute this
path in static maps.

To be able to compete realistically in the
competition, we needed to be able to report
results for problems that did not have either of
the two generic features that TIM could recog-
nize at this stage in its development. We there-
fore supplemented FORPLAN with STAN3 (Long
and Fox 1999), a GRAPHPLAN-based planner
exploiting various preprocessing techniques.
We then integrated our route-planning sub-
solver, and a resource-allocation subsolver,
with the FORPLAN strategy.

An important feature of STAN4 is that TIM fails
safe when it is unable to detect an appropriate
generic structure in a domain. If a domain fea-
tures a more complex form of mobile than TIM

can recognize, then STAN4 is unable to exploit
the presence of this mobile, but it can still solve
the problem using the uninformed planning
techniques of STAN3. Thus, despite its special-
ized handling of domains when appropriate,
STAN4 is a domain-independent system.

TIM selects between the two planning strate-
gies according to the structure of the domain.
If the domain contains a recognized subprob-
lem, FORPLAN is invoked. STAN3 is invoked in all
other cases. If FORPLAN is invoked, the domain is
automatically modified to abstract out the sub-
problem before planning begins. This process

is described in Fox and Long (2001a, 2001b). A
high-level view of the architecture of STAN4 is
presented in figure 1.

Further Work
Although the competition version of STAN4 pro-
duced some promising results, the framework
we used to achieve integration was unsophisti-
cated and inflexible. Our subsequent work has
addressed the following points:

First, in the competition version of STAN4, TIM

could only recognize simple mobile types. TIM

is now able to recognize a more diverse range of
mobile types and perform appropriate modifi-
cations to enable the route-planning subprob-
lems to be abstracted and handled correctly.
TIM can now identify mobiles that need drivers
to provide their mobility and can solve the dri-
ver-allocation subproblem as part of route
planning for these mobiles.

Second, the competition version of STAN4
featured a simplistic integration mechanism,
which was based on attaching subproblem-spe-
cific information to domain constructs during
the abstraction process, allowing FORPLAN to
pass specific forms of information to the two
subsolvers. Subsolvers could only pass back
heuristic distance estimates. The support for
two-way communication has now been
improved and generalized into a proper inter-
face between the planning and subsolving lev-
els (Fox and Long 2001a).

Third, in the competition version, STAN4
only supported integration with one special-
ized subsolver at a time, even when a domain
featured multiple subproblems. The uniform
interface mentioned earlier supports a more
powerful form of integration, allowing multi-
ple subsolvers to communicate with the plan-
ner. This area is a focus of ongoing research.

Fourth, the subsolvers integrated with the
competition version are simplistic and produce
poor performance in some domains. The com-
petition version of STAN4 was designed as a
proof of concept, demonstrating that domain
analysis could be used to select intelligently
between alternative problem-solving strategies.
The use of more powerful specialized tech-
niques is now being considered.

Conclusions
We have experimented with the design of a
hybrid planning system in which the choice of
problem-solving strategy is made automatically
following static analysis of the domain. Our
preliminary hybrid system, STAN4, gave a
promising performance in the AIPS’00 compe-

Articles

FALL 2001 83

The key idea
underlying
our hybrid
approach is
that
uninformed
search is not
appropriate
technology
for solving
all planning
problems.

of State Invariants in TIM. Journal of AI Research
9:367–421.

Hoffmann, J. 2000. A Heuristic for Domain-Indepen-
dent Planning and Its Use in an Enforced Hill-Climb-
ing Algorithm, Technical report, Institute for Com-
puter Science, Albert-Ludwigs University.

Long, D., and Fox, M. 2001. Planning with Generic
Types. Technical report, Department of Computer
Science, University of Durham.

Long, D., and Fox, M. 2000a. Automatic Synthesis
and Use of Generic Types in Planning. In Proceedings
of the Fifth International Conference on AI Planning and
Scheduling, 196–205. Menlo Park, Calif.: AAAI Press.

Long, D., and Fox, M. 2000b. Extracting Route Plan-
ning: First Steps in Automatic Problem Decomposi-
tion Workshop on Analyzing and Exploiting Domain
Knowledge for Efficient Planning. Presented at the
Fifth International Conference on Artificial Intelli-
gence Planning and Scheduling, 14–17 April, Breck-
enridge, Colorado.

Long, D., and Fox, M. 1999. The Efficient Implemen-
tation of the Plan-Graph in STAN. Journal of AI
Research 10:87–115.

Maria Fox is reader in computer
science at the University of
Durham, United Kingdom, where
she has worked since 1995. She
previously held a lectureship at
University College London. Fox
has been working in AI planning
since obtaining her Ph.D. in 1989.
In collaboration with Derek Long,

she developed the STAN and TIM systems. Her main
interests are in domain-independent planning and
preplanning domain analysis techniques. Her e-mail
address is maria.fox@durham.ac.uk.

Derek Long is a lecturer in com-
puter science at Durham Universi-
ty, United Kingdom. He joined the
department in 1995 after lecturing
at University College London for
six years. He obtained his doctor-
ate at the Programming Research
Group, Oxford University, in
1989. Since then, he has pursued

interests in reasoning techniques in general and in
planning in particular. He has worked in close collab-
oration with Maria Fox for the last 10 years. His e-
mail address is d.p.long@durham.ac.uk.

tition but was restricted in terms of the power
of integration that could be supported.

The competition data show that in domains
in which TIM was able to identify exploitable
subproblems, STAN4 gave a good performance,
particularly in terms of plan quality. Its logis-
tics plans were better even than those of
TALPLANNER, which was using hand-coded con-
trol knowledge. In the FreeCell and elevator
domains, STAN4 gave a varied performance,
demonstrating that the identification of an
exploitable subproblem, and integration of
appropriate subsolvers, was still at a raw stage
at the time of the competition.

Our primary goal since the competition has
been to improve integration with specialized
solvers, allowing a more sophisticated profile
of subproblems to be managed. The key idea
underlying our hybrid approach is that unin-
formed search is not appropriate technology
for solving all planning problems. Instead, we
are interested in building up a collection of
purpose-built strategies for combatting some of
the most commonly occurring subproblems
and making these available to a planner,
together with techniques for recognizing
where these problems arise in planning
domains. The decision about how to approach
a given planning problem can then be made
automatically, in a principled way, by deciding
how to view the problem and deploying the
most effective technology to solve it.

References
Bacchus, F., and Kabanza, K. 2000. Using Temporal
Logic to Express Search Control Knowledge for Plan-
ning. In Artificial Intelligence, Volume 16, 123–191.
New York: Elsevier Science.

Blum, A., and Furst, M. 1995. Fast Planning through
Planning Graph Analysis. In Proceedings of the Four-
teenth International Joint Conference on Artificial
Intelligence, 1636–1642. Menlo Park, Calif.: Interna-
tional Joint Conferences on Artificial Intelligence.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A
Robust and Fast Action Selection Mechanism for
Planning. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, 714–719. Men-
lo Park, Calif.: American Association for Artificial
Intelligence.

Floyd, R. W. 1962. Algorithm 97: Shortest Path. Com-
munications of the ACM 5(6):345.

Fox, M., and Long, D. 2001a. Extending the Recogni-
tion and Use of Mobility in Planning Domains. Tech-
nical report, Department of Computer Science, Uni-
versity of Durham.

Fox, M., and Long, D. 2001b. Hybrid STAN: Identify-
ing and Managing Combinatorial Optimization Sub-
problems in Planning. Paper presented at the Seven-
teenth International Joint Conference on Artificial
Intelligence, 4–11 August, Seattle, Washington.

Fox, M., and Long, D. 1998. The Automatic Inference

Articles

84 AI MAGAZINE

