
FALL 2001 107

Reports

cation and validation community and
14 from the autonomous and adaptive
system community; half of the partic-
ipants were from NASA and the other
half from universities and research
labs.

The workshop was run over two
days, with the first used for the pre-
sentation of four NASA autonomous
and adaptive system development

The long-term future of space
exploration at the National
Aeronautics and Space Adminis-

tration (NASA) is dependent on the
full exploitation of autonomous and
adaptive systems: Careful monitoring
of missions from earth, as is the norm
now, will be infeasible because of the
sheer number of proposed missions
and the communication lag for deep-
space missions. Mission managers are,
however, worried about the reliability
of these more intelligent systems. The
main focus of the workshop was to
address these worries; hence, we invit-
ed NASA engineers working on auton-
omous and adaptive systems and
researchers interested in the verifica-
tion and validation of software sys-
tems. The dual purpose of the meeting
was to (1) make NASA engineers aware
of the verification and validation tech-
niques they could be using and (2)
make the verification and validation
community aware of the complexity
of the systems NASA is developing.

The workshop was held 5 to 7
December 2000 at the Asilomar Con-
ference Center in Pacific Grove (near
Carmel) California. It was coorganized
by Charles Pecheur and Willem Visser
from the Research Institute for Ad-
vanced Computer Science (RIACS) and
Reid Simmons from Carnegie Mellon
University. RIACS gave financial and
administrative support, with Peggy
Leising handling the local arrange-
ments. We invited 42 participants to
the workshop, with 28 from the verifi-

tion and validation issues of
autonomous and adaptive systems.
The workshop concluded with an
open discussion on the results of the
break-out sessions.

The five talks on the first day were
(1) Deploying Robust Autonomous
Systems: Lessons Learned from the
Remote Agent Experiment by Nicola
Muscettola from NASA Ames Research
Center; (2) First Steps Toward Neural
Net Verification and Validation by
Rodger Knaus from Instant Recall,
Inc.; (3) Stability Issues with Reconfig-
urable Flight Control Using Neural
Generalized Predictive Flight Control
by Don Soloway from NASA Ames
Research Center; (4) Verification and
Validation of an Autonomous Agent
for Mars Duty at KSC by Peter Engrand
from NASA Kennedy Space Center;
and (5) Distributive Adaptive Control
for Advanced Life Support Systems by
David Kortenkamp from NASA John-
son Space Center.

The discussion topics for the break-
out sessions were on the verification
and validation of intelligent, adaptive,
and complex systems. In the rest of
this article, we first highlight some of
the general issues that were raised dur-
ing these three break-out sessions as
well as in the wrap-up session that fol-
lowed and then give short summaries
of each of the sessions. The last section
contains a short retrospective on the
workshop and the future of the field.

General Issues
Some of the issues that were discussed
throughout the workshop range be-
yond autonomous and adaptive sys-
tems into the more general fields of
formal verification and software engi-
neering. This section cites the more
significant ones.

Scalability
Lack of scalability is seen as a major
obstacle to current verification meth-
ods such as model checking. There is
definitely a need for improving and
extending these methods to be able to
address real-size systems. Because for-
mal methods do not scale well, it is
most productive to apply formal
methods to only the critical areas,
where developers have the least confi-

RIACS Workshop on the
Verification and Validation

of Autonomous and
Adaptive Systems

Charles Pecheur, Willem Visser, and Reid Simmons

projects as well as one talk on the ver-
ification and validation of neural nets
used in highway applications. The sec-
ond day was used for three technology
break-out sessions to discuss verifica-

The long-term future of space exploration
at the National Aeronautics and Space
Administration (NASA) is dependent on the
full exploitation of autonomous and adap-
tive systems, but mission managers are wor-
ried about the reliability of these more intel-
ligent systems. The main focus of the
workshop was to address these worries;
hence, we invited NASA engineers working
on autonomous and adaptive systems and
researchers interested in the verification
and validation of software systems. The
dual purpose of the meeting was to (1)
make NASA engineers aware of the verifica-
tion and validation techniques they could
be using and (2) make the verification and
validation community aware of the com-
plexity of the systems NASA is developing.
The workshop was held 5 to 7 December
2000 at the Asilomar Conference Center in
Pacific Grove, California.

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2001 / $2.00

AI Magazine Volume 22 Number 3 (2001) (© AAAI)

dence in the correctness.

Software Engineering Practices
Good software verification and valida-
tion starts with a good software engi-
neering process, including clearly
defined goals and requirements. Such
practices are not as well established in
the autonomy software community as
in the mainstream software industry.
Well-documented requirements are
essential for driving the verification
and validation work.

Metrics
We have to define ways to measure
and compare the utility of different
verification efforts. Thus, we need
quantitative metrics that adequately
address the different factors of the
costs and benefits of each method.
Such metrics are a necessity to clearly
indicate “where you win” by using
new verification approaches. It is
noteworthy that most of the latest
NASA project funding programs
required the mention of such evalua-
tion metrics.

Using Different Techniques
It is rarely the case that a single verifi-
cation and validation technique
achieves good results on a real-world
problem. In most cases, several tech-
niques (model checking, testing,
proofs, static analysis, and so on) must
be combined to be able to tackle the
complexity of the system to be veri-
fied. Progress in integrating different
verification and validation techniques
is therefore crucial.

Certification versus Debugging
Verification and validation techniques
can be used to achieve two comple-
mentary purposes: (1) proving a sys-
tem correct (certification) or (2) prov-
ing it incorrect, that is, finding errors
(debugging). The terms verification and

falsification have also been coined.
Both eventually help to increase the
confidence in the reliability of the sys-
tem but in different ways. Debugging
is done in earlier stages as part of the
development, and certification is per-
formed independently on the finished
product. It should be noted that “easy”
verification and validation techniques
such as model checking are often lim-
ited to debugging because the state
space of real-size systems cannot be
covered completely.

Design for Verification
Verification and validation can be
facilitated if all components are
designed with verification in mind.
For example, verification and valida-
tion of a fault diagnosis system is easi-
er if the controlled system has mecha-
nisms to inject or simulate faults.

Run-Time Verification
Automatic verification techniques,
such as model checking, can also be
useful at run time during normal oper-
ation. For example, model checking
can be used to check the results of a
heuristic AI-based algorithm such as a
planner. Such a run-time verification
combines the efficiency of heuristic
search with the robustness and for-
mality of verification.

Verification and Validation
of Intelligent Systems

This break-out group gathered 13 peo-
ple, 6 of them from NASA. The topic
had been set to verification and vali-
dation of intelligent systems, which
had been defined as systems based on
some form of AI technique, such as
model-based, rule-based, or knowl-
edge-based systems. In accordance
with the theme of the workshop,
there was of course an interest in

autonomous and adaptive systems,
but the focus was specifically on the
AI-related issues of such systems.

The moderator (Charles Pecheur)
briefly introduced the topic and pre-
sented some proposed issues, then a
lively, free-form debate ensued. The
discussion turned out to be strongly
focused on model-based systems,
which did not stem from an inten-
tional orientation or a perception
that such systems are more relevant
to the topic but, rather, from a strong
involvement of model-based autono-
my specialists in the discussion.

This section reports on discussion
topics related to model-based sys-
tems. Many of the more general
issues presented earlier also arose dur-
ing the discussion.

Verification and Validation of
Model-Based Systems
For the purpose of this discussion, a
model-based autonomous system is
viewed as a plant (a spacecraft, a robot,
and so on) driven by a controller
through a command-sensor feedback
loop. The controller itself is based on a
generic, AI-based inference engine
that peruses an abstract model of the
plant. The engine infers the appropri-
ate control actions based on the feed-
back it receives from the plant and its
knowledge about the plant extracted
from the model.

As an overall issue, there is a need to
define and build experience in the
software engineering process for mod-
el-based systems. What are the types
of requirement that a customer would
expect; how could these requirements
conveniently be expressed and veri-
fied? Can we develop or specialize a
theory and practice of testing for this
kind of system? In this prospect,
abstract autonomy models could pro-
vide a good basis for automatic gener-
ation of test cases.

A natural approach is to decompose
the verification and validation prob-
lem across the three core components
of a model-based system: (1) the plant,
(2) the engine, and (3) the model. Ver-
ification and validation of the plant is
outside the scope of this discussion.
Verification and validation of the
engine is a complex task that needs to
be addressed but concerns the design-

108 AI MAGAZINE

Reports

… because the model concentrates all the appli-
cation-specific knowledge in an abstract repre-
sentation, it is potentially more amenable to ver-
ification and validation, even for larger systems.

ers of the engine. From the point of
view of the application designer, veri-
fication and validation focuses on the
model and how it affects the operation
of the whole system, which can be
decomposed into two threads: First
how do we build and verify-validate
autonomy models? Second, given a
“valid” model, how do we verify-vali-
date the resulting autonomous con-
troller?

Note that because the model con-
centrates all the application-specific
knowledge in an abstract representa-
tion, it is potentially more amenable
to verification and validation, even for
larger systems.

There is even a hope that model-
based autonomy is “correct by design”:
If the model directly captures the spec-
ification of the plant, then the correct-
ness of the controller derives from the
correctness of the logic inference prin-
ciples implemented in the engine.
However, experience shows that
authoring autonomy models is still a
difficult and error-prone task and that
full correctness (and completeness) of
the engine is not always achieved or
even desired for performance purpos-
es. In practice, both threads are needed
and complementary.

Part of the difficulty resides in reli-
ably writing complete and consistent
models. Accordingly, tools for check-
ing consistency and completeness
would be useful. Some of this difficul-
ty might be inherent in declarative
specifications, but a part of it could be
alleviated by richer modeling lan-
guages as well.

The model itself can be further
decomposed into the different aspects
that it captures, such as the plant (for
example, define the moving range of a
camera), the operational constraints
(for example, do not point the camera
toward the Sun), and the goals (for
example, minimize the delay when
the camera moves). Although all three
can be expressed in the same logic for-
malism, they entail different verifica-
tion and validation activities and
should thus be distinguished from
each other. Another interesting issue is
the fusion of partial models, involving
conflict-resolution principles.

Finally, a comparison can be made
with the field of classical feedback

control. For linear systems, one can,
on mathematical grounds, extrapolate
a limited set of observations to entire
regions of the control space. We
should investigate whether the high-
level, uniform inference laws used in
model-based reasoning would allow a
similar reasoning. This idea is very
speculative, given the complexity and
nonlinearity of autonomous con-
trollers, but it could dramatically
decrease the cost of verification if it
proved successful.

Verification and Validation
of Adaptive Systems

This break-out group gathered nine
participants, four of them from NASA,
around the topic of verification and
validation of adaptive systems. In par-
ticular, the group focused on control
systems that do learning, either offline
(pretrained) or online. Although the
focus was fairly broad, much of the
discussions centered on approaches
based on neural networks.

Initial discussion centered on how
verification of adaptive systems differs
from verification of traditional control
systems. One point was made that
adaptive systems have more potential
fault modes and, thus, can behave
more unpredictably. Another point is
that most commercial verification and
validation products are based on the
software engineering process and,
thus, are not really appropriate to
learning systems, where the develop-
ment of the learning program is often
secondary to the way it is trained. It is
also the case that most current cover-
age criteria are process oriented and
not product oriented (this is a problem
even for verification and validation of
object-oriented programs!).

Adaptive systems are mainly used
when there is no good model of the

plant; thus, it is hard to determine
what to verify against. It was thought
that it is often difficult to specify
requirements or acceptability criteria
for complex adaptive systems. One
recurring theme is that adaptive sys-
tems often do not have a good way of
telling when they are outside their
range of expertise. It was suggested
that other methods (such as putting
“wrappers” around the neural net
code) are needed to prevent such sys-
tems from trying to operate outside
their range.

Problems exist for verification and
validation of both offline and online
adaptive systems. For offline adaptive
systems, the idea is to train a system
and then verify it. For online adaptive
systems, the question is how to do ver-
ification when the system can evolve
many times after it is deployed. It was
agreed that verification and validation
for online adaptive systems is much
harder. We discuss both, in turn.

Offline Adaptive Systems
It was generally agreed that the best
current methods for verification and
validation of offline adaptive systems
are black-box testing and statistical
techniques. Although useful, these
techniques are not very satisfying
because they cannot make any guar-
antees about stability, coverage, and so
on. There is also the problem of trace-
ability: When a bug is found, it is
often difficult to “point a finger” at the
part (or parts) of the adaptive system
that is responsible. Although analysis
is possible, the nonlinear nature of
most adaptive systems makes formal
analysis difficult. Current approaches
are either intractable or make very
strict assumptions about the form of
the plant, which are typically not
valid.

We discussed several interesting
options. One is to try to prove weaker

FALL 2001 109

Reports

Adaptive systems are mainly used when there
is no good model of the plant; thus, it is hard
to determine what to verify against.

mathematical results than “standard”
stability (for example, plain stability
rather than the stronger convergence
results typically proved for linear sys-
tems).

A big problem for adaptive systems
is the question of collecting represen-
tative data—how to sample and how
to determine whether there are
“holes” in the test data set. One sug-
gestion was to analyze the learned
functions to find partitions of the
operating regions where the chosen
actions are “similar” and then devise
tests for these regions. This partition-
ing could guarantee coverage for sta-
tistical testing. In general, the meth-
odology might be iterative: One would
train a system, analyze it to determine
how to choose test data, retrain if it
fails any of these tests, analyze again,
and so on.

Another option is to investigate
learning techniques that might be
more amenable to formal analysis.
Neural nets are widely used, but they
are just one of a whole family of func-
tion approximators that can be
learned. Different families of func-
tions have different characteristics in
terms of learnability, expressiveness,
sensitivity to noise, and so on. It
might be worthwhile investigating
whether there are classes of function
approximators that are more easily
analyzed and, hence, could lead to for-
mal guarantees of safety. For example,
one technique described at the work-
shop uses hyperplanes to approximate
the functions of interest. A neural net
constructed from a hierarchy of such
structures can be expressive, yet
tractable enough to lend itself to rigor-
ous analysis of its properties. Such
analyses can also aid us in determin-
ing how to incorporate domain
knowledge into building such func-
tion approximators.

Online Adaptive Systems
Three options were discussed for veri-
fication and validation of online adap-
tive systems:

First is continually doing verifica-
tion and validation as the system
evolves (online verification and vali-
dation).

Second is verifying that the learning
technique cannot move from “safe”

areas. The idea here is to demonstrate
some sort of monotonicity property—
if the system starts out being safe
(shown by offline verification and val-
idation), then prove that it cannot
become unsafe.

Third is certifying classes of systems
rather than single instances. The idea
here is that if one could show that a
particular structure of neural net is
“safe,” no matter what training data it
receives, then one can have it adapt
without worry.

In general, we agreed that this prob-
lem is hard and that we did not even
understand well what the desired
requirements are for online adaptive
systems. For example, it is not clear
how to specify the failure modes of the
system in advance; so, it was clear that
monitoring plays an important part in
maintaining safety (although it was
not clear exactly what this role is). It
was suggested that we might need to
restrict the types of learning to keep
the system safe (for example, not
changing the weights of the neural net
too rapidly). By explicitly modeling
the adaptation process and the process
of environmental change, we might
be able to estimate the parameters
needed to ensure that such safety con-
ditions hold at all times.

The problem might even be unsolv-
able as stated: If things are changing
rapidly, although it might be feasible
to use online statistical techniques to
detect when dramatic changes have
occurred, it might not be possible to
guarantee that the system remains safe
at all times because adaptation cannot
be instantaneous. For example, while
adapting to hardware failures, the sys-
tem might, for a short time, become
unstable or unsafe. Is this condition
acceptable or not? We might want to
require that the system reenter a safe
state within seconds or that it adapt at
a given speed, which harks back to the
point that we do not really understand
what the requirements are for online
adaptive systems.

Finally, we briefly touched on the
issue of adapting to slow degradation
in the controlled system, as opposed
to qualitative, topological changes in
the plant (for example, because of
hardware failures). It was agreed that
the latter is generally a much harder

problem to deal with, both for adapta-
tion and for verification and valida-
tion. For example, it was suggested
that if training occurs even during the
performance phase, perhaps using
decaying values of the learning param-
eters or simulated annealing, then the
system could slowly adapt to such
changes. However, there are well-
known problems where neural nets
can “forget” old responses, especially
when they are not being trained with
a statistically valid sampling of the
input space. It was suggested that in
this area, formal proofs could give us
insight into some of the design issues
for adaptive systems.

Verification and Validation
of Complex Systems

The group contained 16 people, with a
heavy bias toward verification and val-
idation; only 2 NASA researchers from
the autonomy and adaptive field were
present. The original topic put forward
for discussion was the verification and
validation of systems with many inter-
acting components, either within one
location (for example, layered control
architectures) or among several loca-
tions (homogeneous or heterogeneous
multiagent systems).

The discussion took an interesting
turn before any meaningful progress
could be made on the stated subject. A
debate ensued on the merits of verifi-
cation and validation in general rather
than just limits to only complex sys-
tems. In the words of one participant,
we spent the whole time justifying the
use of formal methods to the two non-
verification and validation partici-
pants.

Issues
In this section, some of the highlights
of this discussion are recounted, but
the majority of the issues were pre-
sented in the section on general issues
from the workshop. The discussion
was in the form of questions being
raised by the NASA researchers fol-
lowed by intense discussions. The out-
put of the session was a list of issues
(17 in all) from which we list a selec-
tion here.

System engineering: System engi-
neering problems are often addressed
as software engineering. “It is like

110 AI MAGAZINE

Reports

addressing architectural problems that
arise with the construction of a bridge
as issues of how to engineer blocks of
concrete,” Gerard Le Lann (INRIA)
stated. We should try and learn from
other engineering disciplines, especial-
ly in how, for example, civil engineers
seem to learn far better from their mis-
takes than software engineers do.

Verification and validation is not
possible without a formal specification
of requirements for the system under
analysis. Stating formal requirements
for autonomous and adaptive systems
is hard and, as such, not something
often done during system develop-
ment at NASA.

Implementation should not be
attempted without a provably correct
design. Doing mathematical proofs is
hard, even using a theorem prover, but
is worth the effort for critical parts of a
system. It was also interesting that
comments made after the workshop
seemed to indicate that many partici-
pants felt that proofs of correctness are
being shunned in favor of automated
error-finding techniques such as mod-
el checking and that this trend is wor-
rying and should be addressed.

Formal methods must be cus-
tomized to specific domains to get
maximum benefit from exploiting
domain-specific information.
Domain-specific knowledge is one of
the best ways to attack the scalability
issue of formal methods.

Compositional techniques: Just as
systems are built up from smaller
pieces, one should use compositional
reasoning to reduce the complexity of
applying formal methods to a com-
plete system. Unfortunately, it is often
the case that only a global system
property is to be verified, and then it is
hard to decompose this property into
ones to be shown for components. It is
often easier to compose properties
known to hold for local components
that hopefully will imply the desired
global property is valid.

Challenge problem: The members
of the group felt that one of the most
important issues was for NASA to pro-
vide examples of autonomous and/or
adaptive systems that need to be veri-
fied for the verification and validation
community to try out its numerous
techniques. Such a test bed would

allow both communities to benefit:
NASA will be in a better position to
defend the use of complex systems to
mission managers, and verification
and validation techniques would be
improved and evaluated with respect
to new challenging problems from the
autonomous-adaptive domain.

Conclusions
The feedback after the workshop was
very positive, but most of all it was
clear that the problem of verification
and validation of autonomous and
adaptive systems is a hard one to
solve—especially given that it is even
unclear whether verification and vali-
dation of “normal” systems can be
done with any degree of success with
current techniques. Given the impor-
tance of this field, we believe this area
will be a fruitful research field for some
time to come. Interestingly, in an unre-
lated event (High-Dependability Com-
puting Consortium Kick-Off Work-
shop at NASA Ames, 10–12 January
2000), one of the main observations
made by the formal methods working
group was that verification and valida-
tion of autonomous and adaptive sys-
tems is a long-term problem with at
least a 20-year horizon. This indepen-
dent assessment of the field closely
mirrors this workshop’s view.

Acknowledgments
The organizers of the workshop are
very grateful to all the workshop par-
ticipants whose comments helped to
improve this article. Special thanks go
to James Caldwell (University of
Wyoming) for his general comments
and Rodger Knaus (Instant Recall,
Inc), who provided detailed feedback
on verification and validation of adap-
tive systems. We would also like to
thank Peggy Leising for her hard work
to make this workshop a reality.

Charles Pecheur is a
research scientist for the
Research Institute for
Advanced Computer Sci-
ence (RIACS) at NASA
Ames. He has an E.E. and
a Ph.D. from the Univer-
sity of Liège, Belgium.
His current research

concerns the formal verification and vali-
dation of NASA’s critical software systems,
with a particular focus on model-based
autonomous controllers. Prior to this, he
used model-checking tools to validate two
distributed applications at INRIA Rhine-
Alpes in France. His doctoral research at the
University of Liège aimed at improving
data-type definitions in the LOTOS specifica-
tion language. He has authored or coau-
thored 15 publications and 2 conference
tutorials. His e-mail address is
pecheur@ptolemy.arc.nasa.gov.

Willem Visser received
his Ph.D. from the Uni-
versity of Manchester in
1998 for his work on effi-
cient model-checking
algorithms for CTL*.
Since then, he has been a
scientist at the Research
Institute for Advanced

Computer Science (RIACS), conducting his
work within the Automated Software Engi-
neering group at NASA Ames. The main
focus of his work is on the application of
model checking to the analysis of software
programs, and to this end, he has been the
principal developer of the JAVAPATHFINDER

model checker (a model checker for JAVA

programs). His e-mail address is
wvisser@riacs.edu.

Reid Simmons is a
senior research scientist
in the School of Com-
puter Science at Carnegie
Mellon University. He
earned a Ph.D. from the
Massachusetts Institute
of Technology in 1988 in
AI. His thesis work fo-

cused on the combination of associational
and causal reasoning for planning and
interpretation tasks. Since coming to
Carnegie Mellon in 1988, Simmons’s
research has focused on developing self-
reliant robots that can autonomously oper-
ate over extended periods of time in
unknown, unstructured environments.
This work involves issues of robot software
architectures that combine deliberative and
reactive control; probabilistic planning
and reasoning; and heterogeneous, multi-
robot coordination. Simmons is also inter-
ested in the problem of formal verification
of autonomous systems and has done work
in automating the verification of fault diag-
nosis and execution systems. His e-mail
address is reids@cs.cmu.edu.

FALL 2001 111

Reports

112 AI MAGAZINE

Reports

AAAI-02 Student Abstract and Poster Program

AAAI-02 invites submissions to the student abstract and poster program. The goal of this

program is to provide a forum in which students can present and discuss their work dur-

ing its early stages, meet some of their peers who have related interests, and introduce

themselves to more senior members of the field. The program is open to all pre-Ph.D stu-

dents. Nonstudent advisors or collaborators should be acknowledged appropriately, as

coauthors or otherwise. However, students are requested to honor the spirit of the pro-

gram by submitting only work for which they are primary investigators.

Summary of Dates

Authors must submit six (6) printed copies of a two-page abstract describing their

research, to arrive at the AAAI office no later than January 25, 2002. We also request that

authors submit the URL of a location where reviewers can access complementary material

about the student’s research. The URL is critical to reviewers because of the brevity of the

hard-copy submission.

Notification of acceptance or rejection of submitted abstracts will be mailed to the

author by March 22, 2002. Camera-ready copy of accepted abstracts will be due by April

9, 2002.

Summary of Format

Submissions must be printed on 8 1/2 x 11 inch or A4 paper using 12 point type (10 char-

acters per inch for typewriters). Each page must have a maximum of 38 lines and an aver-

age of 75 characters per line (corresponding to the LaTeX article-style, 12 point). All

abstracts must be no more than two pages, not including the bibliography. The first two

pages must include the following: title; the primary author’s full name, affiliation, postal

address, phone number, URL (if available), and e-mail address; all coauthors’ full names

and affiliations; text; and any figures, tables, or diagrams. Up to one additional page may

be used exclusively for the bibliography if necessary. Papers exceeding the specified length

and formatting requirements are subject to rejection without review.

Submissions to AAAI-02 or Other Conferences

Students are free to submit abstracts for work reported in a regular paper submitted to the

AAAI-02 or another conference, but not for work that has already been published.

Abstracts will be accepted or rejected for the student session regardless of the outcomes of

related paper submissions.

Publication

Accepted abstracts will be allocated two (2) pages in the conference proceedings. Students

will be required to transfer copyright of the abstract to AAAI.

Poster Session

Accepted abstracts will be allocated presentation time and space in the student poster dis-

play area at the conference. Student authors of accepted abstracts must agree to prepare

a poster representing the work described in their abstracts and to be available to discuss

their work with visitors during their allocated time in the student poster display area.

Student Abstract Submissions & Inquiries

Please send abstracts to:

AAAI-02 Student Abstracts

American Association for Artificial Intelligence

445 Burgess Drive

Menlo Park, CA 94025-3442 USA

Registration and call clarification inquiries may be sent to ncai@aaai.org. All other

inquiries and suggestions should be directed to the Student Abstract and Poster Program

Cochairs:

Mark Craven Sven Koenig

Department of Biostatistics College of Computing

and Medical Informatics Georgia Institute of Technology

University of Wisconsin, Madison Atlanta, Georgia 30332

1300 University Avenue Telephone: (404) 894-5095

Madison, WI 53706 Fax: (404) 894-2970

Telephone: (608) 265-6181 E-mail: skoenig@cc.gatech.edu

Fax: (608) 263-0415

E-mail: craven@biostat.wisc.edu

Student Scholar and Volunteer Program

AAAI is pleased to announce the continuation of its Student Scholar and Volunteer Pro-

grams. The Student Scholar Program provides partial travel support and a complimentary

technical program registration for students who are full-time undergraduate or graduate

students at colleges and universities; are members of AAAI; submit papers to the technical

program or letters of recommendation from their faculty advisor; and submit scholarship

applications to AAAI by April 15, 2002. In addition, repeat scholarship applicants must

have fulfilled the volunteer and reporting requirements for previous awards.

In the event that scholarship applications exceed available funds, preference will be

given to students who have an accepted technical paper, and then to students who are

actively participating in the conference in some way. However, all eligible students are

encouraged to apply.

After the conference, an expense report will be required to account for the funds

awarded. For further information about the Scholarship Program, or to obtain an appli-

cation, please contact AAAI at scholarships@aaai.org, or 445 Burgess Drive, Menlo Park,

CA 94025. Telephone: (650) 328-3123.

All student scholarship recipients will be required to participate in the Student Vol-

unteer Program to support AAAI organizers in Edmonton, Alberta, Canada. The Volun-

teer Program is an essential part of the conference and student participation is a valuable

contribution. Students not requiring travel assistance should only apply for the Volunteer

Program, which provides complimentary registration to full time students, including con-

ference proceedings, in exchange for assisting AAAI-02 organizers in Edmonton. This

program does not provide any scholarship funds, and is designed for local students or stu-

dents who have other sources for travel funds. AAAI membership is required for eligibil-

ity. For further information regarding the Student Volunteer Program, please contact

AAAI at volunteer@aaai.org. The deadline for volunteer applications is May 31, 2002.

Call for Participation

AAAI–2002 Student Programs
July 28–August 1, Shaw Convention Center, Edmonton, Alberta, Canada

Sponsored by the American Association for Artificial Intelligence

