
■ A recurring requirement for human-level artificial
intelligence is the incorporation of vast amounts of
knowledge into a software agent that can use the
knowledge in an efficient and organized fashion.
This article discusses representations and processes
for agents and behavior models that integrate
large, diverse knowledge stores, are long-lived, and
exhibit high degrees of competence and flexibility
while interacting with complex environments.
There are many different approaches to building
such agents, and understanding the important
commonalities and differences between approach-
es is often difficult. We introduce a new approach
to comparing frameworks based on the notions of
commitment, reconsideration, and a categoriza-
tion of representations and processes. We review
four agent frameworks, concentrating on the ma-
jor representations and processes each directly sup-
ports. By organizing the approaches according to a
common nomenclature, the analysis highlights
points of similarity and difference and suggests di-
rections for integrating and unifying disparate ap-
proaches and for incorporating research results
from one framework into alternatives.

Overview

One frequently taken approach toward
achieving human-level intelligent sys-
tems is to create foundational software

systems that tightly integrate some number of
representations and processes deemed suffi-

cient for generating automated intelligent be-
havior. The design of these foundational soft-
ware systems, which include both cognitive
and agent architectures, have generally been
based on some small set of theoretical princi-
ples. The agent architecture is an attempt to
foster the development of uniform approaches
for building intelligent systems. However,
large-scale integrated software systems that at-
tempt to approach human levels of intelligence
through agent architectures exhibit some core
commonalities across different architectures.
For example, no matter the chosen architec-
ture, there is a necessity for such systems to en-
code vast amounts of knowledge in efficient,
organized, and maintainable ways. Additional-
ly, these knowledge requirements have had rel-
atively uniform effects on the evolution of
these architectures, such that we observe a con-
vergence of essential representations and
processes across agent architectures.

A variety of frameworks currently exist for
designing human-level intelligent agents and
behavior models. Although they have different
emphases, each of these frameworks provides
coherent, high-level views of intelligent
agency. However, more pragmatically, much of
the complexity of building intelligent agents
occurs in the low-level details, especially when
building agents that exhibit high degrees of
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dictate for agent design. This comparative
analysis, to our knowledge, is novel and pro-
vides insights into the trade-offs inherent in
these systems for building intelligent agents.
The goal is truly comparative. Each system we
review arguably has a unique application
niche, and we are not seeking to suggest one
framework is better than another. Rather, in
comparing them, especially in noting conver-
gences and divergences in knowledge-intensive
agent applications, we seek to develop a uni-
form methodology for comparing frameworks
and, ultimately, to speed the development and
evolution of architectures by making research
results more communicable and transparent to
researchers not working within the specific
subfield of AI or cognitive science in which
new architecture developments are made. 

One important result of this analysis is the
observation that no single framework we re-
view here directly supports all of the represen-
tations that have been usefully employed in
various knowledge-intensive agent systems.
The result is that an agent designer who adopts
any of these particular frameworks often must
also develop application-specific solutions for
the representations and processes not directly
supported by the chosen framework. This situ-
ation is undesirable because it leads to ad hoc
solutions for different agent applications creat-
ed within the same framework. Ad hoc solu-
tions in turn increase development costs by
hampering reuse. While the current analysis
does not provide a complete set of necessary
representations and processes for knowledge-
intensive agents, it does serve as a starting
point for future architectural research: creating
and deploying robust, lower-cost, long-lived
agent applications makes it essential to have di-
rect architectural support of all the basic repre-
sentations and processes. 

Review of Agent Frameworks
We introduce four mature frameworks for intel-
ligent agents that represent quite different the-
oretical traditions (philosophical and logical,
functional, psychological, and formal compu-
tational). We have intentionally selected exem-
plar frameworks that are somewhat different in
character in order to provide a broad first cut at
an encompassing review. Our intent is to con-
sider the primary representational constructs
and processes directly supported by each. We
focus on these aspects of agent frameworks be-
cause an agent is essentially the sum of a sys-
tem’s knowledge (represented with particular
constructs) and the processes that operate on
those constructs (Russell and Norvig 1994).

competence while interacting in complex envi-
ronments. To highlight the emphasis of our ob-
servations about the knowledge necessary for
human-level artificial intelligence, we call such
agents knowledge-intensive agents. This term is
also meant to distinguish such agents from
smaller-scale, single-task agents (for example,
service brokers) that are often fielded in multi-
agent systems. Examples of fielded knowledge-
intensive agents include a real-time fault diag-
nosis system on the Space Shuttle (Georgeff
and Ingrand 1990) and a real-time model of
combat pilots (Jones, Laird, and Nielsen 1999).
Knowledge-intensive agents are also often used
in “long-life” situations, where a particular
agent needs to behave appropriately and main-
tain awareness of its environment for a long pe-
riod of time (hours to days) while performing
many different activities during the span of its
existence. Additionally, knowledge-intensive
agents must be engineered such that their
knowledge can be easily modified (possibly by
both extrinsic and intrinsic processes) as envi-
ronment and task requirements change during
deployment. 

Transfer and generalization of results from
one framework to others is usually slow and
limited. The reasons for such limited transfer
include differences in nomenclature and
methodology that make it more difficult to un-
derstand and apply results, and the necessity of
specifying low-level details that are not pre-
scribed by the frameworks but that become im-
portant in actual implementation. In addition,
high-level agent frameworks do not usually
guide the agent developer in many finer-
grained implementation issues, meaning that
the frameworks underspecify necessary princi-
ples to build and field working intelligent
agents. Our goal is to develop techniques that
will minimize framework-specific descriptions
and that bridge the gap between a framework’s
theory and the details of its implementation,
especially clarifying which details are intrinsic
to particular approaches and which are not. In
the long run, this effort should foster reuse of
architectural components and idioms across ar-
chitectures as well as across individual agent
models that use a single architecture.

This article reviews four existing agent
frameworks in order to explore what they spec-
ify (and do not) about an agent’s design and
construction. The chosen frameworks have
proven successful for building knowledge-in-
tensive agents of various levels of complexity,
or specifically address constraints on agents
with high levels of competence (such as human
behavior models). We identify the representa-
tions and agent processes that the frameworks
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We focus on frameworks that have been used
to build large-scale, highly capable agent sys-
tems because different programming para-
digms are likely appropriate for systems with
leaner knowledge. An example motivating fac-
tor for this analysis is the recognition that im-
plemented BDI and Soar systems, while originat-
ing from different theoretical starting points,
have converged on similar solutions for large-
scale systems. However, this analysis can be ex-
tended to other frameworks as well, with still
other representations and processes (for exam-
ple, 4D/RCS [Albus 2001], ACT-R [Anderson
and Lebiere 1998], Icarus [Langley, Choi, and
Shapiro 2004], and RETSINA [Payne, Singh,
and Sycara 2002]). In the long term, we will ex-
tend our analysis to these other frameworks as
well.

BDI
The BDI (beliefs, desires, intentions) framework
grew out of Bratman’s (1987) theory of human
practical reasoning. BDI is now a popular logic-
based methodology for building competent
agents (Georgeff and Lansky 1987; Rao and
Georgeff 1995; Wooldridge 2000). A basic as-
sumption in BDI is that intelligent agents
ought to be rational in a formal sense, meaning
rationality (as well as other properties) can be
logically proven. Actions arise from internal
constructs called intentions. An intelligent
agent cannot make decisions about intentions
until it has at least some representation of its
beliefs about its situation. That is, the agent
must maintain a set of beliefs about what is
true in the world. Given a particular set of be-
liefs, there may be many different situations
that the agent might consider desirable. Given
limited resources, however, the agent can often
only act on some subset of these desires, so the
agent selects a subset, its intentions, to pursue.
Using BDI terminology, the entire set of rele-
vant activities represents the agent’s desires,
and the set of currently selected actions that
address some subset of those desires are the in-
tentions.

BDI was also designed with specific high-lev-
el constraints on intelligent behavior in mind.
First, as mentioned, the framework insists on
rational agents, in the sense that a BDI agent’s
actions must always be logically consistent
with its combination of beliefs and goals. This
property is not true of some of the other frame-
works we analyze, particularly those with a
heavy emphasis on psychology (where intelli-
gent behavior that is not strictly rational is ob-
served with some frequency). Second, the BDI
framework also emphasizes supporting groups
of agents that interact with each other. BDI is a

high-level framework that has a number of dis-
tinct implementations, among them IRMA
(Bratman, Israel, and Pollack 1988), PRS
(Georgeff and Lansky 1987), dMARS (d’Inverno
et al. 1997), JACK (Howden et al. 2001) and
JAM (Huber 1999). Our discussion includes
some small examples of differences in imple-
mented architectures where those architectures
have made specific commitments beyond the
general BDI framework. However, in general
our consideration of BDI is meant to be consis-
tent with the common framework as presented
by Wooldridge (2000).

GOMS
GOMS (goals, operators, methods, and selec-
tions) is a methodology based in psychology
and human-computer interaction (Card,
Moran, and Newell 1983). GOMS is not strictly
an agent framework, but it formalizes many de-
tails of high-level human reasoning and inter-
action. However, GOMS is particularly interest-
ing because knowledge-intensive agents are
often used to simulate human behavior. Al-
though GOMS has not been used to develop
large-scale systems, it has been used to repre-
sent the human knowledge necessary for per-
forming many tasks, including complex hu-
man activity. We include GOMS because the
representation and process regularities it has
identified are critical for knowledge-intensive
agents that will encode this type of knowledge.
In addition, improvements in efficiency in-
creasingly allow executable cognitive models to
compete with AI architectures in application
areas (for example, John, Vera, and Newell
[1994]). 

GOMS systems explicitly encode hierarchical
task decompositions, starting with a top-level
task goal plus a number of methods, or plans,
for achieving various types of goals and sub-
goals. Each goal’s plan specifies a series of ac-
tions (called operators by the GOMS communi-
ty) invoking subgoals or primitive actions to
complete the goal. Selection rules provide con-
ditional logic for choosing between plans based
on the agent’s current set of beliefs. 

One key feature of GOMS is its support for
hierarchical task decomposition. Although a
hierarchical model is not a strict requirement,
among the frameworks examined here GOMS
most strongly encourages and supports hierar-
chical solutions. Like BDI, GOMS is a high-level
framework, realized in a number of individual
implementations, such as GLEAN (Kieras et al.
1995), APEX (Freed and Remington 2000),
CPM-GOMS (Gray, John, and Atwood 1993),
and NGOMSGL (Kieras 1997). 
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FSMs
FSM (finite state machine) approaches to intel-
ligent agents come from theoretical computer
science (Carmel and Markovitch 1996;
Hopcroft and Ullman 1979). Their primary ap-
peal is the simplicity of their representational
elements, which can usually be easily under-
stood and encoded, automatically learned for
some tasks, and implemented very efficiently.
However, it is worth noting that some of these
advantages diminish for models of large size or
high complexity. Because states and transitions
are relatively simple and low level, FSMs do not
present the same types of high-level architectur-
al constraints as the other frameworks we re-
view here. Rather they provide theoretically
sound elements from which more complex sys-
tems can be built. FSMs achieve complexity in
behavior by the complex design of states and
transitions. Because of the relatively simple lev-
el of support for knowledge representation id-
ioms, some would argue that FSMs do not rep-
resent a knowledge-intensive agent framework
at all. However, FSMs are used for a variety of
agent applications, especially in computer
games and human behavior representation
(Ceranowicz, Nielsen, and Koss, 2000), so it is
worth considering this approach in our analy-
sis.

In the purest form of FSM, the only represen-
tational commitment is the state itself, which
uniquely represents some point in the space of
all possible combinations of beliefs and goals.
While this commitment may seem minimal in
comparison to the other frameworks, in prac-
tice FSMs provide additional ways to imple-
ment many of the constructs shared by other
agent frameworks. For example, FSMs are func-
tionally equivalent to a set of propositional
stimulus-response rules, in which the state
uniquely determines an agent’s action, given
its knowledge base. In practice, however, it is
just as difficult to build a knowledge-intensive
system using pure FSMs as it would be to use a
purely propositional set of rules. Thus, practical
FSM systems extend the approach by, for exam-
ple, supporting variables within and across
states, allowing conditional execution, and in
some cases providing a global memory store. 

Like BDI and GOMS, FSMs provide a general
framework that has been implemented in a
wide variety of systems. Because FSMs can be
easily implemented within standard procedural
programming languages, they are often
equipped with additional features that violate
the strict FSM paradigm. For example, FSMs
can be hierarchically combined to allow multi-
ple goals and task decompositions. In such an
implementation, entering a state in one ma-

Soar
Soar has roots in cognitive psychology and
computer science, but it is primarily a function-
al approach to encoding intelligent behavior
(Laird, Newell, and Rosenbloom 1987). The
continuing thread in Soar research has been to
find a minimal but sufficient set of mecha-
nisms for producing intelligent behavior. These
goals have resulted in uniform representations
of beliefs and knowledge, fixed mechanisms for
learning and intention selection, and methods
for integrating and interleaving all reasoning.

Like BDI, Soar’s principles are based in part
on assumed high-level constraints on intelli-
gent behavior. Foremost among these are the
problem space hypothesis (Newell 1982) and
the physical symbol systems hypothesis
(Newell 1980). Problem spaces modularize
long-term knowledge so that it can be brought
to bear in a goal-directed series of discrete steps
(on the surface, this modularization is some-
what similar to the encapsulation of actions
provided by FSMs, described later). The prob-
lem space hypothesis assumes rationality, sim-
ilar to BDI. The physical symbol systems hy-
pothesis argues that any entity that exhibits
intelligence can be viewed as the physical real-
ization of a formal symbol-processing system.
The physical symbol systems hypothesis led to
Soar’s commitment to uniform representations
of knowledge and beliefs.

There is no explicit assumption of hierarchi-
cal task representations in Soar (as there is in
GOMS), but in practice the use of problem
spaces often leads to the development of hier-
archically organized behavior models, in which
each portion of the hierarchy may represent a
different problem space. However, the general
notion of problem spaces also supports other
types of goal arrangements and context switch-
ing.

While Soar shares with BDI the notion of
agent rationality (agents appropriately select
actions in pursuit of goals) and Soar uses logic-
based knowledge representation, Soar does not
share BDI’s commitment to logical reasoning to
produce rational behavior. Thus, Soar imposes
strong constraints on fundamental aspects of
intelligence, but it does not impose functional-
ly inspired high-level constraints (in the spirit
of BDI’s use of logic, or GOMS’s use of hierar-
chical goal decomposition). Soar is a lower-lev-
el framework for reasoning than BDI and
GOMS. Either BDI principles (Wray and Jones
2005) or GOMS principles (Peck and John
1992) can be followed when using Soar as the
implementation architecture.
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Representation Commitment Reconsideration

Inputs

BDI Input language

GOMS Input language

Soar Working memory

FSM State transitions

Justified Beliefs

BDI Beliefs Logical inference Belief revision

GOMS Working memory

Soar Working memory Match/assert Reason maintenance

FSM State variables

Assumptions

BDI Beliefs Plan language Plan language

GOMS Working memory Operators Operators

Soar Working memory Deliberation/Ops Operators

FSM State variables Assignment Assignment

Desires

BDI Desires Logic Logic

GOMS

Soar Proposed ops. Preferences Preferences

FSM

Active Goals

BDI Intentions Deliberation Decision theory

GOMS Goals Operators

Soar Beliefs/Impasses Deliberation Reason maintenance

FSM State machine Context switching Context switching

Plans

BDI Plans Plan selection Soundness

GOMS Methods Selection

Soar Interleaving

FSM Transition networks Context switching

Actions

BDI Plan language Atomic actions

GOMS Operators Operators

Soar Primitive Ops Deliberation Reason maintenance

FSM State transitions Serial control flow

Outputs

BDI Plan language Plan language

GOMS Primitive ops. Conditional ops.

Soar Working memory Conditional ops.

FSM Output transitions Serial control flow

Table 1. Agent Framework Comparisons.

Black items are specific solutions provided by the framework. Gray items are general support provided by the framework. No entry
means the framework does not explicitly address the element.



1, the “Commitment” column identifies the
general process used to select among alterna-
tives. Most commitments also require mainte-
nance; the “Reconsideration” column shows
the determination of whether a commitment
remains valid (a generalization of the notion of
intention reconsideration [Schutt and
Wooldridge 2001]). 

Perceptions
Any interactive agent must have a perceptual
or input system that provides a primitive repre-
sentation of the agent’s environment or situa-
tion. Neither BDI nor GOMS specifies any par-
ticular constraints on input. FSMs generally
specify input conditions for initial states, as
well as for state transitions. These conditions
usually correspond to percepts in the environ-
ment, but the FSM approach makes no com-
mitment to the specific representation of these
conditions or to their grain size. Soar represents
primitive perceptual elements in the same at-
tribute-value representation as beliefs, al-
though it does not dictate the structure of the
perceptual systems that create these elements.
However, the constraint that perceptual input
must be represented in the same language as
beliefs has important implications. Aside from
their location in memory, primitive perceptual
representations are indistinguishable from be-
liefs, which is consistent with Soar’s principle
of uniform knowledge representation. This
makes it a relatively simple matter to allow
agents to deliberate over potential input situa-
tions (or reflect on past or possible future input
experiences) and transfer that knowledge di-
rectly to actual inputs. 

Beliefs
From primitive perceptual elements, an agent
creates a further elaborated set of beliefs, or in-
terpretations of the environment. The set of be-
liefs is sometimes referred to as the current state
of the agent, a concept that is made explicit in
FSMs. Using the terminology of reason mainte-
nance systems (Forbus and deKleer 1993), be-
liefs can be classified as either justified beliefs or
assumptions. Justified beliefs remain in memo-
ry only as long as they are logically entailed by
perceptual representations and assumptions.
Assumptions, by definition, remain in memory
independently of their continuing relevance
to—and logical consistency with—the external
environment. Assumptions remain asserted
until the agent explicitly removes them, with
the result that assumptions receive a high de-
gree of commitment from the agent. Assump-
tions are necessary because not all beliefs can
be grounded in current perception. For exam-

chine causes a jump into the initial state of an-
other machine (with a subsequent jump back
when the second machine completes execu-
tion).

Analysis of Agent Frameworks
Each of these frameworks provides a coherent
view of agency and gives explicit attention to
specific representations and processes for intel-
ligent agents. They also reflect different points
of emphasis, arising in part from the theoreti-
cal traditions that produced them. However,
because none of the frameworks cover all the
points of emphasis, agent designers have to
make many more decisions about agent con-
struction than provided by each framework’s
core principles. Each architectural implementa-
tion requires nonprimitive representations
(and the processes to manipulate these repre-
sentations). While it is likely that an agent will
have compositional representations (for exam-
ple, a representation of a map composed of an
indexed set of beliefs), general representational
constructs that span most applications should
be directly supported within the framework.

Direct support simplifies the development
process because the agent designer can concen-
trate exclusively on the domain knowledge.
The practical point of an agent framework is to
provide a set of reusable elements in order to
reduce the costs of building new agents. One
could therefore argue that, to maximize reuse,
any representational element that is general
across domains and useful in the majority of
agent applications should be required to be ad-
dressed in each framework. However, this de-
sire for reusability must be taken in context
with the additional functional and theoretical
constraints associated with each framework.
For our analysis, we will comprehensively list
each representational element supported by
any of the frameworks, and note where indi-
vidual frameworks provide support (or not) for
those elements.

Table 1 lists the union of the base-level rep-
resentations from BDI, GOMS, Soar, and FSMs.
The representations are ordered to suggest the
basic information flow from an external world
into agent reasoning and then back out. The
“Representation” column specifies each frame-
work’s substrate for the base-level representa-
tional element. Each representation also re-
quires a decision point in the reasoning cycle,
where an agent must choose from a set of alter-
natives. We generalize Wooldridge’s (2000)
concept of intention commitment to specify
the process an agent uses to assert some in-
stance of the base-level representation. In Table

Articles

62 AI MAGAZINE



ple, if an agent needs to remember an object no
longer in the field of view, then it must commit
to maintaining a memory of that object. As
long as the object remains in the field of view,
the agent’s perception of the object can be con-
sidered a justified belief (sometimes called an en-
tailment). As soon as the perceptual grounding
disappears, the agent must commit to the belief
as an assumption if it is going to maintain the
belief for some time.

Neither GOMS nor BDI makes an explicit
distinction between justified beliefs and as-
sumptions. Each provides general mechanisms
for maintaining justified beliefs, but not specif-
ic solutions. Belief revision (Gardenfors 1988)
is the mechanism of justified belief reconsider-
ation in the BDI framework, although details of
the process are only defined in various specific
implementations. Soar uses a reason mainte-
nance system to assert and retract justified be-
liefs automatically. Reason maintenance en-
sures that justified beliefs are logically
consistent (Wray and Laird 2003). All four
frameworks support the representation of as-
sumptions. Soar requires that assumptions be
created as the result of deliberate commitments
(operator effects).

Pure FSMs would only be allowed to repre-
sent combinations of beliefs with individual
states, because they are prohibited from main-
taining internal state information. However,
this would lead to an enormous and unman-
ageably complex set of states. Probably for this
reason, we are not aware of any practical agents
that are implemented using pure FSMs. Rather,
the machines are generally augmented with
variables that can hold various types of “non-
state” information. Variable values represent
assumptions, because no primitive process
maintains the continuing validity of a value
with respect to the external situation. 

Importantly, other frameworks use still other
techniques for managing the commitment and
reconsideration of beliefs. For example,
4D/RCS (Albus 2001) uses a limited capacity
buffer, allowing only a fixed number of as-
sumptions to be asserted at any one time. ACT-
R (Anderson and Lebiere 1998) employs sub-
symbolic activation and decay mechanisms to
manage assertions. By making such design de-
cisions explicit in this analysis, we hope to fa-
cilitate a discussion of the trade-offs in these
decisions among different approaches, and to
make it more clear how to incorporate mecha-
nisms from one architecture to another. For ex-
ample, the activation and decay mechanisms
of ACT-R have recently been incorporated into
a hybrid architecture integrating Elements of
ACT-R, Soar, and EPIC (EASE) (Chong and Wray

2005). EASE uses Soar's reason maintenance
system to manage the assertion and retraction
of justified beliefs, but uses ACTR's activation
and decay mechanisms to manage assump-
tions. These alternative belief representations
do not follow strict logical entailment, but also
do not require deliberate agent reconsidera-
tion, so it is likely that we should include other
types of beliefs as our analysis progresses. One
of the contributions of this work is to provide
a formal theoretical framework in which such
variations in belief commitment and reconsid-
eration can be labeled and characterized.

Desires 
BDI is the only framework that clearly separates
desires from “normal” active goals (below). De-
sires allow an agent to monitor goals that it has
chosen not to pursue explicitly. An additional
advantage is that an agent can communicate its
desires to another agent that may be able to
achieve them (Wooldridge 2000). Even in sin-
gle-agent applications, however, there may be
situations where an agent would need to rea-
son about a desire, even if it does not have the
resources to pursue that desire. Such situations
may provide the possibility of opportunistical-
ly achieving desires in the context of other ac-
tive goals. 

Unlike BDI, agents built within many other
frameworks do not bother to represent goals
that they do not intend to pursue. Soar, GOMS,
and FSMs do not specify that desires should ex-
ist, how they should be represented, or how
they should influence reasoning. In these
agents, expressing a desire would consist of a
deliberate act in the service of a communica-
tion goal. BDI manages commitment to desires
through logical inference.

Active Goals
A hallmark of intelligent behavior is the ability
to commit to a particular set of concerns and
then pursue them (Bratman 1987; Newell
1990). Most agent frameworks support explicit
representation of the goals an agent has com-
mitted to pursue. However, the agent literature
is somewhat inconsistent in its use of descrip-
tive terms relevant to goals, which is a contin-
uing source of confusion and miscommunica-
tion in the research community. Wooldridge
(2000) calls active goals “intentions.” In con-
trast, some implementations of BDI do not rep-
resent active goals distinctly from the selected
plans that would achieve these goals. In such
systems, selected plans are “intentions,” but
there is no explicit representation of an active
goal apart from the plan. In Soar, an “inten-
tion” is the next action selected from a current
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methods are implemented). Generally, plan ex-
ecution is implicit in FSMs, so there is no ex-
plicit representation of finding a plan to
achieve the goal. Each individual state machine
is a plan, using states and transitions to capture
the execution of the plan in the service of some
(usually implicit) goal.

Soar does not require that an agent have an
explicit representation of a plan. More com-
monly, Soar agents associate individual actions
directly with goals (plan knowledge is implicit
in the execution knowledge), or interleave
planning and execution as individual cognitive
tasks. Either way, Soar assumes that planning is
a deliberative task requiring the same machin-
ery as any other agent activity and involving
the same concerns of commitment and re-
source usage. However, as with any other un-
supported base-level representation, Soar forces
the agent developer to implement the plan-
ning algorithm and the representation of any
plans. Alternatively, external planning tools
can be used to generate plans that must then be
converted into Soar’s belief representation lan-
guage or production rules.

GOMS and BDI do not specify plan lan-
guages, although their implementations do.
Soar has nothing like the relatively rich GOMS
and BDI plan languages, instead using its oper-
ators to implement simple types of commit-
ment. The trade-off is that complex plans are
easier for a developer to program in GOMS and
BDI, but potentially easier to learn by a Soar
agent (because of the simpler, uniform target
language). Developers of GOMS and BDI imple-
mentations must make decisions about plan
languages, leading to nonuniform solutions
from one implementation to another. The
“plan language” for an FSM is generally just the
same computer language used to implement
the FSM.

Plan commitment in BDI can be quite sim-
ple: plans can be selected through a lookup
table indexed by goal (Wooldridge 2000) or im-
plied completely by goal selection, as in JAM.
In sharp contrast, GOMS treats the choice of
which method to choose to pursue a goal as a
major element of the framework. Because Soar
does not have an architectural notion of a plan,
there is no plan-specific commitment mecha-
nism. Soar also does not make an explicit dis-
tinction between plan generation/selection
and plan execution. Creating (or finding) a
plan involves a series of context-sensitive deci-
sions and operations, just as executing a plan
does.

An agent can consider abandoning its cur-
rent plan, even when it has chosen to remain
committed to its current goal (Wooldridge

plan (which may itself directly activate a goal).
GOMS does not use the term “intention,” but
requires the explicit representation of goals. In
an attempt to avoid confusion, we call these
commitments “active goals” to distinguish
them from plans and (“inactive”) desires. We
also avoid altogether the ambiguous and over-
loaded term “intention.”

Agents require a process for selecting the cur-
rent active goal (or set of goals). BDI and Soar
include explicit processes for deliberate goal
commitment, although goals can be imple-
mented in a variety of ways in Soar. In particu-
lar, goals created directly by the Soar architec-
ture are limited to impasse goals; that is, goals
to solve a particular problem in execution.
While some approaches to Soar map task goals
(for example, “intercept the aircraft”) to im-
passe goals, this approach is only one of a num-
ber of “idioms” that are used to represent goals
within Soar models (Lallement and John 1998).
In GOMS, goal commitment occurs by invok-
ing the plan associated with the goal. Although
this is a deliberative process, it is not divided
into separate steps as in the other frameworks.
FSMs do not have an explicit notion of active
goals. Implicitly, each FSM represents a plan
that is associated with a particular goal (or set
of goals).

Researchers have also explored the question
of when an agent should reconsider an active
goal (for example, Veloso, Pollack, and Cox
[1998]; Schutt and Wooldridge [2001]; Wray
and Laird [2003]). The BDI framework uses
evaluations of soundness to determine when
an active goal should be reconsidered; that is,
given the agent’s beliefs, the plan provably
achieves the active goal. More recently, BDI re-
searchers have also explored decision-theoretic
processes for intention reconsideration (Schutt
and Wooldridge 2001). Soar utilizes reason
maintenance, which is essentially an imple-
mentation of the soundness criterion. GOMS
uses selection rules to commit to a goal, but
does not explicitly address later reconsidering a
goal. An FSM would normally mark one or
more of its states as states that achieve some
(implicit) goal, perhaps terminating an individ-
ual state machine when a goal is achieved (al-
though this approach would be different for
maintenance goals).

Plans
Once there is an active goal to pursue, the
agent must commit to a plan of action. BDI and
GOMS assume there is a plan library or some
other method for generating plans outside the
basic agent framework (GOMS includes the no-
tion of methods but does not prescribe how
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2000). The frameworks here do not provide
strong advice on when such a commitment
should be given up; BDI and Soar at least dic-
tate that any plan should be executed one ac-
tion at a time, allowing reconsideration of the
plan after each step (although the two disagree
on how complex a single action can be). Frame-
works that use explicit plans may provide sup-
port for abandoning a plan reactively (BDI) or
ignore this problem completely (GOMS). Soar,
because it does not require explicit plans, im-
plicitly supports plan reconsideration, because
there is no separate commitment to a plan in
the first place. Thus, in Soar, an agent commits
to one action at a time rather than committing
to a whole plan. This embodies a strong least-
commitment approach to plan selection and ex-
ecution in general. The trade-off is that Soar
agents must include extra knowledge to remain
committed to a particular course of action, and
the implementation of this knowledge is up to
individual agent developers. 

Other approaches to plan maintenance in-
clude using completable plans (Gervasio and De-
Jong 1994) and allowing agents to switch back
and forth between two or more plans in sup-
port of multiple, orthogonal goals. Com-
pletable plans are plans that specify behavior to
some abstract (but relatively low) level, and
then allow the abstractions to instantiate con-
ditionally and reactively to changing environ-
ments during execution. Plan switching is
clearly a requirement for knowledge-intensive
agents in many complex domains, but none of
the frameworks specify how switching must oc-
cur. For example, it is not clear that any current
implementations of BDI or GOMS support re-
sumption of a partially executed plan. Many
Soar systems implement task switching, but
they rely on extra knowledge coded by the
agent developer. Such reentrant execution of
plans appears to be an essential element of op-
portunistic intelligent behavior. 

Actions
Regardless of whether a plan has been explicit-
ly represented, an agent must eventually com-
mit to some type of action relevant to its active
goals. In frameworks with explicit plans, like
BDI and GOMS, this involves following and ex-
ecuting the steps in the plan. Explicit actions in
FSMs simply involve moving from one state to
another (or in augmented FSMs, possibly exe-
cuting some code that changes the belief set or
issues output commands). At their core, all four
frameworks support three general types of ac-
tions: execute an output command, update the
belief set, or commit to a new goal (or desire).
GOMS and Soar define operators as the atomic

level of action, allowing commitment and re-
consideration for each plan action. As an alter-
native, BDI and FSM systems generally provide
a plan language that is a complete program-
ming language. Such languages provide power-
ful and flexible means of plan implementation,
but may leave them outside the commitment
regime of the framework. BDI dictates that re-
consideration ought to occur after each plan
step, but does not tightly constrain how much
processing may occur in a single step. This im-
poses a trade-off between ease of programming
(BDI and FSMs) and taking advantage of the
uniformity of the framework’s built-in process-
es (GOMS and Soar). 

Soar uses actions to create assumptions in
the belief set (thus, assumptions can only be
the result of deliberate decision making). Tying
assumptions to actions is an important issue.
Automated, logical reason maintenance is at-
tractive, but, pragmatically, there are limited
resources for updating an agent’s beliefs. Ideal-
ly, a rational agent would compute all relevant
entailments from any input. But in complex
environments, this is not computationally fea-
sible (for example, Hill [1999]). 

Regardless of the particular approach to plan
representation or action languages, all the
agent frameworks represent an action as a dis-
crete step in a current plan’s pursuit of a goal.
If it happens to be a discrete step in an abstract
plan, then it may get further decomposed
(completable planning). In addition, each
framework generally initiates a discrete action
every “tick of the clock.” This is how agents
make progress towards their goals, and it allows
a commitment scheme where reconsideration
(of plans, goals, or beliefs, depending on the
agent) can occur after each discrete action. 

Outputs
The ultimate level of commitment is to initiate
activity in the environment. To accomplish
this, an agent invokes an output system. All
four frameworks assume that output has to
happen somehow, but do not impose strong
constraints on the representation of output.
BDI leaves output decisions up to the designer
of the plan language. GOMS requires that
primitive operators produce all output signals.
As with perception, Soar requires that a motor
command be represented in Soar’s belief lan-
guage, which allows the agent to reason about
and execute output commands using the same
agent knowledge.

Systems that use completable plans may in-
clude conditional outputs (possibly in addition
to other conditional actions). Soar conditional-
ly decodes actions using the same computa-
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create and to remove the assumption. Because
it would be dangerous to create assumptions
without some consideration, Soar demands
that assumptions only be created as the result
of deliberate intentions (whereas justified be-
liefs can be created by a more automatic
process). 

As this analysis demonstrates, the choice be-
tween justified beliefs and assumptions essen-
tially boils down to the type of commitment or
reconsideration necessary to activate or deacti-
vate the beliefs. For rational agents, it may
make sense to use justified beliefs as much as
possible, in order to maintain a logically con-
sistent belief set. This implies the use of a rea-
son maintenance system, as Soar includes. Al-
though BDI researchers have taken the
question of commitment very seriously, they
have mostly done so in terms of committing to
(what they call) intentions and not to beliefs.
The most popular BDI implementations do not
include reason maintenance systems, even
though logic and soundness are key parts of the
BDI framework. GOMS and FSMs do not give
the same prominent role to logic, and their im-
plementations also do not generally include
reason maintenance. In implementations that
do not include reason maintenance, all beliefs
are implemented as assumptions, and it is up to
the agent developer to implement belief main-
tenance in the agent’s knowledge base (for ex-
ample, as part of each plan in a JAM agent). 

Desire Maintenance 
If an agent includes explicit representations of
desires, there also needs to be a mechanism for
maintaining desires. BDI again accomplishes
this through a logical process. Presumably,
modifications to support desires in the other
frameworks could also mirror the processes
that support belief maintenance. Soar includes
a preference mechanism that allows the explic-
it proposal of actions that may not get selected,
depending on the current context. One poten-
tial use for the preference mechanism would be
to represent BDI-like desires, but that is not
necessarily how the mechanism is used in prac-
tice. Similarly, desires could be represented and
processed in GOMS or FSMs, but they would
have to be maintained using specific knowl-
edge encoded in the framework’s action lan-
guage.

Active Goal Maintenance 
Active goals also require a mechanism of selec-
tion. In many frameworks, goal maintenance is
similar to belief maintenance or arises as a side
effect of the selection and execution of plans.
For example, in GOMS goal activation occurs

tional processes that it uses for justified belief
maintenance. The instantiated completion of
an action is analogous to the automated elabo-
ration of beliefs. Each framework supports
methods for executing completable plans;
some depending on plan language choices.
Soar specifies what the plan language has to be,
and therefore also specifies how plan comple-
tion occurs.

Processing Requirements
Unsurprisingly, each data element that appears
in an agent also requires associated processing
that the agent framework uses to activate (or
select) and deactivate (or retract) that type of
representation. To remain consistent with our
goal of unifying the discussion across frame-
works, we have examined each representation-
al element in terms of how the framework
manages commitment to and reconsideration of
an associated data structure. Generalizing the
notion of commitment and reconsideration
across representational elements allows us to
adopt a similar abstract-level view of processing
for each framework, but focus on the aspects of
processing in which each framework differs.

Justified Belief Maintenance 
Justified beliefs receive no commitment from
an agent beyond logical entailment. A set of
justified beliefs must always be logically consis-
tent with the elements from which the beliefs
are deduced, in so far as the long-term logical
rules that produce the beliefs are logically
sound. In the BDI framework, this is where ra-
tional logic plays a key role. Soar realizes the
encoding process with a reason maintenance
system that automatically computes entail-
ments from ground perceptions, assumptions,
and previously computed entailments. Because
reason maintenance is essentially a computa-
tional implementation of logic, it would make
sense for BDI agents to use a similar implemen-
tation. As mentioned previously, augmented
FSMs and GOMS may use variables to maintain
and store justified beliefs, but the generic
frameworks do not specify any particular ap-
proach or algorithm.

Assumption Maintenance
In contrast to justified beliefs, assumptions re-
ceive a very high level of commitment from
agents. An assumption essentially remains in
the belief set until the agent explicitly decides
to remove it (or, in hierarchical representa-
tions, until the agent achieves or gives up the
goals associated with the assumption). In BDI
terms, this requires explicit intentions both to
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by invoking the plan associated with a particu-
lar goal. Although this is a deliberative process,
it is not divided into separate steps as in other
frameworks. BDI and Soar include explicit
processes for deliberate goal activation, distinct
from the step of selecting a plan. FSMs, because
they do not have explicit goals, also generally
only have implicitly activated goals. An FSM
goal may be considered active when the ma-
chine that implements that goal is executing.
Therefore, we might say that an FSM activates
a new goal by switching execution to a new
plan (state machine).

Plan Maintenance
Tied closely to goal maintenance are questions
of when an agent should select or abandon a
current plan in the context of its current goals.
Plan selection in most frameworks is fairly sim-
ple, with plans being indexed directly by goals.
Under this model, activating a goal leads more
or less directly to activating the associated plan.
GOMS includes selection rules that allow the
agent to consider different possible plans for a
particular goal. As we have mentioned, Soar
agents do not generally use explicit plan
schemas, so it makes less sense to speak of plan
selection for Soar. Rather, a “plan” in Soar is an
emergent sequence of action selections.

For most of these frameworks the question of
plan reconsideration is more interesting that
the initial commitment to a plan. The question
is when an agent should decide to abandon (or
suspend) a plan, possibly even when it has cho-
sen to remain committed to the plan’s current
goal (Wooldridge 2000). None of the frame-
works provide clear advice on when such re-
consideration should occur, but this is appro-
priate because it is a decision that requires
knowledge of a particular task. The frameworks
that use explicit plans in general must consider
whether to provide support for the ability to
abandon a plan reactively. The frameworks that
do not directly support or insist on explicit
plans implicitly support easier plan switching,
because there is no separate commitment to a
plan in the first place. Thus, in frameworks that
do not require explicit plan representations, an
agent may commit to one action at a time
rather than committing to a whole plan (it is
sometimes useful in such situations to view
each action as a very fine-grained plan, or each
plan as a very complex completable action).
The BDI framework lies between the two ex-
tremes. While BDI insists that a plan must exist
and be selected explicitly, it also dictates that
plans should execute one action at a time, al-
lowing time for reconsideration after each step.
Some variations of GOMS and FSMs provide

similar functions.
The issue of commitment and reconsidera-

tion associated with plans has many ramifica-
tions for the design and capabilities of intelli-
gent agents. If an agent uses completable plans,
it is possible to commit to an abstract plan
while allowing adaptations of the plan during
execution. Each framework supports methods
for executing completable plans, some depend-
ing on designer choices of a plan language.
Soar specifies what the plan language has to be,
and therefore also specifies how plan comple-
tion occurs. Agents that do not commit to
high-level plans do not have to provide mech-
anisms for switching plans midstream. But
they do have to include mechanisms for re-
maining committed to a particular course of ac-
tion when necessary (without the benefit of
support from an explicit plan).

Perhaps the most complex form of plan in-
terruption involves switching back and forth
between two or more plans in support of mul-
tiple goals (perhaps also meaning that the sys-
tem is switching activation between the goals).
This is clearly a capability of humans, and we
mark it as a requirement for knowledge-inten-
sive agents in many complex domains. The
ability to accomplish task switching depends
on the commitment and reconsideration
methods for plan selection and execution but
adds the problem of recommitting to a sus-
pended plan. Neither BDI nor FSMs explicitly
specify how such switching might occur. A
model builder would have to encode a number
of explicit conditions for when the plan should
be abandoned and then taken up again. Addi-
tionally, it is not clear how a BDI agent should
represent two goals that are actively being pur-
sued, but in a switched manner. Frameworks
that do not define these types of commitment
and reconsideration leave the choices up to in-
dividual agent designers.

Related to plan switching is reentrant execu-
tion. It is sometimes desirable for an agent to
resume a plan from a suspended point, rather
than beginning the plan anew. Similarly, it can
be advantageous to commit to portions of
plans opportunistically when it appears that
part of a plan is suddenly appropriate to a set of
goals. Implementations of BDI or FSMs do not
appear to support initiating the execution of a
plan from somewhere in the middle of it. As
suggested earlier, a possible alternative would
be not to provide support for monolithic plans,
as in Soar, and essentially treat each plan action
atomically. Under such a scheme, instead of
having explicit plan representations, each ac-
tion must have appropriate selection condi-
tions based on the belief set and active goals. 
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competent intelligent agents within their
frameworks (for example, Harland and
Winikoff [2001]; Jones and Laird [1997]). How-
ever, too little attention is being paid to under-
standing the commonalities and differences
across frameworks. Achieving this understand-
ing is exacerbated by the differences in termi-
nology and assumptions across research com-
munities. We have attempted to contribute to
this larger discussion by reviewing the directly
supported representations and processes in
broadly differing agent frameworks and adopt-
ing a rational, neutral, and common set of
terms to describe each of them.

Each of these frameworks has been applied
successfully to enough problems that it is not
likely they are “missing” any representations
and processes that are functionally necessary.
However, from the point of view of creating de-
ployed knowledge-intensive agents, the lack of
explicit support from a framework imposes a
burden on agent developers. Soar’s (lack of)
support for plans is a good example. The lack of
an explicit plan representation lends flexibility
in terms of plan execution (including inter-
leaved execution with other plans). However, it
also requires that a model builder create ad hoc
solutions to plan commitment in the design of
agent knowledge. Clearly this imposes a trade-
off on the costs and benefits of using Soar’s ap-
proach to plan representation. Each framework
we have reviewed incorporates similar trade-
offs with respect to various aspects of the
framework’s design.

Continuing to identify and develop repre-
sentations and processes for agents is an impor-
tant research activity. Increasingly, researchers
are attending to processes necessary for social
agents, including normatives, values, obliga-
tions, and teamwork. However, there are addi-
tional intraagent representations and processes
that the frameworks discussed here do not di-
rectly support and that may be so widely nec-
essary that they should be considered base-lev-
el representations. Examples include deliberate
attention (Hill 1999), parallel active goals
(Jones et al. 1994; Thangarajah, Padgham, and
Harland 2002), and architectural support for
managing resource limitations and conflicts
(Meyer and Kieras 1997). Learning is also im-
portant for long-lived knowledge-intensive
agents. The migration of knowledge into (and
out of) long-term memory can also be studied
in terms of representations, commitment, and
reconsideration, resulting in a complex space
of potential learning mechanisms (for exam-
ple, along dimensions of automatic versus de-
liberate learning, or representations of proce-
dural, declarative, and episodic memories).

Many Soar agents implement task switching,
but it is particularly difficult for GOMS and
FSMs, since those frameworks explicitly insist
on a hierarchical task structure. Switching be-
tween tasks in different parts of a task hierarchy
requires quite a bit of overhead in continuously
constructing and replacing the active hierar-
chies. In addition, an agent that is switching
between two plans for two different goals must
make sure that each plan’s completions are sen-
sitive to the effects of the other plan. This re-
quirement demands some sort of shared mem-
ory in a global store or blackboard. The belief
sets in BDI, GOMS, and Soar serve this purpose
and enable communication between switching
plans. However, even FSMs that allow variables
and hierarchical decomposition generally en-
capsulate the variables within each machine,
making such task switching onerous.

Plan Execution 
A final issue involves how each framework con-
strains execution of a selected plan. Plan execu-
tion might also be called action maintenance be-
cause it has to do with the commitment to and
reconsideration of the individual actions that
make up the plan. The main issue here has to
do with whether the process of execution inte-
grates into the overall decision mechanisms of
the framework. GOMS and Soar both represent
plan actions as operators, which serve the dual
purpose of executing primitive actions and ac-
tivating new goals. Thus, they integrate the ba-
sic processes of reasoning and commitment in-
to each execution step of a plan. BDI and FSM
systems generally provide a plan language that
is a complete programming language, relatively
disconnected from the basic processes provided
by the framework. 

Certainly a plan language should contain
methods for updating beliefs. Some implemen-
tations also include language primitives for cre-
ating desires and activating goals. Other fea-
tures, such as loops, conditionals, and possibly
local variables, provide very powerful execu-
tion abilities, but leave them outside of the
constraints of the framework. This again im-
poses a trade-off between ease of programming
(where the BDI and FSM implementations gen-
erally win) and taking advantage of the unifor-
mity of the framework’s built-in processes
(where GOMS and Soar generally have an ad-
vantage).

Conclusions
The research communities that use agent
frameworks continue to explore the issues that
limit and inform the development of highly
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This analysis lays the groundwork for extend-
ing and unifying the basic level representations
and processes needed for knowledge-intensive
intelligent agents. Perhaps as important, the
analysis provides a potential theoretical frame-
work and common set of terms to fuel future
comparative and investigative work in the de-
sign of knowledge-intensive agent architec-
tures.
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