
� How do we decide how to represent an intelligent
system in its interface, and how do we decide how
the interface represents information about the
world and about its own workings to a user? This
article addresses these questions by examining the
interaction between representation and intelli-
gence in user interfaces. The rubric representation
covers at least three topics in this context: (1) how
a computational system is represented in its user
interface, (2) how the interface conveys its repre-
sentations of information and the world to human
users, and (3) how the system’s internal represen-
tation affects the human user’s interaction with
the system. I argue that each of these kinds of rep-
resentation (of the system, information and the
world, the interaction) is key to how users make
the kind of attributions of intelligence that facili-
tate their interactions with intelligent systems. In
this vein, it makes sense to represent a systmem as
a human in those cases where social collaborative
behavior is key and for the system to represent its
knowledge to humans in multiple ways on multi-
ple modalities. I demonstrate these claims by dis-
cussing issues of representation and intelligence in
an embodied conversational agent—an interface
in which the system is represented as a person,
information is conveyed to human users by multi-
ple modalities such as voice and hand gestures,
and the internal representation is modality inde-
pendent and both propositional and nonproposi-
tional.

Suppose that sometimes he found it
impossible to tell the difference between
the real men and those which had only
the shape of men, and had learned by
experience that there were only two ways
of telling them apart: first, that these
automata never answered in word or sign,
except by chance, to questions put to
them; and second, that though their
movements were often more regular and
certain than those of the wisest men, yet
in many things which they would have to
do to imitate us, they failed more disas-
trously than the greatest fools.

— Descartes, 1638

To start with a convenient counter claim,
let’s examine a quote from a recent call
for proposals on the topic of the disap-

pearing computer: “[I]n this vision, the tech-
nology providing these capabilities is unobtru-
sively merged with real world objects and
places, so that in a sense it disappears into the
background, taking on a role more similar to
electricity—an invisible pervasive medium.” In
this vision of intelligent user interfaces, there
is no representation of the system and no
modalities by which information is conveyed
to users. One interpretation of this vision
(instantiated, for example, in ubiquitous com-
puting) has been to make interactions trans-
parent by embedding the interface to intelli-
gent systems in old and familiar objects, which
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the listener’s reaction, ensuring that speaker
and listener share a common ground or under-
standing of what has already been described,
she continues. She looks up as she plans her
next utterance and repeats the gesture perfor-
mance as she completes the description of the
porch. The timing of the eye gaze, head move-
ments, and hand gestures are tightly synchro-
nized to speech, as marked by square brackets
in the transcript. They are also tightly synchro-
nized to the listener’s behavior, as demonstrat-
ed by the feedback-eliciting gaze. The basic
point is that people communicate with and to
other people and not in a vacuum. Eyes gaze at
other people and focus other people’s attention
on shared targets, hands gesture between peo-
ple, faces express to other people. These behav-
iors are the external manifestations of social
intelligence and trustworthiness (Cassell and
Bickmore 2000) as well as a localization of the
conversational processes of grounding infor-
mation and a representation of information in
their own right. Thus, if our goal is to repro-
duce how people communicate in natural con-
texts, we must also reproduce a way to localize
the interaction and to represent the system’s
intelligence in space, to make the agency and
intelligence of the participants visible by their
actions and their reactions to communication.  

Human Representation and
Intelligence in Face-to-Face 

Conversation
The speaker in figure 1 knows something about
the world that she is trying to convey to her lis-
tener, and she knows something about social
conventions that is influencing how she goes
about her task. We call these propositional and
interactional functions, or skills. As described,
both are carried by a number of behaviors in a
number of different modalities: the voice, the
hands, eye gaze, head movement.

We know that language is a representational
medium (the ur representational medium), but
are these other modalities anything other than
fluff, pretty movements to occupy the body
while the mouth is working? Eyes are not good
representational tools (they can’t describe), but
they can certainly annotate (a discrete roll of
the eyes while mentioning the election), focus
the attention of one’s interlocutor (as when
one looks at one’s own hands during a particu-
larly complex gesture), and index appropriate
social behavior (as earlier, when the speaker
requests feedback by letting her gaze rest on
her listener momentarily). Hands are excellent
representational tools, better even than speech
at representing the simultaneity of two events,

are therefore easy to use. A newer approach,
however, has been to really dispense with
objects altogether—to suffuse spaces with com-
putation, therefore avoiding any point of inter-
action.

However, how many times have you seen
hapless pedestrians stuck in front of an auto-
matic “smart door”? They are unable to pro-
ceed because they don’t know where the sen-
sors, or the door’s eyes, are located, and
therefore they can’t make the door open by
making the right size of movements in the
right quadrant. As Harry Potter says (Rowling
2000, p. 329), “Never trust anything that can
think for itself, if you can’t see where it keeps
its brain.”

Confusingly, projects involving “invisible
computers” describe them as ways for people
to interact with computation “as they interact
with another person.” As useful as is embed-
ding computation in our environment, the
notion must be tempered with knowledge of
how humans actually do interact. We depend
on forms of embodied interaction that offer us
guidance in dealing with a complex world;
interacting with invisibility does not fit one of
the scripts. We need to locate intelligence, and
this need poses problems for the invisible com-
puter. The best example of located intelligence,
of course, is the body. I’ll talk about how the
body … embodies intelligence, both the usual
knowledge about a particular domain and a
less commonly discussed social interactional
intelligence about conversational process, such
as how to initiate, take turns, and interrupt in
a conversation. In addition, I’ll demonstrate
how intelligent user interfaces can take advan-
tage of embodied intelligence to facilitate
human-machine interaction with a series of
what I refer to as embodied conversational agent
(ECA) systems.1

An example of a person interacting with
another person might serve to explain how
humans actually do interact in their natural
context and demonstrate some of the potential
problems with interacting with invisibility. Fig-
ure 1 shows a young woman describing the lay-
out of a house to a young man. Her eyes focus
diagonally up and away as she plans her first
utterance and then turn to her listener as she
describes a complicated set up with her words
and her hands. When the speaker says that the
house is “surrounded by a porch all around,”
her hands demonstrate that the porch actually
covers three sides of the house. The eye gaze
toward the listener (depicted in the frozen
frame in figure 1) elicits a feedback nod from
him, during which the speaker is quiet (++
indicates silence). Once the speaker receives
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or the respective spatial locations of two
objects (“so Lucy stood there and Betsy stood
there”), and at disambiguating anaphoric ref-
erence (“and then she showed her how to
move her feet”). In different contexts, gesture
takes different forms: The more unfamiliar or
surprising a speaker thinks a concept might be,
the more representational the gesture accom-
panying mention of that concept (Cassell,
Stone, et al. 2000). Thus, when talking to the
human-computer interaction (HCI) communi-
ty, a speaker might clasp his/her two hands
together in front of him/her while saying the
phrase shared plans. At a computational linguis-
tics conference, a nod of the head in the direc-
tion of Barbara Grosz and Candy Sidner sitting
in the audience would suffice. Both hands and
head are skilled at taking up the slack of com-
munication: a nod to acquiesce when one’s
mouth is too full to say “yes,” a point toward
one’s full mouth to explain that one cannot
speak. The body is the master of alternate and
multiple representations, according to the
needs and style of speaker and listener. Embod-
iment, therefore, would seem to fit the descrip-
tion of the ultimate interface, which “ultimate-
ly will include the ability to both retrieve and
generate alternate representations of informa-
tion according to the needs and personal styles
of users” (Laurel 1990, p. 362).

Thus, these behaviors can both convey
information and regulate communication in
face-to-face conversation, but do they commu-
nicate; that is, does the listener pay any atten-
tion? In fact, yes, listeners depend on such
embodied behaviors in face-to-face conversa-
tion. For example, they use the hand gesture
they have seen in these situations to form a
mental representation of the propositional
content conveyed (Cassell, McNeill, et al.
1999), and they use the eye gaze to constrain
when they make their own bids for the floor
(Duncan 1974). We also know, however, that
listeners are unable to remember what hand
gestures they saw (Krauss, Morrel-Samuels, et
al. 1991), and when they redescribe a mono-
logue, they are likely to transpose the modality
in which the information was conveyed. In
addition, although teachers have been shown
to use their pupils’ gestures to judge the accu-
racy of the children’s underlying understand-
ing of mathematical concepts, they are
unaware that they are so doing (Goldin-Mead-
ow, Alibali, et al. 1993). Thus, just as with
speech, the meanings underlying embodied
interaction are extracted, but the behaviors
themselves are not retained. However, when
these embodied behaviors are omitted in face-
to-face interaction between a user and an

embodied system, users repeat themselves
more and judge the system’s use of language,
and understanding of language, to be worse
(Cassell and Thorisson 1999). In addition,
when speech is ambiguous between humans
(Thompson and Massaro 1986) or in a speech
situation with some noise (Rogers 1978), listen-
ers rely more on gestural cues (and, the higher
the noise-to-signal ratio, the more facilitation
by gesture). Thus, although the behaviors are
not consciously retained, they are key to the
interaction among humans, and between
humans and machines. Note that the evidence
presented thus far argues for different depic-
tions on different modalities but one underly-
ing modality-free common conceptual source
that gives rise to the different instantiations,
wherein each modality is called on to do what
it does best. This semantic and pragmatic shar-
ing of work recalls the interaction of words and
graphics in an early kind of intelligent user
interface—automatic generation of multi-
modal presentations (Feiner and McKeown
1991; Wahlster, Andre, et al. 1991—and recalls
the separation of description and mechanism
in Rosenschein and Kaebling’s (1986) classic AI
paper.  

From an ontological perspective, the impor-
tance of multiple representations in multiple
modalities is not surprising. It has been argued
that gestures are our first representational
activity, arising from early sensorimotor
schemata (Piaget 1952), and continue to
replace unknown words in children’s commu-
nication (Bates, Bretherton, et al. 1983); cer-
tainly, eye gaze and head movement regulate
protoconversations between caregivers and
infants before infants can even produce a sem-
blance of language (Trevarthen 1986). Even in
adults, nonverbal behaviors do not fade. About
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hand gesture. In this context, we can view the
human in our earlier example as providing
structure for her interlocutor that helps him
navigate a complex description of the world.
Her entire embodied performance provides
cues to the shape of objects for which there is
no adequate description in English, and to who
has the floor.  It also lets us know whether the
two participants share common knowledge,
and when the speaker's internal conceptual
representation is in the process of being trans-
lated into words. Such a performance is helpful
to the listener in understanding what is being

three-quarters of all clauses in narrative dis-
course are accompanied by gestures of one
kind or another, regardless of cultural back-
ground (McNeill 1992). 

The Conversational Model
Thus, humans engage in complex representa-
tional activity involving speech and hand ges-
ture, and they regulate this activity through
social conversational protocols that include
speech and eye gaze and head movement and
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The History of Embodied Interfaces:
Automata

Wherefore are they endowed
with organs so like to those of
ourselves? Wherefore have they
eyes, ears, nostrils, and a brain?
It may be answered, that they
may regulate the movements of
the automata, by the different
impressions which they receive
from the exterior objects.

—D’Alembert, 1717–1783

Attempts to model the body, and
bodily interfaces, as well as attempts
to make pretty bodies as entertain-
ment systems, have been around for a
very long time. In repudiation of
Descartes’s strict separation between
the stuff that humans are made of
and the thoughts they think, the
organicist automaton makers of the
eighteenth century asked whether
one could design a machine that
could talk, write, interact, play chess,
and so forth, in the way people do.
They intended to find out in this way
what these activities consisted of
when human beings perform them
and how they differed, if at all, when
machines perform them (Riskin
1999). For these reasons, designers in
the organicist tradition tried to make
their machines as much as possible
like the organic subjects and process-
es they were imitating. Some organi-
cist machines were strikingly lifelike

representations of human processes
and contributed significantly to
knowledge about human function-
ing, for example, Droz’s writing boy
(figure A) whose pen moves across
the page just as real writers’ pens
move.

Some organicist machines also act-
ed as interfaces between humans and
the world, for example, Von Kem-
plen’s speaking machine (1791). Von
Kemplen’s machine (figure B) was the
first that allowed users to produce not

only some speech sounds but also
whole words and short sentences.
According to von Kemplen, it was
possible to become a proficient user
of the machine within three weeks
and to then be able to produce strings
of Latin, French, Italian, or German.

In contrast to these serious and sci-
entific attempts to build embodiments
and interfaces based on human func-
tions were nineteenth-century
automata that were meant to enter-
tain, regardless of how humanlike

Figure A. Droz’s Automaton, “The Writing Boy.”



their actions might be. An example of
such a pretty body as entertainment is
the Pierrot automaton doll that
writes—but simply by moving an ink-
less pen smoothly across a page—
while it sighs deeply and progressively
falls asleep by the lamplight.

Automaton makers were burned at
the stake in the Middle Ages. Today
in the interface community, we sus-
pect some traditional human-com-

puter interface researchers would be
happy to do the same thing!  As one
of the most prominent critics has put
it (Shneiderman 1998, p. 4),

For those who built stone idols
or voodoo dolls or the golem or
Frankenstein, it’s long been a
dream…. But no mature tech-
nology resembles [animal] form.
Automobiles don’t run with legs,
and planes don’t flap their

wings…. [Anthropomorphized
agents] are things that think for
people who don’t.

Nevertheless, technology will most
likely always be used to model
humans to better understand how
humans function and to leverage
human understanding of the world
by building that understanding into
an interface that we learn to use from
so early on in life.

said and integrating it into an ongoing dis-
course. It is also helpful in that it indicates that
the speaker is a kind of representational device
that the listener is familiar with. And it allows
the listener to apply a theory of mind (Asting-
ton, Harris, et al. 1988) and, by doing so, to
map the speaker’s behaviors onto richer under-

lying representations, functions, and conven-
tions—to attribute intelligence to the other.

In building an embodied conversational
agent, I want both to help users steer their way
through complex descriptions of the world and
to prod them into automatically applying such
a theory of mind as will allow them to not have
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Figure B. Von Kemplen’s Speaking Machine.



or that represent fingers walking in the utter-
ance “it took me 20 minutes to get here”). The
interactional function consists of cues that reg-
ulate the conversational process and includes a
range of nonverbal behaviors (quick head nods
to indicate that one is following, bringing one’s
hands to one’s lap, and turning to the listener
to indicate that one is giving up the turn) as
well as regulatory speech (“huh?” “do go on”).
In short, the interactional discourse functions
are responsible for creating and maintaining an
open channel of communication between the
participants, and propositional functions
shape the actual content. Both functions can
be fulfilled with the use of a number of avail-
able communication modalities.

M. Modality: Both verbal and nonverbal
modalities are responsible for carrying out the
interactional and propositional functions. It is
not the case that the body behaviors are redun-
dant. The use of several different modalities of
communication—such as hand gestures, facial
displays, and eye gaze—is what allows us to
pursue multiple goals in parallel, some of a
propositional nature and some of an interac-
tional nature. For example, a speaker can raise
his/her pitch toward the end of the sentence
while he/she raises the eyebrows to elicit feed-
back in the form of a head nod from the listen-
er, all without interrupting the production of
propositional content. It is important to realize
that even though speech is prominent in con-
veying content in face-to-face conversation,
spontaneous gesture is also integral to convey-
ing propositional content. In fact, 50 percent
of gestures add nonredundant information to
the common ground of the conversation (Cas-
sell, Stone, et al. 2000). For interactional com-
municative goals, the modality chosen might
be more a function of what modality is free at
a given point in the conversation; for example,
is the head currently engaged in attending to
the task, or is it free to give a feedback nod?  

B. Behaviors are not functions: As can be
seen from table 1, the same communicative
function does not always map onto the same
observed behavior. For example, the interac-
tional function of giving feedback could either
be realized as a head nod or a short “mhm.”
The converse is also true: The same behavior
does not always serve the same function. For
example, a head nod could be feedback or
equally well a salutation or emphasis on a
word. The particular set of surface behaviors
exhibited can differ from person to person and
from conversation to conversation (not to
mention from culture to culture). Therefore, to
successfully build a model of how conversation
works, one cannot refer to these behaviors, or

to spend their time constructing awkward new
theories of the machine’s intelligence on the
fly. Thus, our model of conversational behavior
must be able to predict exactly this kind of con-
versational behaviors and actions; that is, it
must provide a way of realizing this set of con-
versational surface behaviors in a principled
way.

This model, however rich, will not be able to
predict all the behaviors displayed in human-
human conversation, nor will it describe all the
functions that give rise to these surface behav-
iors, nor would we wish it to. The model is not
mimicking what people look like but adopting
those aspects of the human interface that pro-
vide structure for our interpretations of mean-
ing and for the process of interpreting mean-
ing. Our goal is to target those behaviors that
regulate and facilitate the process of interac-
tion and represent information efficiently and
effectively, all the while evoking a sense of
another intelligence. Of course, however poor
the model is, it will give rise to attributions that
I have not planned: side-effects of cultural
stereotypes of gender, race, and age that are
evoked by the pitch of a voice, the tilt of a
head, the form of a question (Reeves and Nass
1996). Steering our way through this Scylla and
Charybidis of personification is helped by fre-
quent evaluations of the system, in which users
reveal the attributions—desired and not—that
the system’s behavior provokes.

These principles lead to a conversational
model with several key properties: the system-
internal representation of the world and infor-
mation must be modality free but able to be
conveyed by way of any one of several modal-
ities; the functions of the system must be
modality free but able to be realized in any one
of a number of different surface behaviors in a
number of different modalities; the representa-
tions of conversation cannot be all symbolic
because cultural and social conventions might
not be able to be captured in logical form; and
co-occurrences of surface-level behaviors carry
meaning over that carried by each of the con-
stituent behaviors. In sum, I might describe
such a model as a multiplicity of representations.
We capture these properties and insights about
human conversation in the FMBT (pro-
nounced fembot) model.

F. Division between propositional and
interactional functions: Contributions to the
conversation are divided into propositional
functions and interactional functions. The
propositional function corresponds to the con-
tent of the conversation, including meaningful
speech as well as hand gestures (gestures that
indicate size in the utterance “it was this big”
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surface features, alone. Instead, the emphasis
has to be on identifying the high-level structur-
al elements or functions that make up a con-
versation. It is the understanding of these func-
tions and how they work together to form a
successful interaction that allows us to inter-
pret the behaviors in context.

T. Time: Timing is a key property of human
conversation, both within one person’s conver-
sational contributions and between partici-
pants. Within one person’s contribution, the
meaning of a nod is determined by where it
occurs in an utterance, to the 200-millisecond
scale. For example, consider the difference
between “John [escaped]” (even though we
thought it was impossible) and “[John] escaped”
(but Bill did not). Between participants, a listen-
er nod at precisely the moment a speaker
requests feedback (usually by way of a rise in
intonation and the flashing of eyebrows) is dis-
playing understanding, but a delayed head nod
might signify confusion. The rapidity with
which behaviors such as head nods achieve
their goals emphasizes the range of time scales
involved in conversation. Although we have to
be able to interpret full utterances to produce
meaningful responses, we must also be sensitive
to instantaneous feedback that can modify our
interpretation and production as we go.

Although the FMBT model shares with Rod-
ney Brooks and his colleagues a reliance on
social interaction and a distinction between sur-
face-level behaviors and underlying (deep struc-
ture) functions (Brooks, Brezeal, et al. 1998), in
this model, these key properties do not displace
the need for an explicit internal representation.

Having a physical body, and experiencing the
world directly through the influence of the
world on that body, does not obviate the need
for a model of the world. In Brooks’s work, the
autonomous systems he builds exploit features
of the world and of humans to learn; the sys-
tems can go without a representation of their
own so long as the world and humans manifest
structure. In our work, humans exploit features
of the interface to autonomous systems to
achieve their goals; the interface must then pre-
sent structure that the human can use. Intelli-
gent user interfaces must provide representa-
tion. As Maybury and Wahlster (1998) remark,
“A basic principle underlying multimedia sys-
tems is that the various constituents of a multi-
modal communication should be generated on
the fly from a common representation of what
is to be conveyed without using any preplanned
text or images; that is, the principle is ‘no gen-
eration without representation.’” Intelligent
creatures can rely on the representations provid-
ed by others. 

Rea: Implementing a FMBT-
Embodied Conversational Agent 
Thus far, I’ve talked about some of the proper-
ties of embodied human-human conversation
that are essential for conveying information,
regulating the course of the interaction, and
giving one’s interlocutor the sense that one is a
familiar kind of representational creature.
These key properties are captured in the FMBT
intelligent interface model and distinguish the
model from “intelligence without representa-
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Communicative Functions Communicative Behavior 

Initiation and termination:

React to new person Short glance at other

Break away from conversation Glance around

Farewell Look at other, head nod, wave

Turn-Taking:

Give Turn Look, raise eyebrows (followed by silence)

Want Turn Raise hands into gesture space

Take Turn Glance away,start talking  
Feedback:

Request Feedback Look at other, raise eyebrows

Give Feedback Look at other, nod head

Table 1. Some Examples of Conversational Functions and Their Behavior Realization
(from Cassell and Vilhjálmsson [1999]).



includes both a static knowledge base that
deals with the domain (here, real estate) and a
dynamic discourse knowledge base (dealing
with what has already been said). To generate
propositional information, the system plans
how to present multisentence multimodal out-
put and manage the order of presentation of
interdependent facts. To understand interac-
tional information, on the other hand, the sys-
tem builds a model of the current state of the
conversation with respect to conversational
process (who is the current speaker and who is
the listener, has the listener understood the
speaker’s contribution, and so on).

Finally, the core modules of the system oper-
ate exclusively on functions (rather than sen-
tences or behaviors, for example), while other
modules at the edges of the system translate
input into functions and functions into output.
This division of labor also produces a symmet-
ric architecture where the same functions and
modalities are present in both input and out-
put. Such models have been described for other
conversational systems, for example, by Bren-
nan and Hulteen (1995). I extend this previous
research by developing a conversational model
that relies on the functions of nonverbal behav-
iors, as well as speech, and that makes explicit
the interactional and propositional contribu-
tion of these conversational behaviors.

Architecture
Figure 3 shows the modules of the REA architec-
ture. Three main points translate the FMBT
model for ECAs:

First, input is accepted from as many modal-
ities as there are input devices. However the
different modalities are integrated into a single
conceptual representation that is passed from
module to module.  

Second, this conceptual representation
frame has slots for interactional and proposi-
tional information so that the regulatory and
content-oriented contribution of every conver-
sational act can be maintained throughout the
system.

Third, the categorization of behaviors in
terms of their conversational functions is mir-
rored by the organization of the architecture
that centralizes decisions made in terms of
functions (the understanding, decision, and
generation modules) and moves to the periph-
ery decisions made in terms of behaviors (the
input manager and action scheduler).

The input manager collects input from all
modalities and decides whether the data
require instant reaction or deliberate discourse
processing. Hard-wired reaction handles rapid

tion” models of autonomous creatures. In this
section, I give the details of how an embodied
conversational agent can be implemented
based on the model. To demonstrate, I turn to
REA, an embodied conversational agent whose
verbal and nonverbal behaviors are generated
from underlying conversational functions and
representations of the world and information.
REA is the most extensive embodied conversa-
tional agent that my students and I have built
on the basis of the FMBT model, which is why
it is serving as an example. However, the archi-
tecture described here is independent of the REA

implementation and has been used for a num-
ber of other embodied conversational agents
(described more briefly in the last section). 

First, REA has a humanlike body (shown in
figure 2) and uses its body in humanlike ways
during the conversation. That is, it uses eye
gaze, body posture, hand gestures, and facial
displays to contribute to the conversation and
organize and regulate the conversation. It also
understands (some aspects of the use of) these
same modalities by its human interlocutor.

Second, the architecture allows for multiple
threads of interaction to be handled, thus
allowing REA to watch for feedback and turn
requests. The human user can send such
requests at any time through various modali-
ties. The architecture is flexible enough to track
these different threads of communication in
ways appropriate to each thread. Because dif-
ferent threads have different response time
requirements, the architecture allows different
processes to concentrate on activities at differ-
ent time scales.

Third, dealing with propositional informa-
tion requires building a model of the user’s
needs and knowledge. Thus, the architecture
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Figure 2. REA Welcoming a User to Her Virtual Realty Office.



(under 200 milliseconds) reaction to stimuli,
such as the appearance of the user. These stim-
uli can then directly affect the agent’s behavior
without much delay, which means that, for
example, the agent’s gaze can keep up with
tracking the user’s movement, without first
processing the meaning of the user’s appear-
ance. The deliberative discourse processing module
handles all input that requires a discourse
model for proper interpretation, which in-
cludes many of the interactional behaviors as
well as all propositional behaviors. Finally, the
action scheduler is responsible for scheduling
motor events to be sent to the animated figure
representing the agent. A crucial function of
the scheduler is to synchronize actions across
modalities, so that, for example, gesture stroke
and pitch peak in speech co-occur within mil-
liseconds of each other. The modules commu-
nicate with each other using KQML, a speech-
act–based interagent communication protocol,
which serves to make the system modular and
extensible. 

Implementation
The system currently consists of a large back-
projection screen on which REA is displayed
and in front of which the user stands. Two
cameras mounted on top of the projection
screen track the user’s head and hand positions
in space. Users wear a microphone for captur-
ing speech input. A single SGI OCTANE computer
runs the conversation engine (originally writ-
ten in C++ and CLIPS, currently moving to JAVA),
and several other computers manage the

speech recognition (until recently IBM VIA

VOICE; currently moving to SUMMIT) and genera-
tion (previously Microsoft WHISPER; currently BT

FESTIVAL), image processing (STIVE [Azarbayejani,
Wren, et al. 1996] and VGUS [Campbell 2001],
and graphics (written in OPENINVENTOR).

In the implementation of REA, we have
attended to both propositional and interac-
tional components of the conversational mod-
el, and all the modalities at REA’s disposal (cur-
rently, speech with intonation, hand gesture,
eye gaze, head movement, body posture) are
available to express these functions. REA’s cur-
rent repertoire of interactional functions
includes acknowledgment of a user’s presence,
feedback, and turn taking. Each of these func-
tions is outlined as follows: 

Acknowledgment: This is acknowledgment
of a user’s presence by turning to face the user.

Feedback: REA gives feedback in several
modalities: It might nod its head or emit a par-
averbal (for example, “mmhmm”) or a short
statement such as “okay” in response to short
pauses in the user’s speech; it raises its eye-
brows to indicate partial understanding of a
phrase or sentence. 

Turn taking: REA tracks who has the speak-
ing turn and only speaks when it holds the
turn. Currently, REA always allows verbal inter-
ruption and yields the turn as soon as the user
begins to speak. If the user gestures, it will
interpret this gesture as an expression of a
desire to speak and, therefore, will halt its
remarks at the nearest sentence boundary.
Finally, at the end of its speaking turn, it turns
to face the user.  

These conversational functions are realized
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Figure 3. REA Architecture (codeveloped with the Fuji-Xerox Palo Alto Laboratory).  



object in REA’s virtual world, such as features of
homes it is showing to the user). These gestures
are either wholly redundant with, or comple-
mentary to, the speech channel based on
semantic and pragmatic constraints. Beats are
used to indicate points of emphasis in the
speech channel without conveying additional
meaning.

When REA produces an utterance, then it first
determines several pieces of pragmatic and
semantic information, including semant ics ,
which is a speech act description of REA’s com-
municative intent (for example, offer the user
a particular property, describe a room); infor-
mation structure, which tells which entities are
new versus previously mentioned; focus, which
tells which entity (if any) is currently in focus;
and mutually observable information, which tells
which entities in the virtual world are visible to
both REA and the user.

This information is then passed to the SPUD

unified text- and gesture-generation module
that generates REA’s natural language responses.
This module distributes the information to be
conveyed to the user across the voice and ges-
ture channels based on the semantic and prag-
matic criteria described earlier and is timed so
that gestures coincide with the new material in
the utterance. If a new entity is in focus and it
is mutually observable, then a deictic is used.
Otherwise, REA determines if the semantic con-
tent can be mapped into an iconic or
metaphoric gesture (using heuristics derived
from studies of the gestures humans produce in
describing real estate [Yan 2000] to determine

as conversational behaviors. For turn taking,
for example, the specifics are as follows: REA

generates speech, gesture, and facial expres-
sions based on the current conversational state
and the conversational function it is trying to
convey. For example, when the user first
approaches REA (user present state), it signals its
openness to engage in conversation by looking
at the user, smiling, and tossing its head. When
conversational turn taking begins, it orients its
body to face the user at a 45-degree angle.
When the user is speaking, and REA wants the
turn, it looks at the user. When REA is finished
speaking and ready to give the turn back to the
user, it looks at the user, drops its hands out of
gesture space, and raises its eyebrows in expec-
tation. Table 2 summarizes REA’s current inter-
actional output behaviors.

In terms of the propositional component,
REA’s speech and gesture output are generated
in real time, and words and gesture are treated
on a par, so that a gesture can be just as likely
to be chosen to convey REA’s meaning as a
word. The descriptions of the houses that it
shows, along with the gestures that it uses to
describe these houses, is generated using the
SPUD natural language–generation engine,
modified to also generate natural gesture (Cas-
sell, Stone, et al. 2000). New propositional
information is conveyed using iconic gestures
(for concepts with concrete existence),
metaphoric gestures (for concepts that do not
have concrete existence and, thus, must make
use of spatial metaphors for depiction), or deic-
tic gestures (for indicating or emphasizing an

In terms 
of the

propositional
component,
REA’s speech
and gesture
output are

generated in
real time, and

words and
gesture are

treated on a
par, so that a
gesture can be

just as likely
to be chosen

to convey
REA’s meaning

as a word.
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State Output Function Behaviors

User Present Open interaction Look at user. Smile. Toss head.

Attend Face user.

End of interaction Turn away.

Greet Wave. Say “hello.”.

REA Speaking Give turn Relax hands. Look at user.  Raise

eyebrows.

Signoff Wave.  Say “bye.”

User Speaking Give feedback Nod head, paraverbal (“hmm”).

Want turn. Look at user. Raise hands.

Take turn. Look at user. Raise hands to begin

gesturing. Speak.

Table 2. Output Functions.



whether the gestures should be complemen-
tary or redundant). For example, REA can make
a walking gesture (extending its index and sec-
ond finger with the tips downward, as if they
are legs, and wiggling the fingers back and
forth) as it says, “The house is five minutes
from MIT.” In this case, the gesture carries
complementary information—that the house
is five minutes on foot rather than five minutes
by car. REA can also make a sweeping “sun-ris-
ing” gesture with both arms above her head, as
she says, “the living room is really luminous.”
In this case, the gesture is redundant to the
notion of sunniness conveyed by speech.  

REA is also able to detect these same classes of
gestures made by the user and combine this
information with speech input to interpret
propositional content and make decisions
about appropriate responses. Here, once again,
our reliance on conversational function, and
distinction between function and surface
behavior, allows us to bypass questions of ges-
tural form (a difficult vision problem indeed)
and concentrate on how the user is using a giv-
en gesture in the current conversational con-
text. The gesture-classification module uses a
set of hidden Markov model (HMM) recogniz-
ers to classify gestures into the categories of rest
(no gesture), beat, deictic, butterworth (search-
ing for a word), or illustrative (iconic or
metaphoric). The HMMs that classify into
these categories were trained in an offline
process from a set of 670 gestures obtained by
tracking naive subjects with STIVE as they
engaged in real-estate–oriented conversations
and then hand segmenting and classifying the
subjects’ conversational gestures (Campbell
2001).

To date, REA is only capable of integrating the
beat and deictic categories into the decision
module. The beat category is used to interpret
user emphasis with respect to the speech chan-
nel, allowing REA to know which part of a user
utterance to respond to (if the user says “I like
the blue tiles” with a beat gesture on the word
blue, then REA responds by saying, “Blue is my
favorite color.” If the user says, “I like the blue
tiles” with a beat gesture on the word tiles, then
REA responds by saying, “I love tiles.”). REA can
also pick up when users point to objects in REA’s
world and can associate the deictic gesture and
the graphical object pointed at with the word
that co-occurs with the deictic, thus enabling
REA to resolve a wider range of referring expres-
sions (“that house,” “the wall,” and so on).
These functions are illustrated in the example
interaction sidebar.

By modeling behavioral categories as dis-
course functions, we have developed a natural

and principled way of combining multiple
modalities in both input and output. Thus,
when REA decides to give feedback, for example,
it can choose any of several modalities based
on what is appropriate and available at the
moment. When it conveys its knowledge of the
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An Example Interaction

The following records an actual interaction between a user and REA:
Mike approaches the projection screen. REA is currently turned side
on and is gazing idly about. As Mike moves within range of the two
cameras mounted above the screen, REA turns to face him and says:
REA>  Hello.  How can I help you?
MIKE> I’m looking to buy a place near MIT. 
REA nods, indicating that it is following.
REA> I have a house to show you. 
A picture of a house appears on a screen behind REA, who blinks
and looks at the house and then at Mike.
REA> It’s in Somerville.
MIKE> Tell me about it.
REA looks up and away while it plans what to say.
REA> It’s big.
REA makes an expansive gesture with her hands.
Mike brings his hands up as if he is about to speak and so REA does
not continue, instead waiting for him to speak.
MIKE> Tell me more about it
REA> Sure thing. It has a nice garden.
REA sketches a curved gesture with her hands indicating that the
garden extends along two sides of the house.
MIKE> How far is it?
REA> It is five minutes to the Porter Square T station.
REA makes it clear that it is five minutes on foot from the T station
by making a walking gesture with its fingers.
MIKE> How big is the house?
REA> It has four bedrooms, three bathrooms.…
Mike interrupts REA, who stops speaking immediately.
MIKE> Wait. Tell me. Where is the master bedroom?
REA> I’m sorry, I didn’t catch that. What did you ask me?
MIKE> Where is the master bedroom?
REA> It’s upstairs.
REA points up.
MIKE> Where is the master bathroom?
REA> It’s next to the bedroom.
REA brings her hands together to indicate the relationship between
the bedroom and the bathroom.

The house tour continues….



socially inappropriate manner and, when not
actually typing, manifests its profound bore-
dom in the user’s work by engaging in conver-
sationally irrelevant behaviors (as if one’s inter-
locutor checked his/her watch while one was
speaking and then snapped to attention when
it was his/her turn to talk). Interestingly, inter-
ruption itself is not the problem; participants
in conversations interrupt one another all the
time. However, interruption must be motivat-
ed by the demands of the conversation—
requests for further information, excitement at
what is being said—and must follow the proto-
col of conversation (for example, raise the
hands into gesture space, clear the throat,
extend the feedback noise for longer than usual
as ways of requesting the floor). ANANOVA is
advertised as a way to personalize web users’
interaction with information but is not, in fact,
capable of interaction (or, currently, personal-
ization). This not uncommon confusion of per-
sonalization, and graphical representation of a
person leads to putting a body on the interface
for looks and personality as opposed to for the
functions of the body. ANANOVA sways slightly
and winks or sneers occasionally but does not
pause or request feedback, check its viewer’s
response to what it is saying, or in any other
way attend to its viewers. It also does not use
any modalities other than voice to convey con-
tent. The pages advertised as showing “techni-
cal drawings” tell us, “Then one of [my cre-
ators] had the bright idea [to] unleash my full
potential by giving me a human face and full-
rounded personality so that I could better
interact with people as technology develops.”
As far as one can tell, ANANOVA’s behaviors are
hand scripted as annotations to text (for exam-
ple, it’s hard to imagine the set of underlying
rules for conversation and representation for
information that would make her lips curl
slightly in a sneer when it says, “I’ve been
locked in a room for 12 months with only
geeks and techies for company”). Even when
the day comes where it is able to deliver all and
only the news that a particular web viewer
requests, its interaction with this web user will
not resemble conversational interaction, and
its embodiment will not make it appear any
more intelligent an interface.

Such systems represent an enormous missed
opportunity. As I’ve argued, used appropriately,
an embodied interface can provide not only
something pretty and entertaining to look at
but can also enable the use of certain commu-
nication protocols in face-to-face conversation
that facilitate user interaction and provide for
a more rich and robust channel of communica-
tion than is afforded by any other mediated

world, all its behaviors are marshaled toward
giving a well-rounded description of what it
knows. 

Related Work 
Humanlike embodied interfaces have become
popular as the front end to commercial sys-
tems; so, it doesn’t seem that what is described
here is altogether novel. However, although
these interfaces look like bodies, few of them
display behaviors or manifest the types of func-
tions of bodies in conversation that I’ve argued
for. Surprisingly, in fact, not much has changed
since a CHI panel about anthropomorphism in
1992 was advertised in the following way:
“Recently there has been a discernible increase
in the gratuitous use of the human figure with
poorly lipsynched talking heads or systems
that fool the user into thinking that the system
is intelligent” (Don, Brennan, et al. 1992).
Well, actually, lipsynching has improved. 

Well-designed interfaces have affordances or
visual clues to their operation. Bodies provide
strong visual clues about the protocols that
they engage in, and these protocols must be
integrated into the very heart of a system and
must give rise to appropriate surface-level
behaviors in the interface for the embodied
interface to be successful. In contradistinction
to this methodology, many of the humanlike
interfaces on the market simply consist of an
animated character slapped onto a system,
capable of portraying a series of affective or
“communicative” poses, without much atten-
tion paid to how humans actually convey their
knowledge of the world and of human interac-
tion to their interlocutors. Two examples of
less than perfect embodied interfaces that
come to mind are the Microsoft OFFICE ASSISTANT

(the dreaded PAPER CLIP) and ANANOVA (figure 4).
The PAPER CLIP (or the more anthropomorphic
version EINSTEIN) interrupts in an impolite and
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Figure 4. ANANOVA.



channel available today. Gaze, gesture, intona-
tion, and body posture play an essential role in
the proper execution of many conversational
behaviors—such as conversation initiation and
termination, turn taking and interruption han-
dling, and feedback and error correction—and
these kinds of behavior enable the exchange of
multiple levels of representation of informa-
tion in real time. In essence, I am saying that
for the face-to-face metaphor of HCI to be suc-
cessfully used in intelligent user interfaces, the
metaphor must be followed both in the sur-
face-level behaviors that the interface mani-
fests and the functions by which the system
operates. Although believability is often
named as the primary purpose behind
embodying the interface (see, for example,
Elliott and Brzezinski [1998]), functions would
appear to be more effective.

Other researchers have created embodied
interfaces that do rely on the functions of con-
versation.  Takeuchi and Nagao (1993) imple-
mented a “talking head” not too dissimilar from
ANANOVA (modulo green hair) that understood
human input and generated speech in conjunc-
tion with conversational facial displays of simi-
lar types to those described in this article. Unfor-
tunately, their system had no notion of
conversational state, and it was unable to pre-
cisely time behaviors with respect to one anoth-
er. In the field of ECAs, some of the other major
systems developed to date are STEVE (Rickel and
Johnson 1998), which uses nonverbal signals to
orient attention, give feedback, and manage
turn taking; the DFKI PERSONA (Andre 1997),
which makes a distinction between creation of
discourse content and the communication of
this content (acquisition and presentation acts);
and the pedagogical agents developed by Lester
et al. (Lester and Stone 1997) in which deictic
gestures are more likely to occur in contexts of
referential ambiguity. In all three systems, how-
ever, the association between verbal and non-
verbal behaviors is additive; that is, the informa-
tion conveyed by hand gestures, for example, is
always redundant to the information conveyed
by speech. In this sense, the affordances of the
body are not exploited for the kinds of task that
it might perform even better than speech. There
are also a growing number of commercial ECAs
based on how bodies function in conversation
or presentation, such as those developed by
Extempo, Headpedal, and Artificial Life. These
systems vary greatly in their linguistic capabili-
ties, input modalities (most are mouse-text-
speech input only), and task domains, but all
share the common feature that they attempt to
engage the user in natural, full-bodied (or half-
bodied) conversation.

More generally, linking intelligence to
embodiment in the way done here is a position
most often attributed to robotics; in particular,
to the work of Rodney Brooks and his col-
leagues, although as described earlier, Brooks
explicitly denies the link between embodiment
and representation and intelligence and repre-
sentation. I believe that one outcome of his
position, however, is that his robots make bet-
ter infants than parents. That is, they are better
able to learn from the structure provided by the
people around them than they are able to pro-
vide structure for a user attempting to acquire
information from an intelligent system.

Future Work
My work on the REA system continues along a
number of parallel fronts. To explore whether
verbal and nonverbal modalities are equally
suitable for propositional and interactional
functions, my students and I have expanded
the range of social conversational protocols
REA is able to engage in. Conversational regu-
lation occurs not just at the level of eye gaze
but also at the level of entire utterances. For
example, speakers often use small talk to set
their listeners at ease. Realtors demonstrate a
particularly advanced kind of social conversa-
tional protocol: They learn your name easily,
they remember what you’ve told them about
your kids and your job, and they always have
a story that’s relevant to the interaction at
hand, but all this information doesn’t lead the
conversation away from what you wanted to
talk about. These skills allow them to appear
trustworthy to their clients and, therefore, are
essential to their ultimate task-oriented goals.
We have implemented a discourse planner
capable of generating small talk in appropriate
contexts and carried out an evaluation com-
paring “small talk REA” to “task-talk-only REA.”
For high-engagement users (extroverts and
conversational initiators), these small-talk
behaviors lead to increased trust in the sys-
tem’s capabilities; for low-engagement users,
small talk decreases their perception of the
system’s skills (Cassell and Bickmore 2001).
We are currently reflecting on how to model
these user characteristics such that REA can
anticipate which conversational style would
be most effective with a particular user. We are
also investigating the role of discourse-sensi-
tive intonation as another modality for REA to
exploit.

In addition to REA, my students and I have
developed a number of other ECAs. In three
different application domains (children’s
learning, seniors’ reminiscence therapy, infor-
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you have toys that like do only like one
thing. SAM does a lot of things. He tells dif-
ferent stories—not that many. It’s way
complicated.”

SAM is designed to support the kind of oral
narrative skills that are precursors to later lit-
eracy. In the GRANDCHAIR Project, an ECA that
appears to be a young child in a rocking chair
sits across from an old person in an actual
rocking chair to listen to grandparents’ family
stories (Smith 2000). The stories are video-
taped so that they can be watched by future
generations. In the MACK (Media Lab
Autonomous Conversational Kiosk) Project,
an ECA is projected behind a table in the lob-

mation kiosks), we have explored how to
allow a user to share an actual physical space
with an ECA so that speech and gesture can be
joined by action as a representational strategy.
In the SAM Project (Cassell, Ananny, et al.
2000), a peer companion ECA encourages
young children to engage in storytelling by
taking turns playing with a figurine in a toy
castle that exists half in the child’s physical
reality and half in SAM’s virtual reality (figure
5). Although Sam’s interaction with the child
is, in fact, limited (there is no speech recogni-
tion, and Sam only knows eight stories), chil-
dren respond to the multiple representations:

“[SAM’s] more complicated because like
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Figure 5. SAM: Embodied Conversational Peer.



by of a research laboratory (figure 6). Visitors
can place their map of the building on the
table, and MACK will point out features of the
lab on the map, recognize user pen gestures to
the map, and give descriptions of research
projects as well as directions on how to find
these projects. The ongoing work on MACK

examines how users divide their focus of
attention between the physical map and MACK

itself to better allocate information to MACK’s
hands and face and the map. 

Finally, with the BODYCHAT system (Cassell
and Vilhjálmsson 1999), we are researching
how to derive the kinds of nonverbal interac-
tional and propositional behavior discussed
here from people’s typed text. In this context,
we have developed semiautonomous ECA
avatars to represent users in interactions with
other users in graphical chat systems. In these
systems, users control the content of what
their avatar says while much of the nonverbal
conversational behavior displayed by the
avatar is automatically generated based on the
typed text, the conversational context, and
the graphical space.  

Conclusions
What’s the point of discussing conversational
smarts in an AI Magazine article on intelligent
user interfaces? In the past, the kind of intelli-
gence that we modeled in AI was domain-ori-
ented smarts, and the kind of intelligence with
which we imbued our user interfaces was
domain intelligence. However, increasingly, we
are realizing that other kinds of intelligence
will also be helpful to machines, interesting to
model, and useful in the interface with users.
In this article, I presented a model that recon-
ciles two kinds of intelligence—interactional
and propositional (or, social and domain con-
tent)—and demonstrated how both kinds of
intelligence, and the interaction between
them, can make interfaces more intelligent in
their dealings with humans and how their very
presence can facilitate interaction with compu-
tational intelligence. The model relies on the
functions of embodiment: the conversational
protocols that bodies support, and the kinds of
representations that are carried by embodied
behaviors.
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Figure 6. MACK: Media Lab Autonomous Conversational Kiosk.
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As humans interact more with software
agents, and come to rely on them more, it
becomes more important (not less) that the
systems rely on the same interactional rules
that humans do. If you’re going to lean over
and talk to the dishwasher as an aside while
you converse with your daughter-in-law, the
dishwasher had better obey the same conversa-
tional protocols, such as knowing when it is
being addressed and what counts as an inter-
ruption.

The point is that when it comes to interac-
tion with an intelligent entity—human or
machine—people have an enormous amount
of knowledge and skill that can be leveraged if
we can understand their expectations and
build on the basis of how they understand the
structure built into the world. Our goal is not
to make every interface anthropomorphic but
to remember that for contexts such as the
smart room or the ubiquitous computer,
where users are expected to be fully surround-
ed by intelligent systems, the principles of
spatialized interaction and embodied conver-
sation might helpfully locate intelligence for
users. Thus, my position is to base my work
solidly in the theory of human conversation,
and in the role of the human body in conver-
sation. My goal is ECAs that can engage
humans in natural face-to-face conversation,
including speech and nonverbal modalities
such as gesture, gaze, intonation, and body
posture. These ECAs are not just there for pret-
tiness (in fact, they are often not particularly
pretty at all), but they do engage in the proper
use of conversational protocols and functions.
Their purpose is to leverage users’ knowledge
of how to conduct face-to-face conversation
and leverage users’ natural tendencies to
attribute humanness to the interface while
they allow us to extend theories of cross-
modality and modality-independent repre-
sentation and intelligence.
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Note
1.See sidebar entitled “The History of Embodied
Interfaces: Automata.”
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Artificial Intelligence and Mobile Robots
Case Studies of Successful Robot Systems

Edited by David Kortenkamp, R. Peter Bonasso, and Robin Murphy

The mobile robot systems described in this book were selected from among the best available implemen-
tations by leading universities and research laboratories. These are robots that have left the lab and
been tested in natural and unknown environments. They perform many different tasks, from giving 

 

To order, call 800-356-0343 (US and Canada) or (617) 625-8569. 
Distributed by The MIT Press, 55 Hayward, Cambridge, MA 02142

tours to collecting trash. Many have distinguished themselves (usually with first or second-place finishes
at various indoor and outdoor mobile robot competitions.

Each case study is self-contained and includes detailed descriptions of important algorithms, including
pseudo-code. Thus this volume serves as a recipe book for the design of successful mobile robot 
applications. Common themes include navigation and mapping, computer vision, and architecture.
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