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GRACE

An Autonomous Robot for the
AAAI Robot Challenge
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tenkamp, Bryn Wolfe, Tod Milam, and Bruce Maxwell

H In an attempt to solve as much of the AAAI Robot
Challenge as possible, five research institutions
representing academia, industry, and government
integrated their research into a single robot named
GRACE. This article describes this first-year effort by
the GRACE team, including not only the various
techniques each participant brought to GrRACE but
also the difficult integration effort itself.

he AAAI Robot Challenge was estab-
I lished four years ago as a grand challenge
for mobile robots. The main objectives of
the challenge are to (1) provide a task that will
demonstrate a high level of intelligence and
autonomy for robots acting in a natural, peo-
pled, dynamic environment; (2) stimulate
state-of-the-art robotics research to address this
task; and (3) use robot demonstrations to edu-
cate the public about the exciting and difficult
challenges of robotics research. The challenge
was designed as a problem that would probably
need a decade to achieve adequately. When the
challenge was designed, it was anticipated that
no single research institution would have ade-
quate resources to meet the challenge on its
own.!

The challenge task is for a robot to partici-
pate in the American Association for Artificial
Intelligence National Conference on Artificial
Intelligence—the robot must find the registra-
tion booth and register, interacting with people
as needed, then with a map in hand, find its
way to a location in time to give a technical talk
about itself.? Ideally, the robot should be given
no more information than any other par-
ticipant arriving in a new city to attend a major
technical conference. In particular, the robot

should not know the layout of the convention
center beforehand, and the environment
should not be modified. Practically, however,
the organizers understand that compromises
and flexibility will be necessary to get current
state-of-the-art robots to achieve the task.

There are a number of important technolo-
gies that are needed to meet the challenge.
These technologies include localization in a
dynamic environment; safe navigation in the
presence of moving people; path planning; dy-
namic replanning; visual tracking of people,
signs, and landmarks; gesture and face recogni-
tion; speech recognition and natural language
understanding; speech generation; knowledge
representation; and social interaction with
people. Although researchers have worked on
all these areas, they all need further work to be
robust in the environment that the challenge
specifies. In addition, a major challenge is the
integration of these technologies.

In August 2001, several of the authors
agreed to join efforts to attempt the challenge
in its entirety. We had each been working on
technologies related to the challenge and felt
that by pooling our efforts we could do reason-
ably well. In addition, we believed that the
type of collaborative work that was needed to
pull this off would help advance robotics. We
realized that integrating hardware and soft-
ware from five institutions would be difficult.
Our first-year goal, therefore, was to create ar-
chitecture and infrastructure to integrate our
existing software into a system that could do a
credible job with the challenge task. We all
agreed that this would be a multiyear effort
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Figure 1. The Robot GRACE.

and that in subsequent years, we would build
on this year’s robot system.

In e-mail conversations and meetings during
the winter of 2002, we formulated the basic ap-
proach and architecture. We decided that there
were several possible approaches: (1) we could
bring our own robots and each do part of the
task, “handing off” from one to another, (2) we
could use a common hardware platform but
use our own existing software, or (3) we could
do a full-blown hardware and software integra-
tion. We quickly agreed to try for option 3, but
option 2 would be a good fallback position. We
spent the spring of 2002 converting existing
software to run on the common hardware plat-

form (see Robot Hardware) and common inte-
gration architecture (see Software Architec-
ture). In the end, we achieved some- where be-
tween options 2 and 3, with the robot
successfully performing most of the major sub-
tasks with little human intervention (see Do-
ing the Challenge Task). In July 2002, we trav-
eled to the Eighteenth National Conference on
Artificial Intelligence at the Shaw Convention
Centre in Edmonton, Alberta, to take part in
the challenge.

Robot Hardware

GRACE (graduate robot attending conference) is
built on top of a 821 mobile robot built by
RWI. GRACE has an expressive computer-ani-
mated face projected on a 15” flat-panel LCD
screen as well as a large array of sensors (figure
1). The sensors that come standard with the
B21 include touch, infrared, and sonar. Near
the base is a sick scanning laser range finder
that provides a 180-degree field of view.

At one of our first meetings, we discussed the
various hardware each team would need to in-
tegrate into the Carnegie Mellon University
(CMU) platform. GrACE has several cameras, in-
cluding a stereo camera head on a pan-tilt unit
built by Metrica TRACLabs and a single color
camera with pan-tilt-zoom capability built by
Canon. GRACE can speak using a high-quality
speech-generation software (FESTIVAL) and re-
ceive speech responses using a wireless micro-
phone headset (a Shure TC computer wireless
transmitter-receiver pair).

GRACE runs all software on board. Two 500-
megahertz processors, running LINUX, run most
of the autonomy software. A Sony VAIO PICTURE-
BOOK laptop, running wiNDOWS, runs the
speech-recognition software. In addition, there
is a separate processor for the Metrica stereo
head and a Linksys wireless access point to
connect the robot to the outside world (for de-
bugging, monitoring, and controlling the pre-
sentation during the talk).

Software Architecture

One of the more difficult parts of the challenge
for us was determining how to integrate a vast
amount of software that had been developed
by the participating institutions, mostly on dif-
ferent hardware platforms.? Early on, we decid-
ed to integrate everything onto a common
hardware platform, as described previously,
with different groups providing software ser-
vices that would interface to various pieces of
hardware. The idea was that the services would
abstract away details of the actual hardware
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Figure 2. GRACE Software Architecture Diagram.

platform, making subsequent development
easier. Development of interfaces between
modules occupied the bulk of our initial work.
Each team needed to define the input and out-
put of their modules and work out details of
how the various modules would interact. In
particular, CMU provided interfaces to the ro-
bot base (motion and localization), speech gen-
eration, and computer-animated face; the
Naval Research Laboratory (NRL) provided
speech recognition and natural language-
—understanding interfaces; Swarthmore Col-
lege provided vision-processing code and con-
trol over the Canon pan-tilt-zoom camera; and
Metrica provided stereo vision and control
over their pan-tilt head. In addition, CMU pro-
vided a simple graphic simulator so that pro-
grams could be tested remotely, in advance of
integration on the actual robot platform.
Software for the various subtasks was then
built on top of these services. Although the ser-
vices, for the most part, were task independent,
the software that ran the various tasks was a
mixture of task-independent and task-depen-
dent code. In particular, NRL was responsible
for the part of the challenge when the robot
entered the conference center to when it
neared the registration booth; CMU was re-
sponsible for elevator riding, getting in line at

the registration booth (using Swarthmore’s vi-
sion system), registering for the conference,
and navigating to the lecture area; and North-
western University was responsible for having
GRACE give its talk. Figure 2 presents a high-lev-
el view of the software architecture and devel-
opment responsibilities. The section entitled
Doing the Challenge Task presents details of
the task-level software.

To facilitate distributed development and
simplify testing and debugging, the GRACE sys-
tem was designed as a set of independent pro-
grams that communicated using message pass-
ing. The interprocess communication (IPC)
package was chosen for (nearly all) communi-
cations because of its expressiveness, ease of
use, and familiarity by some of the teams (both
CMU and Metrica have used IPC in the past).*
As much as possible, all software was to be writ-
ten in c or c++ (using the Gce 2.96 compiler),
running under RED HAT LINUX 7.2. Exceptions in-
cluded the use of a winpOws laptop to run Via-
VoIck,’ the use of Allegro Common Lisp for
NRL's NAUTILUS natural language—understanding
system, and the use of swiG and pYTHON for the
elevator riding code. In addition, OPENGL, PERL,
and FESTIVAL were used for the computer-ani-
mated face and speech generation.®

Finally, the computer-animated face and sev-
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Figure 3. Direction Taking.

eral of the task-level programs were written us-
ing the TASK DESCRIPTION LANGUAGE (TDL). TDL is an
extension of c++ that contains explicit syntax to
support hierarchical task decomposition, task
synchronization, execution monitoring, and
exception handling (Simmons and Apfelbaum
1998).7 A compiler translates TDL code into pure
C++ code that includes calls to a domain-inde-
pendent TASK-CONTROL MANAGEMENT (TCM ) library.
The translated code can then be compiled using
standard c++ compilers linked with other soft-
ware. The idea is to enable complex task-level
control constructs to be described easily, en-
abling developers to focus more on the domain-
dependent aspects of their programs.

Doing the Challenge Task

As mentioned previously, the challenge is to
have an autonomous mobile robot attend the
National Conference on Artificial Intelligence.
More specifically, the challenge rules are to
have the robot perform the following subtasks:®

First, starting at the front door of the confer-

ence center, navigate to the registration desk
(ideally by locating signs, asking people, or fol-
lowing people—at this point, the robot does
not have a map of the building).

Second, register. Stand in line if necessary;
have the robot identify itself; and receive regis-
tration material, a map of the conference cen-
ter, and a room number and time for its talk.

Third, interact with other conference atten-
dees (ideally recognize participants by reading
name tags or recognizing faces and schmooze,
striking up brief personal conversations).

Fourth, if requested, perform volunteer tasks
as time permits, such as “guarding” a room or
delivering an object to another room.

Fifth, get to the conference room on time, us-
ing map received in step 3. This step might in-
volve riding an escalator or elevator.

Sixth, make a two-minute presentation a-
bout its own technology and answer questions.

For our first year at the challenge, we decided
to do all the subtasks except steps 3 (schmoo-
zing) and 4 (volunteer duties) and have the ro-
bot itself answer questions from the audience.
In addition, the human interaction in step 1
was limited to interaction with one person, a
student who worked with the team that sum-
mer. In future years, we will expand the scope
to include all subtasks and enable arbitrary con-
ference participants to interact with the robot.

The next subsections describe in more detail
the major subsystems for each of the challenge
tasks.

Getting to the Registration Area

GRACE must start at the entrance to the confer-
ence center and find the registration area by in-
teracting with people. Remember that GRACE
does not have a map until it reaches the regis-
tration desk. This part of the challenge is meant
to demonstrate robot interaction with people.

We endowed GRrRACE with the capability to in-
teract with people using both speech and nat-
ural gestures, in particular to allow GRACE to ask
for, understand, and follow directions. Using
TDL (described in Software Architecture), we
created a push-down automata that allowed
GRACE to maintain multiple goals such as using
an elevator to get to a particular floor and fol-
lowing directions to find the elevator.

We used an off-the-shelf speech-recognition
system, IBM’s VIAVOICE, to convert spoken ut-
terances to text strings. The text strings were
then parsed and interpreted using NAUTILUS,
NRL's in-house natural language—understand-
ing system (Perzanowski, Schultz, and Adams
1998; Perzanowski et. al. 2002, 2001; Wau-
chope 1994). The output of this component is
a logical form similar to standard predicate log-



ic. This representation is then mapped to a
message, or a series of messages, which is then
sent to other modules through an irc interface
that was developed specifically for the chal-
lenge.

The a priori top-level goal is to find the reg-
istration desk. Additional goals are created as
GRACE interacts with people to determine the
directions to the registration desk and interme-
diate locations on the way to the registration
desk. To achieve a goal, we interleave linguistic
and visual information with direction execu-
tion (figure 3). If there are no directions to be
followed, GRACE performs a random walk until
a human is detected (for the challenge in 2002,
human detection was done using a laser scan-
ner; in future years, we will incorporate vision-
based detection of people). GRACE then engages
the human in a conversation to obtain direc-
tions to the destination in question. Simple
commands, such as “turn left” and “go forward
five meters,” as well as higher-level instruc-
tions, such as “take the elevator” and “turn left
next to the elevator,” are acceptable (note that
in the Shaw Convention Centre, one needed to
take an elevator down two flights from the en-
trance to get to the registration area). In addi-
tion, GRACE can ask questions such as “Am [ at
the registration desk?” and “Is this the eleva-
tor?” The task is completed once the destina-
tion is reached, as determined by an explicit
human confirmation or perception of the goal.

Besides accepting speech input, GRACE can
incorporate gestures, such as when a human
points to a given location. Initially, we were
planning on using stereo-based vision to track
both people and their gestures, but this part of
the software was not ready in time. As a last-
minute backup, we developed a personal digi-
tal assistant (PDA)-based interface in which
movements of the stylus on the screen were in-
terpreted as directional gestures.

Execution monitors run concurrently to en-
sure both safety and the integration of various
required linguistic and sensory information.
For example, an explicit stop command can be
issued if unforeseen or dangerous conditions
arise. Also, perception processing occurs con-
currently with interaction, allowing the detec-
tion of the destination or a human to be inter-
leaved with other information required to
perform the task.

Two types of direction can be given. For a
simple action command, such as “turn left,”
the action is queued until the speaker is done
giving directions, then the actions are executed
sequentially. The second type of command is
an instruction specifying an intermediate desti-
nation, such as “take the elevator to the second
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Figure 4. Human Giving Directions to GRACE to
Find Elevator out of View to the Right.

floor.” In this case, an intermediate goal is in-
stantiated (getting to the elevator), and the log-
ic is recursively applied to the new goal (figure
4). All directions to this point are regarded as di-
rections to the subgoal, and subsequent direc-
tions are associated with the parent goal. Once
all the available directions have been executed,
GRACE concludes that either it has arrived at the
destination, or additional information is re-
quired to reach the goal. If GRACE perceives the
destination before all the directions are execut-
ed, the remaining ones are abandoned, and it
continues with the next goal.

Thus, if GRACE asks a human bystander “Ex-
cuse me, where is the registration desk?” and
the human responds “GRACE, to get to the reg-
istration desk, go over there <accompanied by
a gesture>, take the elevator to the ground
floor, turn right, and go forward 50 meters,”
the human'’s input is mapped to a representa-
tion similar to the following:

Find Registration Desk:
Find Elevator (ground floor);
Go over there <gesture>;
Turn right;
Go forward 50 meters.

Once GRACE has found the elevator, control is
temporarily turned over to CMU'’s elevator rid-
ing process (see subsection entitled Riding the
Elevator). When GRACE determines that it is
within a reasonably close distance to the regis-
tration desk, the find-the-desk process is termi-
nated, and control is given to the process that
approaches the registration desk (see Finding
the Registration Booth).
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Figure 5. The Elevator in the Shaw Convention Centre.

Riding the Elevator

As mentioned previously, the registration area
in the Shaw Convention Centre was not on the
same floor as the street entrance. Our choices in
addressing this situation were rather limited—
stairs are out of the question, and escalators are
no good either. The only viable alternative was
to have GRACE ride the elevator (figure 5).

The first problem is to find the elevator itself.
We assume that the system has brought the ro-
bot near the elevator and pointed it generally
to face that direction. Thus, the laser should
have a good view of the elevator, and the robot
will just need to perceive the unique signature
of the elevator doors in the laser readings and
get itself lined up with the doors. For example,
given that the robot is positioned as shown in
figure 6, the system will see laser readings such
as those in figure 7.

Although people can readily make out the
shapes of the elevators in the laser points, hav-
ing the robot find the elevators is unfortunately
a bit more involved. The algorithm that we de-
veloped to perceive elevators from laser scans is
as follows:

Straighten out the view of the world

Find horizontal segments corresponding
to bits of walls

Filter the segments to eliminate noise and
impossible conditions

Merge small, adjacent segments into sin-
gle segments

Use feature matching to find possible ele-
vators

Filter out impossible elevators

This process is iterative and constantly run-
ning. The robot starts by attempting to fit
straight lines to points it sees. Using these
lines, it comes up with a guess of how far off it
is from facing the wall. It then “mentally” ro-
tates the points in the world and tries again.
Fairly quickly, the walls slide into place, and
the system can detect the characteristic shape
of elevator doors.

The system uses a feature-based recognizer
to detect elevators. Given the transformation
of the input points, it is sufficient to consider
only horizontal segments within some para-
meterized tolerances for length and offset. In
general, the system looks for three characteris-
tic shapes. The first shape is a standard elevator
inset (figure 8). Because elevators are generally
of a certain width, but also have a deeper inset
than office doors, the inset information can
fairly reliably pick out an elevator from an of-
fice or conference room. The second two
shapes are similar to the first but with some in-
formation removed. Although these shapes are
still valid elevator candidates, the robot would
probably need to move around a bit to get a
better view of the elevator to make a final de-
termination. When these patterns are applied
to the input data in figure 7, the system detects
the two elevators shown in figure 9.

One difficulty is that some patterns that are



not elevators can actually look similar to the
patterns in figure 8. For example, figure 10 il-
lustrates two types of patterns that are not ele-
vators. Note that in practice, some patterns
that initially look good (for example, the two
patterns on the right in figure 8) might actually
turn out to be bad patterns when more infor-
mation is acquired (by moving around).

After the robot detects an elevator, it gets in-
to position and waits for the door to open. Al-
though the laser can often see several elevators
simultaneously, the robot cannot safely move
fast enough if a door opens too far away. Thus,
the robot picks one elevator to wait in front of
and moves only if it later decides that a better
elevator pattern is nearby. Specifically, it waits
for a while and, after a timeout with no activi-
ty, searches and lines itself up again.

Once it has chosen an elevator and moved in
front of it, the robot waits for some time for the
door to open. If the door opens soon enough
(as shown by the laser readings), the robot nav-
igates in and turns around. When it has deter-
mined (by human interaction or other means)
that it is on the destination floor, it moves out
of the elevator when the path is clear.

Although the elevator-riding program
worked well in testing, two main problems
were encountered when we arrived in Edmon-
ton. First, the area surrounding the elevator,
and the elevator itself, was made primarily of
laser-invisible glass (figure 5). To solve this
problem, we discretely put a single strip of styl-
ish green tape all around the area, just at laser
height. This tape neatly solved the problem
and drew little attention from the onlookers.
The second problem was that the elevator pat-
tern on the entrance floor of the convention
center was quite unusual. The elevator had a
normal inset on its left but abutted a long wall
on its right (figure 11). The solution was to ad-
just the feature-based recognizer to accept this
pattern as a valid elevator. Clearly, though, this
type of tweaking is not a general solution to
the problem.

With these problems solved, the elevator-
riding portion of the challenge went quite well.
However, there are a few issues still remaining.
The most visible issue relates to the slowness of
the error-correcting actions. For example,
when the robot is misaligned in the elevator, it
waits for a long time before it decides to back
up and try again. It should detect and recover
from these kinds of errors much faster. Second,
as pointed out earlier, a more general recogniz-
er needs to be developed—perhaps one that us-
es both laser and vision. Finally, the robot
needs to be able to detect for itself when it is on
the correct floor. We are currently developing a
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Figure 6. The Simulation Environment.

Figure 7. Raw Laser Points.
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sensor, based on an electronic altimeter, to de-
termine which floor the robot is on.

Finding the Registration Booth

Once GRACE reached the registration area (see
Getting to the Registration Area), the next task
was to move up to the registration desk, which
involved two related subtasks: (1) searching for
and visually acquiring the sign indicating the
registration desk and (2) servoing to the desk
guided by a visual fix on the sign. The standard
registration signs used at the Shaw Convention
Centre, which were LCD displays, were too
small and too dim to be seen by the robot’s
cameras. Therefore, we provided our own
bright pink registration sign (figure 12).

The Swarthmore vision module (svMm) (Max-
well et. al. 2002) provided the vision software
capabilities used for this task. svm is a general-
purpose vision scheduler that enables multiple
vision operators to run simultaneously with
differing priorities yet maintain a high frame
rate. It also provides tightly integrated control
over a pan-tilt-zoom camera, such as the Ca-
non vc-c4 that was used on GRACE.

The svm library includes a number of vision
operators, one of which (the color blob detec-
tor based on histograms) was used to find the
pink sign above the registration desk. In addi-
tion, each vision operator can function in as
many as six different modes, including the
PTZ_SET and LOOK_AT modes that were used
with GRACE. The PTZ_SET mode allows software
external to the svMm to set the position of the
camera by designating pan, tilt, and zoom pa-
rameters. svM does not independently move
the camera in this mode. In the LOOK_AT
mode, svM is given the three-dimensional (3D)
location of the camera and object to be tracked
and sets the camera to point at the object. If
the vision operator finds the object, svmM moves
the camera to track it within a limited region
around the designated location. The software
for servoing GRACE to the registration desk, in-
cluding the interface to both svMm and the low-
er-level locomotion software, was written us-
ing TDL.

Because of the configuration of the registra-
tion area at the Shaw Centre, GRACE was ap-
proximately 15 to 20 meters from the registra-
tion desk when it first reached a position to be
able to see the registration sign. The first phase
of the task, searching for and finding the sign,
was complicated by the configuration of the
registration area. Although the pink sign was
0.5 by 1.0 meters in size and designed to be rel-
atively easy to find, at a distance of 15 to 20
meters, with the camera’s zoom set to the wid-
est angle (45-degree field of view), the sign was



Figure 12. The Robot Registration Sign.

only a few pixels in size and nearly impossible
for svM’s blob-detection operator to find. To
achieve more robust sign detection, we increas-
ed the zoom (narrowing the field of view to 5
degrees), resulting in a very meticulous, but
slow, search process. During this phase, svm
was used in PTZ_SET mode, giving full control
of the camera to the toL code. The shifting
light levels in the registration area, because of
time and weather changes, also caused some
difficulties. Histograms for the pink sign train-
ed at a certain time of day often failed several
hours later. To ameliorate this problem, we
trained the histograms immediately before the
start of the challenge.

Once the registration sign was found, an ap-
proximate distance to the sign was calculated
based on the blob elevation measure provided
by svm. This measurement, in turn, was used to
calculate the 3D location of the sign in the ro-
bot’s global coordinate frame. At this point, the
robot oriented itself to the sign and began
moving toward the registration desk. The blob-
detection operator was now changed to
LOOK_AT mode, providing robust tracking of
the sign during movement. svMm provided up-
dates on the position of the sign in the pan-tilt
frame of the camera, which were then translat-

ed into global coordinates by the TpLcode, pro-
viding both sign and robot location updates to
svM as well as correcting the movement of the
robot. The tpL code also adjusted the zoom
used by svM—as GRACE’s distance to the sign de-
creased, the field of view of the camera was in-
creased to maintain the entire sign within the
image, thereby reducing the chance of losing
the sign and producing more accurate esti-
mates of its location. This part of the task was
considered completed when GRACE reached a
distance of two meters from the desk.

Standing in Line

Once GRACE was near the registration desk, it
proceeded to register. First, however, it waited
in line (if there was one) like any polite confer-
ence attendee. GRACE uses a combination of an
understanding of personal space and range in-
formation to stand in line. GRACE uses the con-
cept of personal space to understand when
people are actually in line rather than when
they are milling around nearby. People stand-
ing in line will typically ensure that they are
close enough to the person in front of them to
signify to others that they are in line yet main-
tain a minimum socially acceptable separation
distance. GRACE also uses this information to
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Figure 13. GRACE’S Perception of People in Line.

ensure that once in line, it does not make oth-
ers feel uncomfortable by getting too close to
them. The algorithm is based on earlier work
using stereo vision for detecting lines (Nakau-
chi and Simmons 2002).

GRACE uses the sick scanning laser range find-
er to identify people and walls. Before each
movement, a laser scan is performed. Clusters
in the range data are grouped into three cate-
gories: (1) those that might be people, (2) those
that are likely walls, and (3) those that are oth-
er (figure 13). This classification is based on the
shape of the cluster. To identify people, the al-
gorithm looks for a small cluster of data points
(with a spread of less than approximately 50
centimeters) or a pair of small clusters close to-
gether. This simple heuristic incorrectly classi-
fies a variety of objects that are not people as
people, but these “false positives” are generally

irrelevant in the context of standing in line to
register for a conference.

If a cluster is too big to be a person and the
points in the cluster fall approximately along a
line, the cluster is considered a wall. Occlu-
sions in the range data (figure 13) are compen-
sated for by comparing wall clusters to one an-
other to determine if a single wall segment can
explain them. If such is the case, then these
clusters are combined to provide a better esti-
mate of the orientation and location of the
walls.

The stand-in-line algorithm assumes that
GRACE starts near the registration desk and that
the closest “wall” is the front of the desk. Once
the closest wall has been found, GRACE rotates
away from the desk and searches for the near-
est person standing close to the registration
desk. This person is considered to be the “head



of the line.” Once the head of the line has been
identified, the algorithm attempts to chain
nearby people together using the notion of
personal space. Those that are too far from the
person in front of them, or those who are not
approximately behind someone in line, are not
considered to be in line. Once the line is found,
GRACE moves toward the back of the line, inter-
mittently checking for more people in line.
Once at the back of the line, GRACE moves to a
position behind the last person. At this point,
GRACE only considers the person immediately
in front of it, maintaining the personal space
between the robot and this person. Once near
the registration desk, GRACE maintains a stand-
off distance until the person in front leaves.
When there are no more people in front of
GRACE, it drives to a set distance from the regis-
tration desk and then begins to register.

Registering

The objectives for this subtask were to develop
an interaction system that was robust enough
so that a (relatively) untrained person could in-
teract with it and to present an interface that
was natural enough so that the registrar and
observers could interact with GRACE at least
somewhat as they would with a human. The
specific task was for GRACE to obtain all the var-
ious registration paraphernalia (bag, badge,
proceedings) as well as find out the location
and time of its talk.

Figure 14 illustrates the data and control
flow for a typical interaction cycle with the ro-
bot. A wireless microphone headset is used to
acquire speech, which is then converted to text
by ViaVoIck. VIAVoICE has the ability to read in
a user-specified BNF (Backus-Naur form)-style
grammar, which it then uses to assist in speech
disambiguation. In fact, it will only generate
utterances that are valid under the loaded
grammar. Obviously, there is an inverse rela-
tionship between the size of the grammar and
the recognition accuracy of ViaVoict (when
presented with valid utterances). We built our
own grammar to cover all the potential utter-
ances we could think of within the given
scope. Because the breadth of interaction in-
volved in performing the registration task is
rather limited, we were able to achieve satisfac-
torily accurate recognition.

After recognizing an utterance, VIAVOICE
transmits it across the network as a string. NRL
developed a module, called utt, which listens
for transmissions from ViaVoict and re-broad-
casts them over IPC as “utterance” messages.
UTT also has a text-based input mode, which is
useful for debugging. The text strings are then
parsed by the UTT2SIGNAL program. UTT2SIGNAL
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Figure 14. Information Flow for the Registration Desk Task.

performs the same basic function as NAUTILUS
but is significantly more simple and special-
ized. UTT2SIGNAL is based on a Bison parser that
was hand generated from the ViaVoice BNF
grammar. It distills the utterances down to the
primitives that we need to drive our interac-
tion and transmits the appropriate signals to
the “expression” process (see later discussion).
In addition, UTT2SIGNAL is responsible for dis-
patching any raw information gleaned from
the utterances to the appropriate process. For
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example, if the registrar tells GRACE the location
of its talk, uTT2sIGNAL informs the navigation
software of this same location.

The “expression” process controls the com-
puter-animated face and the resTIvAL speech-
generation software. Users write interaction
scripts that include facial expressions, quoted
text, pauses, conditional operators, choice op-
erators, and most basic math and logic opera-
tions. The scripting language allows the defin-
ition of macros, which include basic face
movements, utterances, and nonface primi-
tives (such as pauses). Even more powerful is
the ability to create and execute hierarchical fi-
nite-state machines (FSMs) (figure 15). The
FSMs can execute actions when entering a state
and can transition based on signals received
from other processes (for example, UTT2SIGNAL,
hence the name). Figure 16 shows a small sam-
ple of the script used for the registration task.

Because UTT2SIGNAL abstracts out the actual
parsing, the FSM can concentrate on the con-
tent, which decreases its complexity. In addi-
tion, execution time scales well with the size
and number of FSMs. In the future, this scala-
bility will allow more complex interactions to
be driven without unreasonable computation-
al requirements.

GRACE's face (figure 17) is one of the most im-
portant aspects of its ability to interact with
humans. It is used for both emotional expres-
sion and simple gestures because GRACE lacks
any conventional manipulators. The face is
based on an implementation of the simple face
in Parke and Waters (1996). It incorporates a
muscle-level model of face movement to allow
semirealistic face motions. It accepts muscle
and simple movement commands from ex-
pression; macros of these commands are built
up within the “expression” process to allow
easy access to complicated expressions or ges-
tures.

Last, but not least, is GRACE’s ability to gener-
ate speech. We use a version of FESTIVAL that was
modified to enable it to generate phonemes for
a given utterance, which are then processed to
extract lip-synching information. FESTIVAL per-
formed admirably, overall, with two notable
exceptions: (1) it tends to speak in a monotone
and (2) it cannot handle acronyms. Although
it is possible to embed pitch changes in strings
sent to FESTIVAL, this capability was too labor in-
tensive to take advantage of this year and does
not tend to produce convincing speech in any
case. Likewise, it is possible to embed phonetic
pronunciations to deal with utterances such as
“AAAL”

There were a number of small, persistent
problems with the interaction. First, ViaVoICE

had trouble with short utterances, often misin-
terpreting them as numbers. Because an utter-
ance of just numbers was parsed as a statement
of the time of GRACE's talk, this approach could
cause some confusion. However, GRACE was
able to recover from such mistakes because of
the structure of the driving FSM.

The other problem had to do with the dis-
ambiguation of pronouns and other generic
statements. GRACE disambiguates such state-
ments as “here you go,” “no,” or “you have it”
based on the latest prompt that it gave (that is,
what state of the FSM it is currently in). How-
ever, if GRACE prompted the registrar, and the
registrar began to respond, but ViaVoice did
not complete recognizing the utterance until
after GRACE had timed out and begun the next
prompt, GRACE would believe that a nonspecific
statement was about the new prompt, even if it
had only said a syllable or two of it. This tim-
ing issue obviously caused some problems be-
cause the potential existed for its belief of the
state of the world to get out of sync with reali-
ty, resulting in very unnatural interaction.

Navigating to the Talk

After registering, the challenge robots are al-
lowed to use a map to navigate in the building.
Ideally, the robots would actually read the map
given to them. GRACE, however, used a map
that it had built previously and had saved on
disk. The map was used to help GRACE make its
way from the registration desk to the talk
venue. The map-based navigation task com-
prised three main technologies: (1) map build-
ing, (2) localization, and (3) navigation con-
trol.

The evening prior to the challenge event,
GRACE was driven around the convention cen-
ter. During this time, time-stamped odometry
and laser range data were recorded to file.
These data were then used to build a map
through a process called scan matching (Lu and
Milios 1997). The implementation of our scan-
matching algorithm was adapted from a soft-
ware package provided by Dirk Hidhnel of the
University of Freiburg (Hdhnel et. al. 2002).
Generating a map from laser and odometry da-
ta is largely an automated process, although
our implementation also allows the user to cor-
rect misalignments after the scan-matching
process. The output of the map-building
process is an occupancy grid map, shown in
figure 18. This map is 89.4 by 10.8 meters, with
a resolution of 10 centimeters for each grid
cell. The black pixels represent regions of space
with a high probability of occupancy, such as
walls and chairs. Similarly, the white areas are
regions of space with a low probability of occu-
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Example of expression definition
Expression definitions are of the form
DEFINE expressionName
{ say("<utterance>")
[one or more expression macros]
[1ip synching macros]

H o HH HH HHHF

For example:

DEFINE badgeYesPrompt
{ say("May I have my badge please?")
[dhappy?2]
[pause (0.129) mm me mi ma mm mi ma msh mp me pause(0.079) msh mn]

}

# Example of DFA / FSM

# Inclusion of other FSM and expression definition files is
# allowed for maximum flexibility

include "register.fsm"

include "mutter.pho.expr"

# Define the initial and final states of a FSM
BEHAVIOR-MACHINE MutterMachine

initial MM Enter

final MM Final

BEHAVIOR MM Enter
# Transition immediately if either of these signals is received,
# even interrupting speech in progress
transition interrupted "speech:reset" MM Final
transition interrupted "control:stopMutter" MM Final
perform
[# Serialize everything in []'s
# First, choose something to say
CHOOSE (
mutterl,
mutter?2,
mutter3),
pause (2) ,
removeTextBubble,
slowNormal,
smiley,
# Then, choose how long to wait
CHOOSE (
pause (5) ,
pause (15),
pause (30))
1
# Finally, do this all over again
# This transition fires only when the preceding perform clause
# has completed
transition MM_Enter

# There are no transitions out of this node, thus signaling the
# termination of the FSM
BEHAVIOR MM_Final

perform slowNormal

Figure 16. Sample Expressions and Finite-State Machines for the Registration Desk Task.
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Figure 17. GRACE’S FACE.

pancy. Not shown in this image are regions of
space where no data could be collected (that is,
behind walls).

GRACE uses a probabilistic approach to locali-
zation called Markov localization. The localizer
estimates a probability distribution over all pos-
sible positions and orientations of the robot in
the map given the laser readings and odometry
measurements observed by the robot. This prob-
ability distribution is approximated using a par-
ticle filter (Thrun et. al. 2000). GRACE is initial-
ized with an approximate starting position, and
the distribution of particles evolves to reflect the
certainty of the localizer’s position estimate.

As GrACE moves, the probability distribution
is updated according to

p(si) =1n- p(oi Si)J. P(Si i1 ai—l)p(si—l)dsi—l

where s, is the pose at time i, a, , the last action,
and o, the last observation.

Navigation was performed using a two-level
system. The low-level system uses the lane-cur-
vature method (Ko and Simmons 1998) to con-
vert commands in the form of directional
headings to motor velocity commands. The
high-level planner consists of an implementa-
tion of a Markov decision process planner (Bur-
gard et. al. 1998; Konolige 2000). The planner
operates by assigning a positive reward to the
goal location and a negative reward to poses
close to obstacles. The planner uses value iter-
ation to assign a value to each cell; this value
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Figure 18. Map Built by GRACE of the Shaw Convention Centre.

corresponds to the future expected reward of
each cell, as in the following equation:
V(Si) =

1S 1Al
rnaax[R(si) +7Y V(sj)kz ps; I n(ay | si),si)J
j=1 =1

where R(s;) is the immediate reward of robot
pose s, and V(s;) is the expected reward to be
maximized. The planner extracts the maxi-
mum-likelihood path by choosing from the
start state (the current pose of the robot as giv-
en by the localizer) successive states that max-
imize the expected reward. The directional
command passed to the low-level controller is
just the direction of the neighboring state with
the highest-expected reward.

During execution of the planned path, the
planner also integrates sensor information,
based on the current pose estimate from the lo-
calizer, to make changes to the map. Thus, the

planner is allowed to compensate for small er-
rors in localization and changes to the envi-
ronment that could invalidate certain paths.

Giving the Talk

Once GRACE navigated to the lecture area (in the
Exhibition Hall), it gave a talk about the tech-
nologies that it comprises (figure 19). GRACE’S
talk-giving system is an attempt to scale behav-
ior-based architectures directly to higher-level
cognitive tasks. The talk giver combines a set of
behavior-based sensory-motor systems with a
marker-passing semantic network, a simple
parser, and an inference network to form an in-
tegrated system that can both perform tasks
and answer questions about its own ability to
perform these tasks. It interfaces with the com-
puter-animated face and resTIVAL speech-gener-
ation systems to do the actual presentation.
The talk system is structured as a parallel net-
work of logic gates and finite-state machines.
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Inference rules in the system are compiled into
a feed-forward logic network, thus giving it cir-
cuit semantics: The input of the network mon-
itor the truth values of premises as generated by
the sensory systems, and the output of the net-
work track the truth values of conclusions in re-
al time as the premises change. In effect, the en-
tire rule base is rerun from scratch to deductive
closure at sensory frame rates. Although this
approach sounds inefficient, the rule engine
can run a base of 1000 Horn rules with 10 con-
juncts each, updating at 100 Hertz (100 com-
plete reevaluations of the knowledge base a sec-
ond), using less than 1 percent of the central
processing unit. Using a generalization of deic-
tic representation called ROLE PASSING (Horswill
1998), the network is able to implement a lim-
ited form of quantified inference—a problem
for previous behavior-based systems. Rules can
be quantified over the set of objects in short-
term memory, provided they are restricted to
unary predicates (predicates of one argument).

The talk-giving system implements reflective
knowledge—knowledge of its own structure and
capabilities—through two mechanisms: (1) a
marker-passing semantic network provides a
simple mechanism for long-term declarative
memory and (2) role passing allows variables
within inference rules to be bound to behav-
iors and signals within the system. The first
mechanism allows the system to answer ques-
tions about its own capabilities, and the sec-
ond mechanism allows it to answer questions
about its current state and control processes.

The talk-giving system can follow simple
textual instructions. When a human issues a
command such as “drive until the turn,” its
simple parser, which is formed as a cascade of
finite-state machines, examines each individ-
ual word, binding the appropriate words to the
appropriate roles. In this case, the parser binds
the drive behavior to the role activity and the
turn? sensory signal to the role destination.
When it detects a stop (for example, a pause),
it triggers the handle-imperative behavior,
which implements the rules:

If the signal bound to destination is false, ac-
tivate the behavior bound to activity.

If destination is bound to a sensory signal
and that signal is true, deactivate activity and
the system.

If activity deactivates itself, also deactivate
the handle-imperative behavior.

Because this behavior is parameterized by
other behaviors, we call it a higher-order behav-
ior in analogy to the higher-order procedures of
functional programming languages. Other ex-
amples are the explain behavior, which walks a
subtree of the semantic network to produce a

natural language explanation of the behavior,
and the demo behavior, which both explains and
runs the behavior. Role passing and higher-or-
der behaviors are easily implemented using par-
allel networks of gates and FSMs, making them
a natural choice for the kind of distributed, par-
allel processing environments often found on
mobile robots. They are implemented in GrL, a
functional programming language for behav-
ior-based systems that provides many of the
amenities of Lisp and statically compiles pro-
grams to a network of parallel FSMs.

To give a talk, GRACE uses the Linksys wireless
connection to a laptop to open a POWERPOINT
presentation, reads the text of each bullet point,
and uses keyword matching to find an appropri-
ate node in its semantic network. It uses a novel
distributed representation of a discourse stack to
resolve ambiguities, using only parallel marker-
passing operations. Having determined the
node to which the bullet point refers, GRACE uses
spreading activation to mark the subtree rooted
at the selected node as being relevant. It then
discusses the topic by continually selecting and
explaining the highest priority relevant, unex-
plained node. Priorities are computed offline us-
ing a topological sort so that if topic A is re-
quired to understand topic B, A will always have
higher priority.

Continually reselecting the highest-priority,
relevant, unexplained node using circuit seman-
tics gives GRACE the ability to adjust its pattern in
response to unexpected contingencies. Al-
though the current system doesn’t make much
use of this capability, we intend to make exten-
sive use of it in next year’s system. If, for exam-
ple, GrRACE had to maneuver its way around a by-
stander in the process of demonstrating its
navigation system, it might insert a digression
about social interaction and the need to say “ex-
cuse me.” When later in the talk, it came to the
section on social interaction, it would realize it
had already discussed the topic and simply
make reference to its earlier discussion. It also al-
lows the robot to cleanly respond to, and return
from, interruptions without replanning. How-
ever, such topic shifts require the generation of
transition cues such as “but first ...” or “getting
back to....” The talk code detects these abrupt
topic shifts by tracking the current semantic net
node, its parent node, and the previous node
and parent. By comparing these nodes, the sys-
tem can determine whether it has moved local-
ly up, down, or laterally in the hierarchy or
whether it has made a nonlocal jump to an un-
related node. It then generates the appropriate
transition phrase.

The talk giver is far from fluent. It is not in-
tended to demonstrate that behavior-based



systems should be the implementation tech-
nique of choice for natural language genera-
tion. Instead, it shows that parallel, finite-state
networks are much more powerful than previ-
ously believed. Moreover, by implementing as
much of a robot’s control program as possible
with these techniques, we get efficiency, easy
parallelization, and flawless synchronization of
the knowledge base with the environment.

Discussion and Summary

On Wednesday, 31 July, GRACE attempted the
AAAI robot challenge in front of hundreds of
interested onlookers and the media. GRACE suc-
cessfully completed each of the subtasks de-
scribed earlier with a minimal amount of extra-
neous human intervention. GRACE took about
60 minutes to travel from the entrance of the
Shaw Convention Centre, down the elevator,
to the registration desk, and then to the lecture
area in the Exhibition Hall. This performance
compares to about 20 minutes taken by the
other entry that attempted the complete chal-
lenge—the CoWorker built by iRobot—but this
robot was remotely teleoperated by a person in
the convention center.

Although each of the subtasks was success-
ful, and GRACE successfully completed an end-
to-end run, each subtask also demonstrated the
need for improvement. Probably the most crit-
ical problem was based on our use of ViAVOICE
for speech recognition. ViaVoict has trouble
with background noise and stress in the speak-
er’s voice. Although we have found that some-
one who has worked regularly with ViaVoice
can achieve high recognition rates using our
large vocabulary and grammar, new users in
stressful situations can have greatly reduced
recognition rates. A Ph.D. student working at
NRL for the summer to work on the GRACE pro-
ject did the interaction during the challenge.
With each misunderstood utterance, the level
of stress in the student increased (particular
with the very large crowd of onlookers and
press), resulting in yet lower recognition rates.
To try and remedy this, we are in the process of
evaluating Sphinx for speech recognition.’
More robust speech recognition might also en-
able us to move to an on-robot microphone
system, which would eliminate the need for
the speaker to don a wearable microphone and
would also enhance GRACE’s appearance as an
independent entity and enable random inter-
action.

Although the human-robot interaction (a-
side from the speech recognition) worked rela-
tively well, there were areas for improvement.
For example, gesture recognition, which works

on the NRL robots, was not successfully inte-
grated in time for GRACE. As a fallback position,
a PDA device was programmed to allow the hu-
man to “point” a direction on its screen. How-
ever, this interface failed to start properly at the
beginning of GRACE's run. Without the ability
for the human to give gestures, the resulting
interaction was closer to “verbal teleopera-
tion.” We expect to have full gesture capability
in 2003.

In addition, NRL has developed an ability to
talk about semantic entities in the environ-
ment (for example, “turn left down the next
corridor”), but the ability to recognize these
features is not yet integrated into GRACE. These
capabilities would make interaction much
more natural.

For the elevator-riding task, the robot need-
ed to have a person hold the elevator doors
open to give it time to enter and exit before the
doors closed because, in part, the robot did not
recognize changes to the environment fast
enough. Also, the robot did not have any way
of determining which floor it was on (we are
working on this by developing an electronic al-
timeter—see Riding the Elevator).

Visual servoing to the registration desk suf-
fered from several problems. First, as described
in Finding the Registration Booth, changes in
lighting could cause the recognition algorithm
to fail; so, the system had to be retrained on a
periodic basis. Second, when the robot was far
away, the sign appeared too small to readily be
identified, but zooming in gave a very small
field of view, which slowed the search for the
sign considerably. To deal with this problem,
we are considering a multiscale approach,
where the robot first does a coarse scan at a
wide field of view and then checks possible
sign locations more thoroughly by zooming in.
Finally, if the robot moved quickly, the tracker
often lost sight of the sign, which can also
probably be addressed by adjusting the zoom.

During testing, the standing-in-line code was
very reliable. During the challenge itself, the ro-
bot barged into line, nearly hitting one of the
judges. The cause was traced to a bug in the
software that determined the robot’s trajectory
to the end of the line. The software worked in
many tests, but later it was determined that it
only worked for lines of one or two people (the
maximum we had tested on), but at the chal-
lenge there were five people in line. Needless to
say, that bug has since been fixed. The task of
registering demonstrated problems with Via-
VoIck, as described earlier. Also, that task used a
different grammar from the “getting to the reg-
istration area” task. During the challenge, we
forgot to load the correct grammar, which
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meant that the robot had very little chance of
interacting correctly. Fortunately, the incorrect
grammar was noticed, and corrected, part way
through the task.

The navigation part of the task suffered a bit
from getting lost. The causes were twofold: (1)
the environment had changed significantly
from when the map was built the night before
(extra tables were set up for food) and (2) there
were hundreds of people around the robot,
making it hard for the sensors to see the walls
and other static structures that had been
mapped. Unfortunately, some human inter-
vention was needed to relocalize the robot. We
need to look much more carefully at how to do
map-based navigation in environments that
are very different from when the map was first
made. Finally, the talk-giving task worked flaw-
lessly. For next time, however, we plan to have
the robot demonstrate various aspects of itself,
which is currently supported in the talk-giving
software, but there was not enough time to de-
velop the demonstrations themselves and inte-
grate them into the talk.

Our plans for the 2003 challenge are three-
fold. First, we will work to make the current ca-
pabilities much more robust. Second, we will
integrate the capabilities more tightly. In par-
ticular, we will have the robot itself determine
when to transition between subtasks. Third, we
will add new capabilities. We intend to have vi-
sion-based and stereo-based people detection
and tracking, people following, gesture recog-
nition, name-tag reading, and face recognition.
We plan to incorporate capabilities for the ro-
bot to “schmooze” with other participants and
answer its own questions after the talk. We
would like to have the robot perform its own
crowd control. In the hardware domain, it
would be desirable to add more physical flexi-
bility to GRACE's face, such as putting the screen
on a pan-tilt unit. Finally, there is the possibil-
ity of bringing another robot and have a team
try to attend the conference. Imagine two at-
tendees who arrive together, looking together
for the registration area, or one that arrives ear-
lier and meets the second near the entrance
and tells it what it has learned about the loca-
tion of the registration desk. We are also con-
sidering having one robot handle crowd con-
trol for the second robot!

Our biggest lesson learned was the amount
of work required to achieve interaction among
the different modules. The bulk of our work
this first year was in getting the interfaces de-
fined and working. However, we believe that
we have to go much further next year. In par-
ticular, we had several failures occur because
we had to manually start software when mov-

ing from one part of the challenge to the next.
We will be developing a program that will au-
tomatically start each module, which should
result in fewer human errors.

Although we did accomplish much this year,
we are looking forward to adding a significant
amount to GRACE for next year. In addition to
the automatic starting of processes, we expect
to have tighter interaction among compo-
nents, different and more robust human inter-
actions, gesture recognition, better recognition
of humans using multiple techniques, and pos-
sibly even the ability for the robot to demon-
strate itself during its talk and answer simple
questions.

Notes

www.cs.cmu.edu/~IPC.

. www.ibm.com/software/speech.
www.cstr.ed.ac.uk/projects/festival.
www.cs.cmu.edu/~IPC.
www.ibm.com/software/speech.

. www.cstr.ed.ac.uk/projects/festival.
www.cs.cmu.edu/~TDL.

. www.cs.utexas.edu/users/kuipers/AAAl-robot-
challenge.html.
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9. www.speech.cs.cmu.edu/sphinx.
10. www.cs.cmu.edu/~TDL.
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