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Applying Inductive
Logic Programming
to Predicting
Gene Function

Ross D. King

® One of the fastest advancing areas of modern sci-
ence is functional genomics. This science seeks to
understand how the complete complement of
molecular components of living organisms (nucle-
ic acid, protein, small molecules, and so on) inter-
act together to form living organisms. Functional
genomics is of interest to Al because the relation-
ship between machines and living organisms is
central to Al and because the field is an instructive
and fun domain to apply and sharpen Al tools and
ideas, requiring complex knowledge representa-
tion, reasoning, learning, and so on. This article
describes two machine learning (inductive logic
programming [ILP])-based approaches to the
bioinformatic problem of predicting protein func-
tion from amino acid sequence. The first approach
is based on using ILP as a way of bootstrapping
from conventional sequence-based homology
methods. The second approach used protein-func-
tional ontologies to provide function classes and a
hybrid ILP method to predict function directly
from sequence. Both ILP approaches were success-
ful in producing accurate prediction rules that
could biologically be interpreted. The work was al-
so of interest to machine learning research because
it highlighted the flexibility of ILP systems in deal-
ing with heterogeneous data, the importance of
problems where classes are related hierarchically,
and problems where examples have more than
one functional class.

e live in interesting scientific times.
WFor the first time in history, we have
access to the complete genomes of
living organisms. These genomes provide the
complete specification of the parts and pro-
grams to create living organisms. This knowl-

edge is revolutionizing biology.

Has this anything to do with AI? I believe
yes. The relationship between machines and
living organisms is central to Al and was a core
interest of the founding fathers (Alan Turing,
John von Neuman, and Norbert Wiener). Mod-
ern biology is also an instructive and fun do-
main to apply and sharpen our tools and ideas;
it requires complex knowledge representation,
reasoning, learning, and so on. Because the
concrete generally precedes the abstract, real-
world applications catalyze new research areas.

The sequencing of a genome is only a first
step to fully understanding how a living organ-
isms works. In computer science terms, knowl-
edge of a genome is only equivalent to obtain-
ing a binary dump of a program, with the
complication that the function and language
of the program are unknown and the code un-
documented and badly written. The key cur-
rent scientific challenge in biology is to unrav-
el and understand this code. Al tools will be
important in this task.

Functional Genomics

Perhaps the most important discovery from
the sequenced genomes is that the functions of
only approximately 40 to 70 percent of the
predicted genes are typically known with any
confidence. For example, in bakers’ yeast (S.
cerevisiae), one of the most intensely studied of
all organisms, of the approximately 6000 pre-
dicted protein-encoding genes, the function of
only approximately 70 percent can be assigned
with any confidence. The new science of func-
tional genomics (Bussey 1997; Hieter and Bo-
guski 1997) is dedicated to determining the
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function of genes of unassigned function and
to further detailing the function of genes with
purported function. Most functional genomics
is concerned with the development of new ex-
perimental techniques for elucidating gene
function (Blackstock and Weir 1999; DeRisi, Iy-
er, and Brown 1997; Oliver et al. 1998). Bio-
informatics is playing an essential role in ana-
lyzing data and integrating functional
genomics data (Bork et al. 1998; Brent 1999;
Kell and King 2000).

A key bioinformatic problem in functional
genomics is the prediction of protein function
from sequence. Such predictions both provide
important initial information about newly se-
quenced genomes and aid “wet” experimental
determination of function. Such predictions
are usually done by utilizing sequence similar-
ity methods to find an evolutionary related
(homologous) protein in the database that has
a known function (Altschul et al. 1997; Pear-
son and Lipman 1988). The function of the
new sequence is then inferred to be the same as
the homologous protein because it is assumed
to have been conserved over evolution. This
inference is a kind of nearest-neighbor type in
sequence space. Unfortunately, with this ap-
proach, only around 50 percent of possible ho-
mologies are identified (Park et al. 1998), and
little biological insight is obtained.

Inductive Logic Programming

Machine learning and data-mining methods
that utilize first-order predicate logic (FOPL) to
represent background knowledge and theories
are generally described as coming from the
field of inductive logic programming (ILP)
(Lavrac and Dzeroski 1994; Muggleton 1992,
1990) or relational data mining (RDM) (Dze-
roski and Lavrac 2001), depending on the re-
search emphasis. For simplicity in this article, I
refer to all such algorithms as coming from ILP.
In ILP, background knowledge (B), examples
(E), and hypotheses (H) are represented as logic
programs. It is first assumed that there is a re-
quirement for an inductive hypothesis; that is,
B H E (prior necessity). The core ILP problem is
to find hypotheses H such that B/\ H = E. Mat-
ters are complicated slightly by the fact that ev-
idence in ILP is usually divided into two types:
(1) E* data that are consistent with the con-
joined hypothesis and background informa-
tion and (2) E- data that are contrary to the
conjoined hypothesis and background infor-
mation. Therefore, H is required to meet the
following criterion: B/AH = E*and B = H H E.
It is typical that H is also restricted to necessar-
ily meet other requirements such as being non-
trivial (not, for example, E, or B = E) and par-

simonious. In practical applications, there is
the additional problem that there is usually
noise present (that is, some E* are false, and
some E- are true), which means that the previ-
ous conditions need to be relaxed such that the
best hypothesis maximizes its coverage of E*
and minimizes its coverage of E-. These two
values give a cost ratio that represents the di-
vergence from the ideal. The problem of learn-
ing H is typically designed as a search problem
through the space of models meeting the pre-
vious criteria (Mitchell 1982).

ILP has shown its value in many scientific
problems such as drug design and toxicology
(for example, Dzeroski et al. [1999]; Finn et al.
[1998]; King, Srinivasan, and Dehaspe [2001];
King et al. [1996, 1992]) and molecular biology
(Badea 2003; Donescu et al. 2002; King et al.
1994; Muggleton, King, and Sternberg 1992;
Sternberg et al. 1994; Turcotte et al. 2001). ILP
has been particularly well suited to problems
dealing with molecular structure. In such prob-
lems, ILP has often found solutions not acces-
sible to standard statistical, neural network,
propositional machine learning, or genetic al-
gorithms (King et al. 1996). The theories pro-
duced by ILP have also been generally more
comprehensible than those using proposition-
al methods because they are more compact and
closer to natural language (King et al. 1992;
Turcotte, Muggleton, and Sternberg 2001).

The Suitability of Using Inductive
Logic Programming for the Prediction
of Protein Function

If a problem can satisfactorily be represented
and solved using propositional methods, then
there is no need to apply ILP techniques. Prop-
ositional methods are generally better devel-
oped and more computationally and statisti-
cally efficient. ILP methods do not necessarily
default to efficient propositional learners when
given wholly propositional data. Use of ILP
therefore needs to be justified. My rationale is
based on the following features of the problem
and the required solution:

Relational descriptors: Functional genom-
ics naturally involves many relationships in
the data: phylogenic hierarchies (the tree of life),
homologies (genes sharing a common ancestor),
directed graphs relating functions, and so on.
Traditional propositional methods (statistical,
neural network, machine learning, genetic al-
gorithms, and so on) cannot efficiently repre-
sent these relations in inductive inference.

Data heterogeneity: The relevant data come
from many different sources and are necessari-
ly stored in multiple tables of relational data-
bases. To use a conventional data-mining algo-



rithm, the tables would have to be joined to
form a single prohibitively large table for
analysis, which is impractical. In addition,
ILP/RDB allows the direct analysis of the mul-
tiple-table formatted data.

Comprehensible results: It is important
that the prediction rules are understandable.
Biologists generally require that the rules are
understandable so that they can suggest new
biological ideas and have confidence in them.
In some bioinformatic applications, this re-
quirement is not necessary, for example, in
predicting protein secondary structure. How-
ever, given a choice, comprehensible results are
always preferred.

At Aberystwyth, researchers have developed
two approaches to applying ILP to predicting
protein function. The first is called homology
induction and is based on utilizing machine
learning to improve on conventional se-
quence- based homology methods (Karwath
and King 2002, 2001). The second method uses
a hybrid ILP-propositional machine learning
method to predict protein functional class di-
rectly from sequence (King, Srinivasan, and
Dehaspe 2001; King et al. 2001a, 2001b, 2000).

Predicting Gene Homology

The identification of evolutionary-related (ho-
mologous) proteins is a key problem in compu-
tational molecular biology. Knowledge of a ho-
mologous relationship between two proteins,
one of known function and the other of un-
known function, allows the probabilistic infer-
ence that the protein with unknown function
has the same function as that of the known
one (because evolution generally conserves
function). Such inferences are the basis of most
of our knowledge about sequenced genomes.
Protein homology is typically inferred by using
computer programs to measure the similarity
of two or more proteins. This inference is gen-
erally done by comparing the two amino acid
strings of the proteins and measuring the char-
acterwise similarity between them. Such pro-
grams probably consume more processing time
than all other bioinformatic programs put to-
gether. These methods perform well for closely
related homologous sequences. However, the
results for more distantly related proteins are
less reliable (Park et al. 1998), detecting only
about 50 percent of all possible homologies,
given an acceptable false-positive rate.

In learning problems, all relevant informa-
tion should be used. The idea behind homolo-
gy induction is to exploit additional sequence
information to bootstrap on the performance
of standard sequence homology methods.

Methodology

Homology induction uses background knowl-
edge, together with the protein’s amino acid
sequence, to induce homology. The idea is to
collect as much information as possible for a
protein and then infer homology using dis-
criminatory ILP. The homology induction ap-
proach is based on the following steps:

First is the collection of possible homolo-
gous proteins using an existing method of se-
quence similarity search (SSS). Aberystwyth re-
searchers use PSI-BLAST (Altschul et al. 1997)
which is essentially an iterative nearest-neigh-
bor method (in sequence space). The result of
a PSI-BLAST search is a list of possible homolo-
gous proteins sorted by probability. Proteins
where the probability of homology is ambigu-
ous are termed to be in the “twilight zone.”

Second is the accumulation of all available
information for these proteins. We developed a
large multitable database of paTALOG (Ullman
1988) facts to describe the proteins from a wide
variety of bioinformatic sources. This informa-
tion was selected for relevance to the detection
of homology. For each protein, we collected
bioinformatic database keywords, the organ-
ism’s classification (family tree), bioinformatic
database references (PROSITE, HSSP, EMBL, PIR—e€X-
cluding scop [structural classification of pro-
tein] classifications), predicted secondary struc-
ture (Ouali and King 2000), amino acid
distribution for singlets and pairs of residues,
and so on.

Third is the induction of rules. We used the
ILP ALEPH algorithm to learn rules that were
true for proteins of very high probability of be-
ing homologous (based on sequence sim-
ilarity)! and false for proteins with close to zero
probability of being homologous (also based
on sequence similarity).

Fourth is the application of the rules. We ap-
plied the rules to the set of twilight zone pro-
teins to predict whether they were homologous.

To assess the accuracy of homology induc-
tion, it was necessary to have a “gold standard”
set of known homologies. We used the syste-
matic approach of Park et al. (1997), which
used a subset of the scor database (Murzin et al.
1995). The scor database is a classification
database of proteins of known structure; most
also have known function. Over evolutionary
time, protein structure changes more slowly
than sequence; therefore, structure can be used
to identify more remote homologies than se-
quence. At the family level of scop, the struc-
tures are so similar that homology is inferred,
which is not to be confused with protein fold
recognition, where there is no necessary expec-
tation of homology.
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A perfect prediction method would be able
to detect all homologous relationships in scop.
However, in practice, unrelated nonhomolo-
gous proteins are predicted (errors of commis-
sion), and evolutionary related proteins are
missed (errors of omission). The cost of these
different types of errors depends on the biolog-
ical problem. Therefore, we used receiver-oper-
ating characteristic (ROC) curves to compare
our predictions (Bradley 1995).

Results

Homology induction induced rules for 1,015
proteins of known structure (PDB40D). The
original psI-BLAST results were used for the se-
quences where no rules could be induced. In
total, homology induction produced 1,851
rules. The most commonly used predicate of
the single predicate rules was db_ref, used by
651 rules. These rules consisted mainly of ref-
erences to the bioinformatic database PROSITE.?
This result was expected because this database
contains patterns designed to cluster homolo-
gous families of proteins together. In the
PDB40D database, there are 8,022 true homol-
ogy relationships and 2,046,900 false ones. The
accuracy for psi-BLAST was 99.69 percent and for
homology induction 99.70 percent. Although
the accuracy of homology induction is margin-
ally higher than psi-BLAST alone, it is not clear at
first sight if it is significantly higher. To test sig-
nificance, researchers therefore performed a
two-sample y?2 test to compare the actual fre-
quency of a prediction with the estimated fre-
quency of the prediction. The critical value of
x? for 1 degree of freedom and 99.995-percent
confidence is 7.879, which indicates that ho-
mology induction was significantly better than
PSI-BLAST alone.

For comparison over all linear costs, I per-
formed a ROC analysis. We compared the area
under the ROC (AUROC) for homology induc-
tion and psi-BLAST. The AUROC value for homol-
ogy induction was 0.65, and the AUROC for psI-
BLAST 0.61. The ROC curve for psI-BLAST, along
with the ROC curves for the standard homolo-
gy induction (HI?!) and a version of homology
induction based on the subset of descriptors di-
rectly calculable from only sequence informa-
tion (HI**9) is shown in figure 1. The dominat-
ing curve is that of HI?!, to the left of the other
two curves. The ROC curve of HI**d does not en-
tirely dominate the psi-sLAsT ROC curve, and for
large sections of the false positive axis, the two
curves have a similar true positive rate. Howev-
er, for the false positive rate interval of 0.38 to
0.5, the ROC curve produced by HI**d does
clearly dominate that of PSI-BLAST.

To illustrate the biological utility of the ho-

mology induction rules, I use the protein C-
Phycocyanin (1CPC). Figure 2 shows the HI?!
and HI*® rules learned for C-Phycocyanin
both in their original Prolog form and in Eng-
lish translation. Phycocyanins are light har-
vesting proteins. Applying psi-BLAST to the data
produced three proteins in the twilight zone:
(1) allophycocyanin alpha-b chain (Anabena),
(2) erythroid transcription factor (gata-1 Mus
musculus), and (3) oryzain gamma chain pre-
cursor (Oryza sativa). The rules in the HI?!' and
HI®¢d rule sets correctly identified the allophy-
cocyanin as homologous to 1CPC. There is
convincing experimental evidence for this ho-
mology and note that psi-BLAST does not use
protein names! No rule in any rule set identi-
fied the other two twilight zone sequences as
homologous, which would appear to be cor-
rect (no structures exist to be certain). Further
evidence for the power of the homology in-
duction rules is that the homology induction
analysis was applied to version 37.0 of the
bioinformatic database swiss-prOT,3 and each
of the 13 positive examples not covered by
this rule have had the keyword phycobilisome
added to their annotation since version 38.0
of swiss-PROT. It is particularly intriguing that
the most characteristic feature of the amino
acid-type rules is low-histidine and -trypoto-
phan content and that both amino acids have
nitrocyclic aromatic rings, which can be ex-
plained chemically. Phycocyanins have cova-
lently linked bilin prosthetic groups that con-
sist of linked nitrocyclic aromatic rings.
Aberystwyth researchers hypothesize that evo-
lution has selected for low-histidine and -try-
potophan content in phycocyanins to reduce
electron-transport interference. The require-
ment for a high number of leucine-arginine
pairs is also structurally significant because
these arginines form salt bridges with the pros-
thetic groups. The structural rule s2 is also
consistent with the known structure of phyco-
cyanins, which are well known to have an all
a-helix globinlike fold.

Predicting Protein
Functional Class

Perhaps the most important recent advance in
bioinformatics has been the development of
good ontologies to describe protein function,
for example, o and riLEY.#> These ontologies
take the form of hierarchies or directed acyclic
graphs. Figure 3 illustrates part of the Riley hi-
erarchy for the bacteria E. coli, one of the best-
established functional ontologies. The cre-
ation of such ontologies opened up the
possibility of directly predicting protein func-
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Figure 1. The Three Receiver-Operating Characteristic (ROC) Curves Produced by

PSI-BLAST, HI'' and HIP*, for Predictions in the Twilight Zone.

Although the ROC curve for PSI-BLAST results from applying ROC analysis directly to the results produced, the ROC curves for both homol-
ogy induction methods are maximized using a cross-validated value for resorting. The ROC curve for HI? dominates over the other two
curves at all times, but the curves for PSI-BLAST and HI®*® oscillate around each other. HI*®d dominates the PSI-BLAST curve between ~0.38

and ~0.5.

tional class from sequence. Abstractly, what is
required is a discrimination function that
maps sequence to biological functional class.
The existing sequence homology recognition
methods (see earlier discussion) can be viewed
as examples of such functions: Methods based
on direct sequence similarity can be consid-
ered as nearest-neighbor-type functions (in se-
quence space), and the more complicated ho-
mology recognition methods based on motifs
and profiles resemble case-based learning
methods.

Methodology

We selected the E. coli genome to test the idea
of using machine learning to learn predictive
mappings between protein sequence and func-
tion. E. coli is probably the best characterized
extant genome and is the “model” bacteria. It
has an estimated 4,289 identified proteins
(Blattner et al. 1997). Of these proteins, ap-
proximately 30 percent had unknown func-
tion. To predict functional class, we collected
similar data to that used in homology induc-
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PDB 1CPC C-Phycocyanin

HIall
Prolog
homologous(A) :-
desc(A,chain),
amino_acid_ratio_rule(A,h,1).
homologous(A) :-
keyword(A,phycobilisome).
English
A protein is homologous if
al it has the word “chain” in its SWISS-PROT description line and
it has a level 1 histidine content in the residue chain and
a2 or it has the word “phycobilisome” as a SWISS-PROT keyword.
HISCq
Prolog
homologous(A) :-
amino_acid_ratio_rule(A,w,1),
amino_acid_ratio_rule(A,h,1),
amino_acid_pair_ratio_rule(A,l,r,10).
homologous(A):-
mol_wt_rule(A,3),
sec_struc_distribution_rule(A,a,10).
English
A protein is homologous if
sl it has a level 1 tryptophan content and
it has a level 1 histidine content and
it has a level 10 leucine-arginine pair content.
s2 or

it has a level 3 molecular weight and

it has a level 10 predicted o-helix content.
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Figure 2. The Homology Induction Rules Learned to Identify 1CPC (C-Phycocyanin)
Are Illustrated First in Their Original Prolog Form and Then in English Translation.

Two sets of rules are shown, those using HI?!! and those learned from HI*4.
All numbers were discretized into 10 levels for ease of symbolic induction (1 low to 10 high).

tion (see earlier discussion). We formed a DATA-
LOG database containing all the data we could
find on the protein sequences. The most com-
monly used technique to gain information
about a sequence is to run a sequence similari-
ty search, which was used as the starting point
in forming descriptions (we used psI-BLAST). For
each protein in the genome, we formed a de-
scription based on the frequency of singlets
and pairs of residues in the protein, the phy-
logeny (family tree) of the organism from
which each homologous protein was obtained

from Swiss-PROT; SWISS-PROT protein keywords
from homologous proteins, the length and
molecular weight of the protein, and its pre-
dicted secondary structure using PrOF (Ouali
and King 2000). In total, 10,097,865 DATALOG
facts were generated for the E. coli genome.

To analyze this database, we used a hybrid
combination of ILP and propositional tree
learning (figure 4). The ILP data-mining pro-
gram WARMR (Dehaspe and Toivonen 1999) was
first used to identify frequent patterns (con-
junctive queries) in the databases. WARMR is a
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Figure 3. An Example Subset of the Riley Group Protein Functional Ontology in E. coli.

No. of rules found

No. predicting a new homology class
Average test accuracy

Default test accuracy

New functions assigned

No. predicting more than one homology class

Level 1 Level 2 Level 3
13 13 13

9 10 3

9 5 3

75% 69% 61%
40% 21% 6%

353 (16%) 267 (12%) 135 (6%)

Table 1. Learning Results for E. coli.

The number of rules found are those selected on the validation set. A rule predicts more than one homology
class if there is more than one sequence similarity cluster in the correct test predictions. A rule predicts a new
homology class if there is a sequence similarity cluster in the test predictions that has no members in the train-
ing data. Average test accuracy is the accuracy of the predictions on the test proteins of assigned function (if
conflicts occurred; the prediction with the highest a priori probability was chosen). Default test accuracy is the
accuracy that could be achieved by always selecting the most populous class. New functions assigned is the num-
ber of proteins of unassigned function predicted. The test accuracy estimates might be too pessimistic because
proteins can have more than one functional class, but only one of these is considered correct.

general-purpose data-mining algorithm that
can discover knowledge in structured data. It
can learn patterns reflecting one-to-many and
many-to-many relationships over several ta-
bles. No standard data-mining program can do
this because they are restricted to simple asso-
ciations in single tables. WARMR uses a first-or-
der version of the efficient levelwise a priori al-
gorithm (Agrawal and Srikant 1994), which
allows it to be used on very large databases.
The warRMR levelwise search algorithm is based
on a breadth-first search of the pattern space.
The application of wARMR can be considered as
a way of identifying the most important struc-
ture in a database. In the E. coli database, WARMR

discovered approximately 18,000 frequent
queries.

These frequent patterns were converted into
Boolean (indicator) attributes for propositional
rule learning. An attribute has value 1 for a spe-
cific gene if the corresponding query succeeds
for that gene and O if the query fails. The
propositional machine learning algorithm c5
(Quinlan 1993) was then used to induce rules
that predict function from these Boolean at-
tributes. Good rules were selected on a valida-
tion set and the unbiased accuracy of these
rules estimated on a test set. Rules were select-
ed to balance accuracy with unidentified gene
coverage. The prediction rules were then ap-
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Figure 4. Flowchart of the Data-Mining Program Methodology.

This inductive logic programming (ILP)/propositional hybrid approach has proved successful in the past on other scientific discovery tasks. It
is powerful because the clustering improves the representation for learning (using the expressive power of ILP), and the discrimination step
efficiently exploits the prelabeled examples. Good rules were selected on a validation set and the unbiased accuracy of these rules estimated
on the test set. The unbiased accuracy of these rules was estimated on the 1/3 test set. The selection criteria for good rules was that on the val-
idation data, they covered at least two correct examples, had an accuracy of at least 50 percent, and had an estimated deviation of > 1.64.

plied to genes that have not been assigned a
function to predict their functions. Note: We
did not aim for a general model of the relation-
ship between sequence and function; we were
satisfied with finding good rules to cover part
of the space.

Results

In 2000 to 2001, we published this data-min-
ing prediction approach to predicting protein
functional class from sequence (King, Srini-
vasan, and Dehaspe 2001; King et al. 2001a,
2000b, 2000). By using a held-out test set of
proteins with annotated function, data-mining
prediction had an estimated accuracy of 50 to
90% percent (depending on the position of
class in the function ontology). A summary of
these results is given in table 1. A key finding
was that the method could learn predictive

rules that were more general than is possible
using homology-based methods.

Using the same prediction rules, we also pre-
dicted the functional class of 1,309 proteins of
then-unknown function. These predictions
were made publicly available at the gene-pre-
dictions web site.° Statistical theory, and the
design of our machine methodology, gave us
confidence in these predictions. However,
doubts remained: It seemed a priori unlikely
that protein function could be predicted from
sequence (predicting protein structure from se-
quence has proved intractable, and predicting
function from structure is an unsolved prob-
lem), and it was possible that the proteins of
unknown function came from a significantly
different distribution from those of known
function—which would invalidate a key statis-
tical-machine learning assumption.



If The OREF is not predicted to have a B-strand length < 3 and
a homologous protein from class Chytridiomycetes was found
Then its functional class is “Cell processes, Transport/binding proteins”

Figure 5. A Level-2 Rule.

This rule is based on predicted structural and phylogenic features. In the original test set, this rule was 12/13
(86 percent) correct. The default accuracy for this class is 21 percent. Twenty-four genes of unknown function
were predicted by the rule. Of these 24 predictions, 2 have been confirmed by experiment, 7 have been (inde-
pendently) annotated to have the predicted function, and 1 has been annotated to have a nonpredicted func-
tion. The rule also has a possible biological explanation. We hypothesize that cytochrome c oxidase in Chytrid-
iomycetes is a “molecular living fossil” that has retained features of an ancestral protein that radiated into a
wide variety of transport proteins, which has allowed the protein to be used to identify very remote homolo-

gous that would otherwise be missed.

In the period since these predictions, biolog-
ical knowledge has advanced greatly. Some pro-
teins in E. coli have had their function deter-
mined by wet biology. Function determination
has also occurred in other organisms, allowing
better homology-based function predictions.
Equally important, many more protein se-
quences have been determined, allowing se-
quence-similarity methods to predict function
with greater accuracy. This new biological
knowledge allows us to test our predictions di-
rectly. We used two ways to test the predictions.

First, we compared our predictions to the
updated (20.02.02) Monica Riley genome
group annotation, which has the advantage of
testing a large number of predictions.

Second, we examined the scientific literature
for the direct experimental derivation of pro-
tein functions for our predictions. This test has
the advantage of directly testing the predic-
tions experimentally.

To test for the probability of our predictions
occurring by chance, Aberystwyth researchers
used a binomial test, with the probability of
success being the probability of the most popu-
lous class. This test has the advantage of being
simple to calculate, makes few assumptions,
and is guaranteed to give an overestimate.

The results for the new Riley group annota-
tion were statistically highly significant (< 1e-
15), with prediction accuracies of approximate-
ly 90 percent for the cases where more than
one rule agreed on a prediction. It should also
be stressed again that these accuracies are likely
to be underestimates because they are based on
the assumption that the Riley annotation is
complete and correct.

The results for the function predictions that
have either been confirmed, or not, by wet bi-
ological experiments were also highly signifi-
cant, although at lower accuracy than for the
annotations (probably because of bias in the

sample of functions confirmed). See table 2 for
details of the results for level 3 of the function
hierarchy. An example prediction rule is shown
in figure 5. It was gratifying that the rules illus-
trated in previous publications were found to
have accuracies consistent with prediction on
this blind trial.

Discussion

In this article, I described two applications of
the first-order machine learning methodology,
inductive logic programming, to the problem
of predicting protein function from sequence.

I consider biology first. Are the results of any
practical use? On this question, I believe the ju-
ry is still out. The results of homology induc-
tion (although a statistically significant im-
provement on PsI-BLAST) are perhaps too small a
step-change to make biologists use the system
en masse. However, the functional class results
are probably more significant. These I believe
constitute a step-change in protein function
prediction methodology. Although initially,
many biologists were skeptical, this reaction
seems to be slowly changing, and interest is
growing in the approach. The new evidence of
the results of the blind-test predictions (table
2) should help the acceptance of this method-
ology. One important limitation of the data-
mining-prediction approach is that although
the rules are presented in a symbolic form,
their meaning is often obscure. It is certainly
possible to find biological justification for
some of the rules (see, for example, figure 5),
but in many cases, the biological meaning is
obscure, even when the rules are empirically
successful. Much more work is needed on the
design of learning systems that produce se-
mantically comprehensible results.

A number of interesting machine learning is-
sues were brought into focus by the applications:
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(03
b0533

b0570

b0613

b0619

b0619

b1981
b1981
b1981

b2219

b2972
b0053

b0162

b0441
b0505
b0508

b0662

b0789
b1199
b2052
b3338
b3419
b3836
b3838
b2392
b2392
b2392

Rule Predicted Class Confirmed Function Result
104  Surface structures Fimbrial assembly protein (ADHESION) C
56 Global regulatory functions ?g;&ﬁ;?gg‘;?:tecﬁlssz gyt Rainielse o @
83 Conversions of intermediate 2-(5"-triphosphoribosyl)-3'- C
metabolism dephosphocoenzyme-A synthase
S6a Global regulatory functions Egrrlrfggl?riftﬁrggig&ﬁe il (0@ ©
56b Global regulatory functions igﬁg&?ﬁtﬁgi}f&ﬁe i (G C
63 MES family ShiA: MFS family C
66 MEFS family ShiA: MFS family C
108 MEFS family MEFS family, shikimate ©
56 Global regulatory functions fggsg}zgrﬁ)tein kinase in two-component C
62 Chemotaxis and mobility Bifunctional prepilin peptidase @
39 Degradation of DNA Peptidyl-prolyl cis-trans isomerase W
107 Transposon-related functions Regulator of D-galactarat}e, D-glucarate W
and D-glycerate metabolism
39 Degradation of DNA Peptidyl-prolyl cis-trans isomerase A\
108 Transposon-related functions Ureidoglycolate hydrolase w
94 Ribosomal proteins Hydroxpyruvate isomerase W
56 Global regulatory functions t())i)éysfgngrtlﬁzgiisnvolved in ubiquinone "%
108 Transposon-related functions Cardiolipin synthase activity A\
147 Transposon-related functions DHA kinase domain w
106 Transposon-related functions Bifunctional GDP-fucose synthetase A\
108 MES family Periplasmic endochitinase w
142 Surface structures RNA 3'-terminal phosphate cyclase W
107 Transposon-related functions Component of translocase w
106 Transposon-related functions Essential component of translocase W
62 Chemotaxis and mobility High-affinity manganese transporter w
2 ABC superfamily (membrane) High-affinity manganese transporter NM
97 STP family High-affinity manganese transporter NM

Table 2. Predictions of Classes in Level 3 of the E. coli Gene Ontology That Now Have Wet Biological Evidence.
ORF is the Blattner identifier for the protein. The predictions are ordered by result and ID. The rule numbers are identifiers for the specific
rule predicting the gene. C = Correct, W = Wrong, NM = Near Miss. There are 10 correct predictions and 14 wrong ones. The probability
of obtaining this accuracy on newly determined functions occurring by chance is estimated at less than 4.8e-10.
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Was the use of ILP required? In many ma-
chine learning applications, perhaps most, it is
not necessary to use ILP/relational data mining
because propositional methods are sufficient
because there has been orders-of-magnitude
more work done on propositional methods,
and ILP methods do not necessarily act as effi-
cient propositional learners when given wholly
propositional data. For example, in bioinfor-
matics, propositional methods would empiri-
cally seem sufficient to predict protein sec-
ondary structure because neural network

approaches have time after time been the most
successful in blind trials.” However, in the pre-
diction of protein function, it is very hard to
see how the crucial relational aspects of the
problem could be encoded efficiently.

The functional classes for proteins exist in
hierarchies or directed acyclic graphs, which
means that the classes are not independent of
each other. Problems with this characteristic
are relatively common in the real world (for ex-
ample, in text classification) but have been lit-
tle considered by the statistical or machine



learning community (Clare and King 2001;
Kohler and Sahami 1997).

It is possible for proteins to have more than
one function, that is, to have more than one
class value. Such problems are also common in
the real world and little studied (for example,
Clare and King [2001]; Schapire and Singer
[2000]). Of course, it is always possible to create
disjoint classes, but this can distort the problem
and create large numbers of artificial classes.

In conclusion, the application of Al to deci-
phering genomic information is only just
beginning. Enormous challenges exist in data
integration, the analysis of data from micro-
arrays, proteomics, and so on. The dream for
the future is to be able to develop models of
cells, development, tissues, and even whole or-
ganisms. Al has the potential to contribute sub-
stantially to this enterprise. In turn, Al will
greatly gain in the process.
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