
� TALPLANNER is a forward-chaining planner that uti-
lizes domain-dependent knowledge to control
search in the state space generated by action invo-
cation. The domain-dependent control knowl-
edge, background knowledge, plans, and goals are
all represented using formulas in a temporal logic
called TAL, which has been developed indepen-
dently as a formalism for specifying agent narra-
tives and reasoning about them. In the Fifth Inter-
national Artificial Intelligence Planning and
Scheduling Conference planning competition,
TALPLANNER exhibited impressive performance,
winning the Outstanding Performance Award in
the Domain-Dependent Planning Competition. In
this article, we provide an overview of TALPLANNER.

TALPLANNER1 (Doherty and Kvarnström
1999; Kvarnström and Doherty 2001;
Kvarnström, Doherty, and Haslum 2000)

participated in the recent planning competi-
tion at the Fifth International Conference on
Artificial Intelligence Planning and Scheduling
(AIPS’00), which took place in Breckenridge,
Colorado, in April 2000. TALPLANNER received
the Outstanding Performance Award in the
Domain-Dependent Planning Competition
and first place in the Miconic 10 Elevator Con-
trol Domain Competition sponsored by
Schindler Lifts Ltd. For the domains used in the
competition, TALPLANNER exhibited remarkable
performance in comparison to many of the
other state-of-the-art planners that participat-
ed in the competition.

TALPLANNER is a forward-chaining planner
that utilizes domain-dependent knowledge to
control search in the state space generated by
action invocation. The domain-dependent
control knowledge, background knowledge,

plans, and goals are all represented using for-
mulas in a temporal logic called TAL, which has
been developed independently as a formalism
for specifying agent narratives and reasoning
about them. A narrative consists of a specifica-
tion of fluents that hold at various points in
time, causal dependencies that relate fluent
change, action types that characterize action
occurrences that can be invoked by an agent,
and domain constraints that characterize back-
ground knowledge. A logical model for a nar-
rative describes a linear sequence of states
where fluents have unique values in each state.
A plan is viewed as a narrative, plan operators
are viewed as action types, and domain-depen-
dent control knowledge and goals as temporal
formulas entailed by the generated narrative.

Although forward-chaining planners gener-
ally suffer from a lack of goal directedness
when compared to other types of planners
such as regression-based or partial-order plan-
ners, for many domains, the use of explicitly
represented domain-dependent knowledge
more than compensates for this deficiency.
More significantly, a forward-chaining planner
always has a complete description of the past
and current states, which facilitates the use of
complex operator types with complex precon-
ditions and conditional effects.

The use of a first-order temporal logic lan-
guage is well suited for compactly representing
both the complex operator features and the
control knowledge used to prune the search
space. This representation is highly amenable
to the syntactic transformations used in vari-
ous types of optimization associated with the
planning algorithm. In addition, the use of
logic for representation provides a natural
semantics for plans, goals, and control knowl-
edge.

Articles

FALL 2001    95

TALPLANNER
A Temporal 

Logic-Based Planner 

Patrick Doherty and Jonas Kvarnström

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 22 Number 3 (2001) (© AAAI)



optimization techniques used in TALPLANNER. A
comparison between TALPLANNER and TLPLAN is
made using a number of benchmark examples
from the AIPS’98 planning competition, which
are similar to those used in AIPS’00 and equally
challenging. We conclude with a discussion
about additional extensions to TALPLANNER not
described in this article and some future direc-
tions for research.

TAL: Temporal Action Logics
TAL, temporal action logics (Doherty et al.
1998), is a family of narrative-based first-order
temporal logics developed for reasoning about
action and change in incompletely specified
dynamic worlds. The TAL logics share a first-
order base language L(FL), used for formally rea-
soning about narratives. From a knowledge
engineering perspective, viewing narratives as
sets of first-order formulas lacks structure and
modularity. Instead, we developed a higher-
level macro language called L(ND) that permits
structured representation of narratives using
labeled statements. One can automatically
transform a set of statements in L(ND) into a set
of first-order formulas in L(FL).

Because our worlds are incompletely speci-
fied, such issues as the frame, qualification, and
ramification problems arise. We provide solu-
tions to these problems using a combination of
representational techniques and circumscrip-
tion (McCarthy 1980) that enable the encoding
of flexible closed-world and persistence
assumptions. Efficient inference from the
resulting theories is made possible with the use
of quantifier elimination techniques, a subject
for another article. Currently, TALPLANNER only
requires the evaluation of a TAL formula in a
model where the domain is restricted to be
finite. In Doherty and Kvarnström (1999) and
Kvarnström and Doherty (2001), we presented
a version of L(ND) called L(ND)*, suitable for
modeling planning domains and problem
instances. Compared to other L(ND) versions, it
contains two additional statement classes for
goals and control rules. In a following section,
we provide examples of some of these state-
ment classes.

Framework and Methodology
Figure 1 provides an abstract overview of
TALPLANNER’s architecture in terms of input and
output and the relation between TAL and
TALPLANNER. The figure also provides a means
of understanding the research methodology
used in the development of TALPLANNER.

In figure 1, TALPLANNER takes a TAL goal nar-

How did TALPLANNER come about? As stated
previously, we have spent a number of years
developing logical representations of agent
behaviors in the form of narratives using tem-
poral logic. More recently, we have been
involved in an unmanned aerial vehicle (UAV)
project that includes development of delibera-
tive-reactive systems to support autonomous
behavior. One of the central components of
the architecture is a planning module that
more often than not must generate plans in a
timely or anytime manner. In addition, the
planner must have the capability to reason
about explicit time and represent actions with
complex interactions and duration.

After surveying the planning literature, we
found few if any planning approaches that had
the potential for dealing with the many con-
straints associated with the UAV project. There
was one exception, though: TLPLAN (Bacchus
and Kabanza 2000, 1998, 1996). We were
immediately struck by the simplicity and ele-
gance of the approach in addition to its perfor-
mance. TLPLAN uses a modal tense logic to rep-
resent domain-dependent control knowledge,
and their forward-chaining algorithm is based
on the use of formula progression, a technique
similar to that used in tableau theorem provers
for tense logics.

To test the feasibility of the approach, we
implemented an initial version of TALPLANNER

that translated between temporal formulas in
our formalism and tense logic formulas and
used formula progression. The results were
promising. In fact, this implementation was
faster than TLPLAN when tested using a number
of benchmarks from the AIPS’98 competition.
However, we were less satisfied with the need
to translate and use a formula progression algo-
rithm. Consequently, we began experimenta-
tion with a different approach that evaluates
TAL formulas directly without the use of formu-
la progression. This latest version of TALPLAN-
NER is substantially different from TLPLAN, and
the performance is markedly better than the
original approach both in terms of time and
space complexity. In addition, the relation
between TALPLANNER and TAL is much more
comprehensive, which offers methodological
advantages as TALPLANNER is incrementally
extended in the future.

In the rest of this article, we provide an
overview of TALPLANNER. We begin by introduc-
ing the temporal logic TAL and then proceed to
the methodological framework used to develop
TALPLANNER. We then describe a robotics grip-
per domain example followed by a presenta-
tion of the planning algorithm and its opera-
tion, which is followed by a discussion about

Articles

96 AI MAGAZINE



rative in L(ND)* as input. The planner translates
the goal narrative into a suitable internal rep-
resentation and then searches for a plan, an
operator sequence satisfying the goal state-
ment and the control rules. If a plan exists, the
result is a new narrative in L(ND) where goals
and control rules have been removed, and a set
of TAL action occurrences (corresponding to
plan steps) has been added. Observe that one
can use standard inference techniques or tech-
niques specific to TAL to reason about both the
input goal narrative and the output narrative.
The output narrative is always guaranteed to
entail the original goal and the domain-depen-
dent control knowledge.

The methodology we use to incrementally
extend TALPLANNER is based on our experience
with TAL. TAL serves as a reference formalism for
TALPLANNER, where the language used to repre-
sent narratives in TAL can be viewed as a rich
and expressive plan representation language.
The plan synthesis algorithm associated with
TALPLANNER is incrementally extended by
increasing the expressivity of the plan opera-
tors and other narrative statement classes. The
semantics and understanding of the extensions
are always grounded in the formal semantics
associated with TAL.

Observe that TALPLANNER does not subscribe
to the planning as theorem-proving paradigm.
Instead, the associated logic, TAL, serves as a for-
mal plan specification language with an associ-
ated semantics for understanding the intrica-
cies of operator invocation in incompletely
specified world domains. The implementation
reflects this view by constructing partial mod-
els that are incremented as plan operators are
added and filtered as control formulas are eval-
uated in these partial models.

A Gripper Domain Example
We use a simple gripper domain as an example.
In this domain, a robot, ROBBY, can move
objects between a number of rooms. For sim-
plicity, we assume ROBBY only has a single grip-
per. Each object is initially in a room, and the
goal requires some objects to end up in certain
rooms. We model this using the sorts boolean
= {true, false}, obj containing objects and room
containing locations, and the propositional
(Boolean) state variables at-robby(room),
at(obj, room), carry(obj), and free. Moving
takes three time points, and picking up and
dropping objects takes a single time point.

In figure 2, three operator descriptions are
shown with the L(ND)* syntax used in TALPLAN-
NER.

In the narrative language L(ND), the move
operator belongs to the narrative statement
class action type and would be represented as
shown in figure 3.

In the logical language L(FL), the move oper-
ator would be represented as shown in figure 4.

Similar translations are used for the other
narrative statement classes.

The definition of a specific problem instance
contains a specification of the sorts, for exam-
ple, room = {roomA, roomB} and obj = {ball1,
ball2}. It also specifies an initial state, for exam-
ple, [0]�obj[at(obj, roomA) ∧ ¬carry(obj)] ∧ at-
robby(roomA), and partially or completely
describes a goal state, for example, �obj[ at(obj,
roomB)].

Control formulas for the gripper domain:
For the gripper domain, we use the following
three control statements specified in L(ND)*.
These formulas must hold in any plan generat-
ed by TALPLANNER.

Articles

FALL 2001   97

Goal Narrative
TAL TALPlanner

Plan Narrative
TAL

L(ND)*

1st-order
theory

1st-order

L(FL)

theory T 
Circ(T) +  

Quantifier Elimination

Goal

L(FL)

L(ND)

Figure 1. TAL/TALPLANNER Relation.



gripper is free, and there is an object here that
should be moved to another room. Again, to
avoid having to return later, it should not
move until it has picked it up:

�t, r, o.[t] free � at-robby(r) � at(o, r) �
[t] ∃r′[r′ ≠ r � goal(at(o, r′))] →
[t + 1] at-robby(r)

Third, only pick up an object if the goal
requires it to be in another room:

�t, o. [t] ¬carry(o) �
[t] �r, r′[at(o, r) � goal(at(o, r′)) → r = r′ ] →
[t + 1]  ¬carry(o)

The task of specifying control statements is cur-
rently the responsibility of the domain designer.
For many domains, the process is intuitive and
straightforward. We imagine that for other
domains, the process will be quite complex, and
finding a means of automatically generating at
least some of the control statements is highly
desirable and a challenging research issue.

TALPLANNER

In the previous section, we provided a descrip-
tion of the components in a TAL goal narrative
using the gripper domain example. TALPLANNER

takes a TAL goal narrative as input and generates
a new narrative where a set of timed action
occurrences has been added. Internally, howev-
er, TALPLANNER is basically a forward-chaining
planner, searching through the space of states
reachable from the initial state. To be able to
describe this search space in more detail, we
must first provide a few definitions.

Because of the use of actions with nonunit
duration, plans cannot be simple sequences of
operators but must also contain timing infor-
mation. This information is provided as timed
operator instances of the form [s, t] o, denoting
the invocation of the operator instance o
between times s and t, where s < t.

An executable operator sequence is a tuple of
timed operator instances with the following
constraints: First, the empty tuple is an exe-
cutable operator sequence. Second, given a
sequence of n operators ending in [tn–1, tn] on, its
successors are exactly those sequences adding
one new timed operator instance [tn, tn+1] on+1
such that on+1 is applicable at [tn, tn+1] (where tn
= 0 if n = 0).

A plan is an executable operator sequence
that corresponds to an infinite state sequence
that satisfies all control rules as well as the goal.

These definitions induce a search tree where
the root is labeled with the empty sequence,
and the children of a node labeled l are labeled
with the successors of l. Clearly, this search tree
must contain all plans. Therefore, a complete
planner can be generated by using a complete

First, suppose ROBBY is carrying an object that
should be in the current room. Clearly, it
should not move before putting it down; if it
does, it has to return later. In other words, it
should remain in the same location in the fol-
lowing state:

�t, r, o. [t] at-robby(r) � carry(o) � goal(at(o, r)) →
[t + 1] at-robby(r)

Second, a similar condition applies if ROBBY’s

Articles

98 AI MAGAZINE

#operator move(from, to) :at t
:precond [t] at-robby(from)
:effects [+3] at-robby(to) := true,

[+3] at-robby(from) := false
#operator pick(ball, room) :at t

:precond [t] at(ball, room) � at-robby(room) � free
:effects [+1] carry(ball) := true,

[+1] at(ball, room) := false,
[+1] free := false

#operator drop(ball, room) :at t
:precond [t] carry(ball) � at-robby(room)
:effects [+1] carry(ball) := false,

[+1] at(ball, room) := true,
[+1] free := true

Figure 2. Three Operator Descriptions with 
the L(ND)* Syntax Used in TALPLANNER.

acs [t, t′] move(from, to) �
t′ = t + 3 �
([t] at-robby(from) →
R([t + 3] at-robby(to) � true) �
R([t + 3] at-robby(from) � false))

Figure 3. Move Operator in the Narrative Language L(ND).

� t,t′, from, to. Occurs(t, t′′, move(from, to)) →
t′ = t + 3 �
(Holds(t, at-robby(from), true) →
Holds(t + 3, at-robby(to), true) �
Occlude(t + 3, at-robby(to)) �
Holds(t + 3, at-robby(from), false) �
Occlude(t + 3, at-robby(from)))

Figure 4. Move Operator in the Logical Language L(FL).



search algorithm, such as breadth-first search
or iterative deepening.

Conceptually, each node in the search space
contains an executable operator sequence.
Each node represents a partial model in TAL for
the narrative being constructed. Each partial
model contains a sequence of states (or prefix
to the final state sequence) that will entail the
goal statement if successful.

TALPLANNER analyzes the control formulas,
which must hold in the final plan, and extracts
pruning constraints that must hold in each
ancestor of a plan. Any node that violates a
pruning constraint is immediately filtered out.

Figure 5 provides a diagram of the search and
pruning process. The initial node is a goal narra-
tive, and the internal nodes in the tree are
representations of partial TAL models (executable
operator sequences). The goal node is trans-
formed into a standard TAL narrative containing
a generated sequence of plan operator instances.

In figure 6, we provide an abstract descrip-
tion of the TALPLANNER algorithm, which gener-
ates the search space depicted in figure 5.

The algorithm itself is straightforward; one
forward chains on operator invocations using
(in this case) a depth-first search strategy.
Branches in the search space are pruned using
pruning constraints that are automatically
derived from the control statements. One of
the bottlenecks in the algorithm is checking
when a formula is satisfied in a narrative mod-
el. We consider these issues in the next section.

The expressiveness of the operators and the
use of other narrative statement classes were
highly constrained in the competition. Plan
operators were restricted to be deterministic,
complete information about initial state was
assumed, and actions were single step. In spite
of these restrictions, the version of TALPLANNER

used in the competition allows for order-sorted
finite value domains for fluents (both Boolean
and non–Boolean domains are allowed), flu-
ents (state variables) can take arbitrary num-
bers of arguments, and action types (operators)
can be context dependent with arbitrary pre-
conditions and conditional effects.

They can also have arbitrary integer dura-
tion, and effects are not limited to the final
time point but can take place anywhere in the
duration of the action. Arbitrary goals are
allowed, including existential goals. TAL pro-
vides a semantics for all these extensions.

Optimization Techniques
Where is the magic in the algorithm that
would explain its extraordinary performance
in the domains used in the competition? Clear-

ly, it is not the algorithm itself, which, as
described previously, is a forward-chaining
algorithm with a depth-first search strategy.

The ability to represent complex domain-
dependent control knowledge compactly in a
first-order language without compiling to a
propositional representation is one of the
answers.

Because one of the bottlenecks in the algo-
rithm is to evaluate a first-order formula in a
data structure representing a TAL model, syntac-
tic transformations that simplify the automat-
ically extracted pruning constraints into equiv-
alent, but more efficiently evaluated, formulas
is another answer.

Pruning constraints can be further opti-
mized by taking advantage of information
implicit in plan operators. Each pruning con-
straint is analyzed separately for each operator
type in a domain under the assumption that
some instance of the operator has just been

Articles

FALL 2001   99

filtering

Control

A11

formula

A3

A2

A1 A7

Goal
node

Initial
node

Figure 5. Pruning.

Figure 6. Abstract Description of the TALPLANNER Algorithm.

Input: An initial goal narrative �� in L(ND)*.
Output: A plan narrative �p in L(ND) that entails the goal and the con-
trol rules.
1 procedure TALPLAN(��)
2 Open ← 〈〈0, ��〉〉 // Stack (depth-first search)
3 while Open ≠ 〈〉 do
4 〈τ, ��〉 ← pop(Open)
5 � ← (�� minus goals and control rules)
6 if the pruning constraints are satisfied in � then
7 if the state goal and control rules are satisfied return �
8 if cycle checking disabled or there is no cycle then
9 for every action [τ, τ′]o applicable at τ do
10 push 〈τ′, �� ∪ {[τ,τ′] o}〉 on Open
11fail



information sometimes allows TALPLANNER to
simplify pruning constraints further, improv-
ing the chances of converting constraints into
precondition control.

In figure 7, the preprocessing phase used in
TALPLANNER is depicted. The optimizer takes the
control rules, assertions, and plan operators as
input and outputs a set of optimized pruning
constraints for each operator. The process is
fully automated and will be described in detail
in a forthcoming paper. Note that the complete
preprocessing phase normally takes about 10 to
100 milliseconds. Future versions of TALPLAN-
NER might integrate domain-analysis tech-
niques to automatically generate assertions.

Comparison with TLPLAN

TLPLAN did not compete in the AIPS’00 compe-
tition to avoid any conflict of interest because
of Fahiem Bacchus’s role as organizer of the
competition. Although he did a fantastic job
organizing and running the competition,
TLPLAN’s absence was unfortunate because it is
one of the fastest planners around and surely
would have done well in the competition. In
addition, TALPLANNER uses the same planning
paradigm, and comparisons between the two
are of some interest. In the following, we make
an attempt at comparing the two planners
using the benchmark problems from the
AIPS’98 competition.

As stated in the beginning of the article, the
first prototype implementation of TALPLANNER

basically tried to emulate TLPLAN by using
translations of TAL formulas into tense logical
formulas and formula progression techniques.
We call this version of TALPLANNER TALPLANNER/
PROGRESSION in figures 8 through 11. The second
prototype implementation of TALPLANNER

based on direct evaluation of TAL formulas and
a preprocessing optimization phase was used in
the competition. We call this version of
TALPLANNER TALPLANNER/EVALUATION in these fig-
ures.

All benchmarks were run on the same 333-
megahertz PENTIUM II computer running WIN-
DOWS NT 4.0 SP3, using 256 megabytes of mem-
ory. The machine is slow by current standards.
For comparison with TLPLAN, we used the pre-
compiled version.3 TALPLANNER is written in
JAVA, and we used TALPLANNER 2.741 with the
JAVA DEVELOPMENT KIT 1.2.2-001 and the HOTSPOT

virtual machine (1.0fcs).4 In all cases, we made
sure that the computer was very lightly loaded
and that it was never swapping.

invoked. Although these transformations are
done during a preprocessing phase, where
exact arguments and time points are not yet
known, the operator descriptions contain con-
siderable information about the states in which
the pruning constraints will eventually be eval-
uated.

In many cases, the operator-specific analysis
described earlier results in pruning constraints
where some conjuncts, or even the entire con-
straint, only refer to the invocation state of the
operator. TALPLANNER moves such conjuncts
into the precondition of the operator, automat-
ically generating so-called precondition control.2

This control improves performance significant-
ly because control-rule violations can be
detected before the planner even attempts to
invoke an operator.

In other cases, the process completely
removes pruning constraints for certain opera-
tors, thus saving the time it takes to evaluate
the constraint. This is the case when the rule
“do not pick up an object unless it has to be
moved” is analyzed relative to the drop and
move actions, for example.

TALPLANNER also allows the domain designer
to specify a set of assertions, conditions that
must necessarily hold in any state sequence
reachable from any valid initial state. In the
gripper domain, one such assertion would be
∀t, room, room′. [t] at-robby(room) � at-
robby(room′) → room = room′: ROBBY can never
be in two rooms at once.

Assertions are mainly used during the analy-
sis phase. For example, when analyzing prun-
ing constraints relative to operators, assertions
can be used to infer additional information
about an invocation state given what is explic-
itly stated in a precondition. This additional

Articles

100 AI MAGAZINE

rules

Optimized
constraints

for operator 1 

Control

for operator n 
constraints

Pruning
constraints

Control

Optimized
analyzer optimizer

Control

definitions
Operator

Assertions

Figure 7. Optimization.



Benchmark Results
We used two of the domains chosen for both
the AIPS’98 and AIPS’00 competitions: (1)
logistics and (2) blocks. All 30 problems from
the logistics domain were taken from the
AIPS’98 competition. We generated all 43 prob-
lems from the blocks domain. For TLPLAN, the
domain descriptions and control rules used are
those from the original description used by
Bacchus and Kabanza (available in the TLPLAN

software distribution). For TALPLANNER/PROGRES-
SION, the domain descriptions use exactly the
same modal control formulas. For TALPLANNER/
EVALUATION, the domain descriptions use con-
trol formulas based on the modal control for-
mulas used by Bacchus and Kabanza. The rules
are modified somewhat to allow TALPLANNER’s
optimizer to detect additional optimization
opportunities.

Figure 8 shows how much time the planners
needed for the logistics problems, and figure 9
shows how many worlds (states) the planners
expanded. TLPLAN creates the first few plans in
about a second but needs over 15 hours for
some problems and cannot solve 2 of the prob-
lems with 256 megabytes of memory. TALPLAN-
NER is considerably faster even using progres-
sion. With evaluation, TALPLANNER solves the
largest problem (number 28) in under 0.8 sec-
onds and never exceeds the 4 megabytes of
heap space automatically allocated by the JAVA

virtual machine. TLPLAN could not solve this
problem at all (with the amount of memory
available). The largest problem it could solve
was number 29, which required >60,000 sec-
onds, compared to 15.422 seconds for modal
TALPLANNER and 0.391 seconds for TALPLANNER

using evaluation.
Figure 10 shows how much time the plan-

ners needed for the blocks-world problems,
and figure 11 shows how many worlds (states)
the planners expanded. TLPLAN creates the first
few plans in less than 10 seconds but needs
almost 9 hours for some problems and cannot
solve the larger problems with 256 megabytes
of memory. TALPLANNER/PROGRESSION is consid-
erably faster and handles considerably larger
problems. With evaluation, TALPLANNER solves
the largest problem (number 43, with 5000
blocks and >15,000 operators) in under 20 sec-
onds using 63 megabytes of memory. Clearly,
5000 blocks and 15,000 operators is nowhere
near the limit. TALPLANNER/EVALUATION with
delta states (a more memory-efficient state rep-
resentation) is somewhat slower, sometimes
requiring as much as 26 seconds but only using
27 megabytes of memory. The first 34 problems
are solved using less than the 4 megabytes of

heap space allocated by the JAVA virtual
machine.

Additional Extensions and
Future Work

Clearly, TALPLANNER has shown some potential-
ly promising results with an ability to scale up
for larger problems. It remains to be seen how
well the planner works for other domains,
especially where the constraints on complete
states and deterministic actions are lifted.

TALPLANNER has been extended for concur-
rent actions and resources (Kvarnström, Doher-
ty, and Haslum 2000). See Kvarnström and
Doherty (2001) for a more detailed description

Articles

FALL 2001   101

0.01

0.1

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

se
co

n
d

s

Logistics problem (from AIPS-98)

TLplan
TALplanner/progression
TALplanner/evaluation

Figure 8. Logistics Problems: Time.

10

100

1000

10000

100000

1e + 06

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

W
or

ld
s 

ex
p

an
d

ed

Logistics problem (from AIPS-98)

TLplan
TALplanner/progression
TALplanner/evaluation

Figure 9. Logistics Problems: States Created.



2. F. Bacchus and M. Ady. 1999. Precondition con-
trol. Available at ftp://newlogos.uwaterloo.ca/pub/
bacchus/BApre.ps.gz.

3. This version can be downloaded from
http://www.lpaig.uwaterloo.ca/~fbacchus/. 

4. Both of these can be downloaded from
http://java.sun.com.

References
Bacchus, F., and Kabanza, F. 2000. Using Temporal
Logics to Express Search Control Knowledge for Plan-
ning. Artificial Intelligence 116(1–2): 123–191.

Bacchus, F., and Kabanza, F. 1998. Planning for Tem-
porally Extended Goals. Annals of Mathematics and
Artificial Intelligence 22(1–2): 5–27.

Bacchus, F., and Kabanza, F. 1996. Using Temporal
Logic to Control Search in a Forward-Chaining Plan-
ner. In New Directions in AI Planning, eds. M. Ghallab
and A. Milani, 141–153. Amsterdam: IOS Press.

Doherty, P., and Kvarnström, J. 1999. TALPLANNER: An
Empirical Investigation of A Temporal Logic–Based
Forward-Chaining Planner. In Proceedings of the
Sixth International Workshop on Temporal Repre-
sentation and Reasoning, 47–54. New York: IEEE
Computer Society Press.

Doherty, P.; Gustafsson, J.; Karlsson, L.; and Kvarn-
ström, J. 1998. TAL: Temporal Action Logics—Lan-
guage Specification and Tutorial. Linköping Electronic
Articles in Computer and Information Science 3(15).
Available at http://www.ep.liu.se/ea/cis/1998/015.

Kvarnström, J., and Doherty, P. 2001. TALPLANNER: A
Temporal Logic–Based Forward-Chaining Planner.
Annals of Mathematics and Artificial Intelligence
30:119–169.

Kvarnström, J.; Doherty, P.; and Haslum, P. 2000.
Extending TALPLANNER with Concurrency and
Resources. In Proceedings of the Fourteenth European
Conference on Artificial Intelligence, 501–505. Amster-
dam: IOS.

McCarthy, J. 1980. Circumscription—A Form of Non-
Monotonic Reasoning. Artificial Intelligence 13(1–2):
27–39.

Patrick Doherty is a professor of computer science
in the Department of Computer and Information Sci-
ence (IDA) at Linköping University, Sweden. He is
the head of the Artificial Intelligence and Integrated
Computer Systems Division at IDA and the Knowl-
edge Processing Laboratory. He is president of the
Swedish Artificial Intelligence Society. His current
research interests include formal knowledge repre-
sentation, reasoning about action and change, and
deliberative/reactive systems. His e-mail address is
patdo@ida.liu.se.

Jonas Kvarnström is a Ph.D. student in the Depart-
ment of Computer and Information Science at
Linköping University, Sweden. He received his M.Sc.
in computer science from Linköping University in
1996. His research interests include planning and
reasoning about action and change. His e-mail
address is jonkv@ida.liu.se.

of the sequential and concurrent versions of
the planner. Current work with TALPLANNER

includes extending it to work with incomplete
information states and applying it to the UAV
domain.

Acknowledgments
This research is supported in part by the
Swedish Research Council for Engineering Sci-
ences (TFR) and the Wallenberg Foundation,
Sweden.

Notes
1. J. Kvarnström and P. Doherty, P. 2000. TALPLANNER

project page. Accessible via the KPLAB web page,
http://www.ida.liu.se/~patdo/kplabsite/html/exter-
nal/.

Articles

102 AI MAGAZINE

0.01

0.1

1

10

100

1000

10000

100000

24 26 28 30 32 34 36 38 40 42 44

se
co

n
d

s

Blocks world problem

TLplan
TALplanner/progression
TALplanner/evaluation

TALplanner/evaluation, delta states
Number of blocks

Figure 10. Blocks-World Problems: Time.

10

100

1000

10000

100000

1e+06

1e+07

24 26 28 30 32 34 36 38 40 42 44

W
or

ld
s 

ex
p

an
d

ed

Blocks world problem

TLplan
TALplanner/progression
TALplanner/evaluation
TALplanner/evaluation, 
delta states

Figure 11. Blocks-World Problems: States Created.




