
■ We describe the application of plan-recognition
techniques to support human intelligence analysts
in processing national security alerts. Our ap-
proach is designed to take the noisy results of tra-
ditional data-mining tools and exploit causal
knowledge about attacks to relate activities and un-
cover the intent underlying them. Identifying in-
tent enables us to both prioritize and explain alert
sets to analysts in a readily digestible format. Our
empirical evaluation demonstrates that the ap-
proach can handle alert sets of as many as 20 ele-
ments and can readily distinguish between false
and true alarms. We discuss the important oppor-
tunities for future work that will increase the cardi-
nality of the alert sets to the level demanded by a
deployable application. In particular, we outline
the need to bring the analysts into the process and
for heuristic improvements to the plan-recognition
algorithm. 

Events in the United States during 2001
tragically demonstrated the nation’s vul-
nerability to acts of terrorism. U.S. securi-

ty agencies had information available at that
time that could have been used to thwart the
World Trade Center, Pentagon, and Shanks-
ville, Pennsylvania, attacks. However, that in-
formation was not utilized because it was in an
ocean of total intelligence leads then under
consideration (U.S. Senate Report 2002).

Significant research has focused on the prob-

lem of uncovering the critical pieces of intelli-
gence information that can be used to thwart
an attack from a large body of intelligence leads
(DISCEX 2003). The data-mining approaches
that have been explored for this purpose can
sift through vast quantities of information but
suffer from a high false alarm rate and do not
help analysts link together separate facts and
events (Ning and Dingbang 2003). We have de-
veloped a proof-of-concept prototype for a tool
to automate the analysis currently undertaken
by humans by exploiting plan-recognition
techniques from the automated planning com-
munity. Our thesis is that we can significantly
improve the quality of the information passed
to human analysts if we can automatically dis-
cover a significant causal coherence among dis-
parate activities. Our analysis can also aid in
the explanations of hypotheses by presenting
them in the context of the evidence. 

We structure this article as follows. We first
present the computer-aided plan-recognition
(CAPRe) architecture. We then describe the
modeling framework that we use to represent
terrorist behavior before detailing the plan-
recognition algorithm we have developed to
match observations with the model. Our exper-
imental section presents an evaluation of the
performance of the system on alert sets with a
range of signal-to-noise properties. In particu-
lar, the results show that while our approach
has great promise it does not currently scale to
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mend targeted investigations to confirm or re-
fute the hypothesized attack goals. Note that
the templates support the anticipation of fu-
ture steps, thus enabling early interventions to
block in-progress attacks.

Attack Templates
CAPRe’s attack template library contains a de-
scription of attack activities structured hierar-
chically with a specification of the conditions
under which they can be combined. The li-
brary forms a description of the action physics
for a particular application domain that can be
used to construct plan instances tailored to spe-
cific target requirements. It is not a library of
known attack plan cases. 

We draw on the rich hierarchical action rep-
resentation developed and refined in the auto-
mated planning community during the past 30
years (Fikes and Nilsson 1971, Tate 1977).
These representations have found application
in areas as diverse as spacecraft control
(Muscettola et al. 1997) and oil-spill response
planning (Bienkowski, des Jardins, and Desi-
mone 1994). Figure 2 presents a sampling of
the templates in our library for terrorist attacks
on a national infrastructure. A template con-
tains information organized into six slots: vars,

the level demanded by a deployed application.
We close by reflecting on what we have learned
and define avenues that must be explored by
future work before the capability can be de-
ployed in an operational setting.

Computer-Aided 
Plan-Recognition (CAPRe) 

Architecture
Our approach, illustrated in figure 1, involves
specifying a set of a priori attack templates that
describe possible attack strategies in terms of
observable actions and effects. CAPRe is fed
alert packets made up of security observations
that have been clustered together by standard
correlation and data-mining techniques. CAPRe
applies a two-phased plan-recognition process
to this observation set using the attack tem-
plates to generate a (possibly empty) set of hy-
pothesized attack goals that may be under way.
This process involves first identifying individ-
ual observations that match actions or effects
in the attack templates (seedling generation)
and then aggregating these observations into
larger, coherent sets (composition). The results
are then ranked and presented to the user,
along with information requests that recom-
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purpose, tasks, orderings, preconditions, and
effects.

The :vars slot consists of variables that pro-
vide typed parameter descriptions for a tem-
plate. The :purpose slot defines the overall pur-
pose of the template. The :tasks slot consists of
a set of labeled lower-level tasks to be per-
formed to achieve the template’s purpose. The
:orderings slot contains temporal constraints
on the execution of actions, defined in terms of
task labels. The :preconditions slot consists of
constraints on the execution of a task (such as

the requirement for a valid driver’s license to
rent a car). Finally, the :effects slot consists of
changes to the world that result from the exe-
cution of tasks within a template. 

We define three properties on each task and
effect within a template, frequency, accuracy,
and gathering cost. Each property can take the
value high, medium, or low. While more com-
plicated schemes are possible, we decided that
this simple scheme would be the most accessi-
ble to our user community.

The first property consists of the frequency
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:template Physical_Attack 
:vars group ?group, target ?target;
:purpose destroy(?group,  ?target)
:tasks

1. reconnaissance(?group, ?target)
2. prepare_attack(?group, ?target)
3. attack(?group, ?target);

:orderings1 --> 3, 2 --> 3; 
:end_template

:template Reconnaissance_of_Target 
:vars group ?group, target ?target;
:purpose reconnaissance(?group, ?target)
:tasks

1. recon_security(?group, ?target)
2. recon_structure(?group, ?target);

 :end_template

:template Research_Structure 
:vars group ?group, target ?target,

person ?person1, ?person2, ?person3,
engineering_school ?engineering_school;

:purpose recon_structure(?group, ?target)
:tasks

1. obtain_control_information (?group, ?target)
2. take_job (?group, ?target)
3. structural_engineering_training (?group, ?engineering_school);

:conditions member(?person1, ?group), member(?person2, ?group), member(?person3, ?group);
:effects retrieved_blueprints(?person1, ?target) :at 1

frequency: low 
accuracy: high 
gathering_cost: high. 

       hr_records(?person2, ?target) :at 2
frequency: high
accuracy: high 
gathering_cost: low. 

    enrollment(?person3, ?engineering_school) :at 3
frequency: high 
accuracy: high 
gathering_cost: low. 

 :end_template

Figure 2. Example Templates.



a set of observed actions and world state
changes and a collection of (attack) templates
and produce a set of plans that offer potential
explanations for the observations within the
template set.

Consider the observation retrieved_blueprints
(john_doe, springfield_dam) in the context of the
templates shown in figure 2. We can match this
observation to an effect and its associated task
in the Research_Structure template to conclude
that the group of which John Doe is a member
is attempting to obtain control information
about the Springfield dam. Working back two
steps, we can explain the control information
attempt as part of the broader reconnaissance
component of a physical attack on this dam.
Figure 1 shows this stage as the generation
phase of the plan-recognition activity that re-
sults in a set of seedling explanations for each
observation.

The composition phase of the plan-recogni-
tion activity takes the set of seedlings generated
for all observations and seeks subsets that can
be combined consistently with respect to the
templates. For example, if we had observed an-
other individual with links to the same organi-
zation as John Doe taking a job at the dam,
then we could combine these two observations
to form an open hypothesis. If John Doe and
this new individual were associated with two
different organizations, then these seedlings
would not be able to be combined as they
would violate the member conditions in the

of the occurrence of a task or effect in normal
behavior. For example, car rentals are assigned
a high frequency, while missing person reports
are assigned a low frequency.

The second property is accuracy of normal
observations of a task or effect. For example,
missing person reports are highly accurate,
while a witness’s recollection of a suspicious
car’s license tag is generally of low accuracy.

The final property, gathering cost, records
the cost of making an observation. Accessing
an online database is considered low cost,
while an observation that demands a door-to-
door search by law enforcement officials is high
cost.

Frequency and accuracy properties are ex-
ploited during the plan-recognition process to
score hypotheses or to filter observation lists.
Gathering cost is used during the information-
gathering planning phase to determine the cost
benefit of a particular information-gathering
action.

Plan-Recognition Process
We first provide an overview of our plan-recog-
nition process before describing each element
in detail. The broad approach is adapted from
Karen Myer’s earlier work on abductive plan
sketch completion (Myers 1997).

Process Overview
Informally, the plan-recognition task is to take
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Research_Structure template. However, in this
case each seedling would still stand as an expla-
nation in its own right. 

We now describe these two phases in more
detail. 

Seedling Generation
We use an abductive inference procedure to
identify the seedling hypotheses that provide
candidate explanations for a set of observed ac-
tivities. Each seedling hypothesis tops out in an
element of the goal space, G, for a domain
model. While G could be defined explicitly, we
use the set of templates with purpose fields that
do not appear as tasks in other templates. De-
stroy(?group, ?target) is the sole member of G
given our example template set and is shown in
figure 2.

Definition 1 (Task Seedling)
The seedling set for a task A is the set of labeled
linear graphs

A On,σn Gn On–1, σn–1 Gn–1 On–2,σn–2 … O1,σ1 G1

where G1 � G, and Oj is a template with purpose
Gj and a subtask T such that σj is a most general
unifier of T and (Gj+1)

β, for β = �n ≤ i ≤ j σj and A =
Gn+1. 

A corresponding notion of effect seedling
can be defined, where the root of the linear
graph is an effect rather than a task for the tem-
plate On. For example, the observation re-
trieved_blueprints (john_doe, springfield_dam) is
an effect seedling for the obtain_control_infor-
mation(a_terror_group, springfield_dam action in
the Research_Structure template. This assumes
that we know that John Doe is a member of
and only a member of the group known as the
“A Terror Group.” CAPRe can handle both ac-
tion and action effects appearing in security
alerts. 

Consider the following observation set (the
effect preprocessor has been applied): 

{obtain_control_information(a_terror_group, 
springfield_dam), 

take_job(a_terror_group, springfield_dam), 

obtain_control_information(a_terror_group, 
sand_dam)}.

Figure 3 shows the seedlings that are gener-
ated for these observations given the template
set shown in figure 2. Technically, this figure
should show variable bindings, but we have
simplified the presentation to the propositional
case. 

Implementing a seedling-generation proce-
dure is simple given the above definition. The
only concern is the run time of the procedure.
We define the abstraction factor for a task T to
be the number of template schema subtasks

that unify with T. We define α to be the maxi-
mum abstraction factor for all the tasks in a do-
main definition. Let la be the difference in ab-
straction level between observations a and the
most abstract goal in the goal space G. The sum

is a loose upper bound on the construction
time for the seedling explanations for a set of
observations.

We show empirically the time spent in the
seedling-generation phase in our experiment
section. While a procedure with exponential
bounds is cause for concern, we have found in
practice that typical domain definitions con-
tain 8 to 10 abstraction levels, and the abstrac-
tion factor rarely exceeds 6 (Myers 1997).

We provide two mechanisms that allow the
user to influence the seedling-generation
process. The frequency filter parameter allows
the user to specify the maximum occurrence
frequency of the observations that should be
considered. This allows the user to filter out
high- or medium-frequency events. The user
can also specify classes of events and effects to
ignore. 

Seedling Composition
The composition phase seeks to combine the
seedlings generated in the first phase to form a
set of open hypotheses with each member of-
fering an explanation of the intent behind a set
of seedlings. Considering figure 3, all three
seedlings would be clustered into a single
seedling set, SG, as they share the common de-
stroy top-level predicate. We now iterate
through the powerset of each seedling set (ig-
noring those of cardinality < 2 and generating
the set incrementally) to identify the seedlings
that can be combined. The powerset of SG that

α la

a∈
∑

observation
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1. {obtain_control_information(a_terror_group, springfield_dam),
take_job(a_terror_group, springfield_dam) }

2. {obtain_control_information(a_terror_group, springfield_dam),
obtain_control_information(a_terror_group, sand_dam)}

3. {obtain_control_information(a_terror_group, sand_dam),
take_job(a_terror_group, springfield_dam)}

4. {obtain_control_information(a_terror_group, springfield_dam),
take_job(a_terror_group , springfield_dam),
obtain_control_information(a_terror_group, sand_dam)}

Figure 4. The Sets in the Powerset of SG.



seedlings in ascending cardinality order. We
first search through all subsets of cardinality 1,
then 2, and then 3, and so on. This strategy has
several advantages. First, we can terminate our
search as soon as we find a cardinality level
with no open hypotheses. Second, we can use
a nogood recording strategy (Dago and Verfail-
lie 1996). Once we have found a set of seedlings
that cannot be combined, we can prune all oth-
er sets that contain that set as a subset. 

Implementation
We have implemented a prototype of our
CAPRe architecture in Java. Figure 6 shows the
user interface to this system. The top pane dis-
plays the current open hypotheses with obser-
vations bolded. The left and center bottom
panels allow the user to control the seedling-
generation and composition processes and the
scoring function used to sort the open hy-
potheses. We currently support a simple scor-
ing scheme that rates open hypotheses accord-
ing to the number of observations that support
them. The bottom right panel displays the con-
straints on the currently selected hypotheses. 

Our current implementation includes only
the plan-recognition portion of the architec-
ture. Implementing and evaluating the genera-
tion of information-gathering plans is left for
further work.

Experiments
Our empirical evaluation of the CAPRe imple-
mentation examined the performance of the
system on a range of alert sets. We focused on
variations in the following properties of alert
sets: (1) Number of alerts is the total number of
alerts in a set. (2) Signal-to-noise ratio is the
number of alerts in a set that are part of a ma-
licious plan (the target plan) divided by the to-
tal number of false alerts in the set. A false alert
is an observed action that is not part of an at-
tack. (3) Noise coherence is the maximum
number of false alerts in a set that can be com-
bined consistently to form a coherent attack
plan. 

Table 1 presents the results of our empirical
examination of CAPRe. The input alert sets
were crafted by hand to include evidence for a
target hypothesis together with noise with the
appropriate signal-to-noise and coherence
properties. We recorded both the run time of
the system and the position of the target hy-
pothesis within the sorted list of hypotheses
identified for each set (called the rank). The
rank of a hypothesis is a simple function of the
number of seedlings that have been combined

we consider consists of the sets shown in figure
4 (we show only the observation that starts
each seedling). 

Corresponding seedling steps can be com-
bined to form an open hypothesis if the follow-
ing conditions are satisfied: (1) the purpose
statements unify; (2) the steps use a common
template; (3) all constraints in the template are
satisfied; and (4) the bindings entailed by the
purpose and task statements across the steps
are consistent.

The combination process starts with the top-
level step of each seedling in the set under con-
sideration. Consider the members of set 1. The
top-level steps can be combined as the condi-
tions from both seedlings are satisfied. Now
consider the members of set 2. The top steps of
these two seedlings cannot be combined, as the
binding for the target variable is inconsistent
across the seedlings. Set 3 cannot be combined
as bindings for the target variable at the top of
the seedlings are different. Return to set 1; the
combination process continues by considering
the next steps in each seedling under consider-
ation. A valid open hypothesis is produced if all
steps in all seedlings could be combined. Figure
5 shows the open hypothesis produced by
combining the members of set 1. 

The concern with the composition proce-
dure, as with the seedling-construction phase,
is the computational complexity of the proce-
dure given that the size of a power set of n ele-
ments is 2n. 

We carefully structure our search and exploit
search pruning to maximize the number of
seedlings that we can consider. Our primary
strategy is to search through the powerset of
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to support it. This is intuitive, as the more evi-
dence available for a hypothesis the higher its
rank.

We sorted the set of hypotheses by the num-
ber of seedlings combined to generate hypothe-
ses. The more seedlings composed to form a hy-
pothesis, the higher its support, and therefore
the higher its score. 

Examining table 1 reveals that the time
CAPRe takes to identify intent increases expo-
nentially with the number of events in an alert
set. This is the behavior that we predicted given
that our seedling-composition step must con-
sider the powerset of the seedlings generated
for an alert set. CAPRe is currently limited to
alert sets of about 20 actions on state-of-the-art
hardware. 

The noise coherence and signal-to-noise ra-
tio properties of alert sets affected both the run
time and accuracy of CAPRe. Consider first the
group of three results with a noise coherence of
1. In this case, noise cannot mislead the recog-
nition process as each mistaken hypothesis can
be supported by only one alert. In this situa-
tion, CAPRe consistently ranks the target hy-
pothesis first. When we move to alerts with a
noise coherence of 4, CAPRe ranks incorrect
hypotheses higher when the signal-to-noise ra-
tio favors the noise. The target hypothesis is
ranked first again when the signal-to-noise ra-

tio is 1 or favors the signal. When the noise co-
herence is adjusted to 8, the results show that
it becomes increasingly difficult for CAPRe to
correctly identify the target hypothesis. This is
understandable, as the noise has become co-
herent and is dwarfed in cases where it out-
numbers or equals the target activities. 

We draw two conclusions from the experi-
ments. First, the run-time performance de-
grades exponentially with alert set size, and for
practical purposes 20 alerts is the limit. Second,
the accuracy of the system falls off as the cohe-
sion of the noise exceeds that of the actual at-
tack activity. 

Summary and Further Work
We have introduced the CAPRe architecture for
automating the deep analysis of security alert
clusters in order to reduce the load on human
security analysts. Our proof-of-concept demon-
stration illustrates that the technology is capa-
ble of recognizing the intent behind events in
an alert set and of presenting that intent suc-
cinctly to a human user. Our empirical investi-
gation concluded that the technology could
process alert clusters of as many as 20 actions
and demands that noise (false alerts) be less
causally coherent than the components of the
attacks. 
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Noise Coherence 1 4 8

No.

Events

Signal/

Noise

1/3 1/1 3/1 1/3 1/1 3/1 1/3 1/1 3/1

Time
0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1 0:00:00.1

8

Rank 1/7 1/5 1/3 3/3 1/2 1/2 2/2 Joint 1st 1/2

Time
0:00:00.7 0:01:00.4 0:01:26.0 0:00:01.7 0:01:02 0:01:25.9 0:03:06.1 0:01:00.1 0:00:23.8

16

Rank 1/13 1/9 1/4 Joint 1st 1/3 1/2 3/3 Joint 1st 1/2

20 Time 0:00:09.7 2:27:02.4 0:47:34.0 0:00:06.3 0:47:28.2 0:48:19.4 0:28:01.0 0:48:20.5 0:54:59.4

Rank 1/16 1/12 1/8 5/5 1/4 1/3 3/3 1/2 1/2

25 Time 0:19:49.3 * * * * * * * *

Rank 1/19 * * * * * * * *

Table 1. Experimental Results
Apple PowerMac G5 1.8 GHz, 500 MB RAM. *Denotes no result after 12 hours.



an alert cluster before examining the cluster for
alerts that support the set of hypotheses gener-
ated. This approach would have the key benefit
of reducing the number of seedlings generated
for an alert set. Second, we will explore the in-
clusion of probabilities of observing template
tasks given a template purpose in a way similar
to that used by Goldman, Geib, and Miller
(1999). We will use this information to rank
seedlings according to the probability that the
observation supports the goal of each. A simple
cutoff strategy can then be used to prune un-
likely seedlings and again reduce the number
of seedlings passed into the computationally
expensive combination phase. 
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nologies, and mixed-initiative problem solving. Her
work in these areas spans the range of basic research,
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The UCLA Department of Statistics is seeking applications for a tenure-
track, assistant professor position.  Preference will be given to candidates
with a background in computational statistics and with an interest in ap-
plications.  There is also the possibility of more senior appointments.
Women and underrepresented minorities are encouraged to apply.  Ap-
pointment begins July 1, 2006.  Applicants should send a letter of applica-
tion, current vita, samples of published and unpublished work (samples
will not be returned), and three letters of recommendation to:

University of California, Los Angeles
Department of Statistics
c/o Professor Jan de Leeuw
8125 Math Sciences Building
Box 951554
Los Angeles, CA 90095-1554

For additional information contact Prof. Jan de Leeuw, Chair, Department
of Statistics, (310) 825-8430 or fax (310) 206-5658, e-mail
deleeuw@stat.ucla.edu.  Full consideration is guaranteed to those who ap-
ply by March 1, 2006, however, the search will remain open until all posi-
tions are filled.

The University of California Los Angeles 
is an Equal Opportunity/Affirmative Action Employer.




